
Making DDS Really Real-Time with OpenFlow

Hyon-Young Choi
hyonchoi@cis.upenn.edu

Andrew L. King
kingand@cis.upenn.edu

Insup Lee
lee@cis.upenn.edu

Department of Computer & Information Science
University of Pennsylvania

Philadelphia, USA

ABSTRACT
An increasing amount of distributed real-time systems and
other critical infrastructure now rely on Data Distribution
Service (DDS) middleware for timely dissementation of data
between system nodes. While DDS has been designed specif-
ically for use in distributed real-time systems and exposes a
number of QoS properties to programmers, DDS fails to lift
time fully into the programming abstraction. The reason
for this is simple: DDS cannot directly control the underly-
ing network to ensure that messages always arrive to their
destination on time.

In this paper we describe a prototype system that uses the
OpenFlow SDN protocol to automatically and transparently
learn the QoS requirements of DDS participants. Based on
the QoS requirements, our system will manipulate the low-
level packet forwarding rules in the network to ensure that
the QoS requirements are always satisfied.

We use real OpenFlow hardware to evaluate how well our
prototype is able to manage network contention and guar-
antee the requested QoS. Additionally, we evaluate how well
the reliability and resilience features of a real DDS imple-
mentation is able to compensate for network contention on
an unmanaged (i.e., normal) ethernet. To the best of our
knowledge, this is the first evaluation of performance DDS
under extreme network contention conditions.

CCS Concepts
•Computer systems organization ! Real-time oper-

ating systems; Real-time system specification; Peer-
to-peer architectures; Reconfigurable computing; Maintain-
ability and maintenance; •Networks ! Network experi-
mentation;

Keywords
Real-Time, Distributed Systems, Publish-Subscribe, Soft-
ware Defined Networking, QoS Management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EMSOFT’16, October 01-07 2016, Pittsburgh, PA, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4485-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2968478.2968479

1. INTRODUCTION
The development of distributed real-time software systems

is a complex and involved process.The distribution of system
functions across multiple hosts means programmers must
contend with a plethora of issues related to logical concur-
rency and low-level networking details. In most real-world
systems integration contexts, systems developers are also
challenged by interoperability, i.e., how to ensure that com-
ponents produced by di↵erent vendors can understand each
other and communicate e↵ectively. Additionally, for systems
with real-time requirements, programmers and systems en-
gineers must also ensure that the overall system exhibits the
correct timing behavior.

Over the past two decades there has been significant e↵ort
by both the academic community and industry to address
many of the distributed real-time systems development chal-
lenges via middleware [15, 4, 3]. The goal is to have the mid-
dleware provide a simplified programming abstraction that
hides important, yet tedious and complex, implementation
details such as data transport, service discovery/routing, se-
rialization/deserialization and many others.

Recently, there has been increasing interest in middleware
implementing the Data Distribution Service (DDS) Object
Management Group (OMG) standard [11]. There are several
high-quality implementations of the standard. Furthermore,
a subset of these implementations have been rigorously ver-
ified and include certification packagages enabling their use
in systems that require DO-178C Level A, IEC 60601, or
ISO 26262 certification.

The quality of DDS middleware has lead to many large
scale distributed real-time software systems that depend on
it such as the Littoral Combat Ship [3], The Grand Coulee
Dam [5], and Duke Energy’s next generation smart grid [16].
The increasing popularity of DDS cannot be overstated: One
major DDS vendor now claims that the total value of sys-
tem designs that depends on their implementation of DDS
exceeds “1 trillion dollars” [7].

DDS provides a“data-centric”publish-subscribe program-
ming abstraction designed for use in real-time systems. Data
producers (i.e., publishers) write updates to topics and data
consumers (subscribers) specify which topics they want to
monitor and receive updates from. DDS lets the program-
mer attach Quality of Service (QoS) settings to publishers,
subscribers, and topics. These settings define how the DDS
middleware responds to faults (e.g., connectivity loss) and
lets the programmer specify the distributed timing require-
ments of the system (e.g., the DEADLINE parameter, which
specifies how often a subscriber should receive updates from

a publisher).
While the DDS standard provides a rich set of real-time

centric QoS settings, DDS middleware does not fully lift
system timing into the programming abstraction. Indeed,
bringing timing fully into the programming abstraction is
di�cult because the timing behavior of a software system
only emerges when you map the software onto a particular
platform (i.e., processor, operating system, and networking
fabric). In the context of a critical distributed hard real-time
system, special real-time networking hardware is often used
and the systems integrator must devote significant e↵ort
provisioning and configuring that hardware to ensure the
required timing behavior. The configuration process usually
involves setting priorities or transmission schedules for each
time critical flow. Sometimes, if the underlying network will
be shared by more than one logically independent applica-
tion, tra�c policers and/or special partitioning features are
setup to keep the di↵erent applications isolated. These net-
work configurations are usually static and setup o✏ine: If
one wants to add a new node to the network (e.g., a sensor
or actuator) the system must be brought down, manually
reconfigured, and then brought back up. The process of
network resource configuration can be complex, costly, and
error prone.

Recent advances in Software Defined Networking (SDN)
have the potential to enable the enforcement of a distributed
system’s middleware-specified timing properties automati-
cally and transparently in the network hardware. In theory,
a programmer could specify distributed timing constraints,
such as end-to-end latency requirements, to the middleware
itself. Then the middleware could then leverage SDN pro-
tocols such as OpenFlow [10] to automatically and dynami-
cally reconfigure the underlying network to enforce the spec-
ified timing constraints.

Using SDN to lift timing behavior into the programming
abstraction o↵ers a number of potential benefits. First, it
means systems integrators would no longer need to manu-
ally provision network resources o✏ine. Second, it allows
for the use of general-purpose SDN hardware in real-time
applications. Third, it allows for online dynamic network
reconfiguration thereby enabling use-cases with real-time re-
quirements but whose complete configuration is not known
a priori (e.g., the Industrial Internet of Things (IIoT) [1, 14]
and plug & play medical systems [12]).

The aims of this paper are two-fold. First, we propose an
SDN controller that automatically enforces requested QoS
directly in the network and prevents network overloads from
impacting the DDS tra�c. A key design feature of our con-
troller is that it does not require any modification to exist-
ing DDS implementations and in theory could be deployed
in existing systems. This feature is important because it
means certified DDS implementations would not need to go
through expensive recertification to take advantage of our
system. Second, we want to evaluate how a real DDS imple-
mentation is able to compensate for less than ideal network
conditions such as overloads. Because an increasing amount
of critical infrastructure is depending on DDS for correct
function, it is important to understand how the middleware
behaves under these conditions. As far as we know, up until
this point, no such study has been performed or publically
released.

This paper is organized as follows: In Section 2 we pro-
vide a overview of DDS middleware. Section 3 gives a brief

background of OpenFlow. Section 4 describes new proposed
QoS parameters and gives an overview of the architecture
and function of our SDN controller. Section 5 contains the
experimental evaluation. In Section 6 we survey and discuss
related work. We conclude and propose areas for future work
in Section 7.

2. DDS BACKGROUND
DDS provides a data-centric publish-subscribe program-

ming abstraction [11]. The DDS abstraction exposes a num-
ber of features programmers can use to disseminate data
across a distributed system at di↵erent levels of granularity.
DDS also provides a rich set of QoS settings that can be used
to both control and specify the non-functional properties of
the system. A complete description of the DDS program-
ming abstraction is beyond the scope of this paper. Instead,
in this section we give a functional overview of the DDS
programming abstraction. We describe, at a high-level, the
di↵erent abstraction entities, their roles, and how they are
typically implemented. We give special attention to the dif-
ferent QoS settings that can either a↵ect or specify desired
system timing.

2.1 Data Centric Programming Abstraction
Figure 2 illustrates the basic DDS programming abstrac-

tion. Any software that wants to produce and share data
uses a DataWriter object. The DataWriter is associated
with a Topic. If another program (which could be on a dif-
ferent host) wants that data, it uses a DataReader that is
subscribed to that topic. We say that DDS is data-centric be-
cause Topics have structured data types and the data typing
used in DDS lets us view Topics in a way that is intuitively
similar to a table in a relational DBMS: DataWriter objects
are a portal programmers can use to update the data stored
in the table, and DataReader objects provide a view of the
data in the table. Indeed, the DDS specification lets pro-
grammers use SQL-like queries with DataReaders to extract
the specific data they desire.

Figure 1 shows how the top-level programming abstrac-
tion relates to intermediate abstractions and the underly-
ing implementation. At the top level are the DataWriters,
DataReaders, and Topics which embody the datacentric por-
tion of the abstraction. In DDS, DataWriters are bound to
Publishers and DataReaders are bound to Subscribers. The
publishers and subscribers sit on top of modules that imple-
ment the Real-Time Publish Subscribe Protocol or RTPS.
The RTPS module is split into two sub-modules, a platform
independent module and a platform specific module. The
Platform Independant Module (PIM) defines the types of
messages and state-machines that are used by the RTPS.
The Platform Specific Module (PSM) maps the logical pro-
tocol elements onto a specific networking implementation
(e.g., IP/UDP, CAN Bus, etc).

2.1.1 Quality of Service Parameters
DDS supports over two dozen QoS policies that can be

specified for the di↵erent entities. The QoS policies af-
fect how the middleware disseminates data from publishers
to subscribers. Furthermore, the middleware automatically
checks the consistency of the QoS settings between entities
involved in a publish/subscribe relationship and notifies the
application of any violation. The QoS policies supported by
DDS a↵ect various non-functional properties of the publish-

ParticipantParticipant

DataWriter DataReaderTopic

Publisher Subscriber

RTPS PIM

IP/UDP PSM

RTPS PIM

IP/UDP PSM

IP Network

QoSType Name

QoS QoS

QoS QoS

Pr
og

ra
m

m
in

g
Ab

st
ra

ct
io

n Im
plem

entation / Realization

Figure 1: DDS programming abstraction entities and implementation.

subscribr system including data availability, delivery and
timing. We will not cover every aspect of DDS QoS here.
Instead we will only focus on the parameters that typically
a↵ect timing (either directly or indirectly).

• DEADLINE(number) - Defines the maximum separa-
tion between consecutive updates to a topic. DataWrit-
ers must not wait longer than the DEADLINE between
consecutive writes. DataReaders will generate an ex-
ception if the deadline is exceeded between updates
(i.e., if a DataWriter is too slow or the underlying
network delays delivery of an update).

• LATENCY_BUDGET(number) - Hint to the middleware
specifying tolerable update delivery delay. The latency
budget is used by the underlying middleware to decide
whether it can batch updates together in order to op-
timize network bandwidth.

• BEST_EFFORT(boolean) - If true, the middleware won’t
attempt to resend lost updates. Publishers will sim-
ply transmit topic updates as fast as possible onto the
network.

• RELIABLE(boolean) - Specifies whether a reliable trans-
port must be used to deliver updates. Messages lost
due to network contention or faults will eventually be
recovered by the subscriber.

• HISTORY_DEPTH(number) - Defines how large the up-
date cache must be in a DataReader or DataWriter.
For DataWriters the history depth indicates how many
updates it will keep available for recovery in RELIABLE
sessions. For DataReaders it is simply the number of
previous updates the DataReader can make available
to the application.

• DESTINATION_ORDER - Specifies whether the subscriber
DataReader must present topic updates to the applica-
tion in the order they were written to the DataReader.

• User QoS - DDS also allows users to specify their own
QoS parameters that can be processed by their appli-
cation. User QoS lets users attach arbitrary key/value
pairs to DataReader/DataWriters. These key/values
are exchanged during discovery but will not a↵ect the
behavior of the middleware. Instead, they can be re-
covered and used by the application for whatever pur-
pose as intended by the programmer.

2.2 Operation
The operation of DDS can be divided into three main

phases: 1) Discovery - where the di↵erent DDS participants
find each other on the network, 2) Matching - where the
discovered participants determine if they should engage in
a publish-subscribe relatonship, and 3) Data Distribution
- where data is disseminated from the publishers to sub-
scribers that have matched. The particulars of how DDS
operates depends on the type of networking technology be-
ing used and the Platform Specific Module (PSM) imple-
mention of the RTPS for that network. Here we give a high-
level overview of how these di↵erent phases are implemented
in the IP/UDP PSM that is used when DDS is operated on
typical IP networks.

2.2.1 Discovery
The discovery phase is itself divided into two sub-phases:

Participant discovery and endpoint discovery. The aim of
participant discovery is to discover each node on the net-
work that is running DDS. Once the DDS participants have
been discovered, each participant will attempt to discover
the end-points (i.e., DataWriters & DataReaders) hosted
on the other participants and what topics those end-points
are publishing or subscribing to.

The IP/UDP PSM implements participant discovery us-
ing the Simple Participant Discovery Protocol (SPDP). The
SPDP works by IP multicasting: Each participant periodi-
cally transmits a discovery message to a pre-defined multi-
cast address. The discovery message contains the informa-
tion needed by other participants to uniquely identify the
originator of the message. Participants also listen for mul-
ticasts to that same address. When a participant detects
another participant, the information contained in the dis-
covery message is stored in a local “participant database”.

After a participant discovers another participant it will

DataWriter DataReaderBoilerPressure

QoS:
LATENCY_BUDGET = 15
DEADLINE = 100
HISTORY = 20
…

QoS:
LATENCY_BUDGET = 30
DEADLINE = 100
HISTORY = 10
…

QoS:
DEADLINE = 200
HISTORY = 3
…

Figure 2: Publish-subscribe relationship with consistent
QoS settings.

initiate end-point discovery using the Simple End-point Dis-
covery Protocol (SEDP). SEDP is a reliable (i.e., it will re-
send lost messages) point-to-point protocol that allows one
participant to learn what the other participant’s DataRead-
ers/DataWriters are, the topics/data-types associated with
those DataReaders/DataWriters, and their respective QoS
settings. Additionally, participants learn a “locator list”
matching topics to IP addresses. Typically, each topic will
be associated with its own multicast address / IP port com-
bination to facilitate e�cient dissemintation of topic updates
over the network. The participants will store the informa-
tion learned about remote end-points in a local end-point
cache.

2.2.2 Matching
After the end-points have been discovered the matching

process will begin. Subscribers will examine their local end-
point cache to see if they have discovered any end-points
that are publishing to the topics they are subscribing to.
If the subcriber find an end-point that is publishing to a
topic they subscribe to, the subscriber will compare its own
QoS requirements to the QoS o↵ered by the publishers. If
the QoS settings are consistent (i.e., the publisher’s QoS
guarantee is at least as strong as the subscriber’s require-
ments) then the match is successful and the subscriber will
start receiving topic updates on behalf of its DataReaders.
Since multicast locators are typically used, the subscriber
will start listening on the appropriate address for updates.

2.2.3 Data Distribution
At a high-level, IP/UDP data distribution is fairly sim-

ple and works by having the publishers serialize the update
data, encapsulate that data with DDS specific information
(e.g., sequence number) and then transmit the encapsulated
data as a UDP packet to the multicast address associated
with the topic in question. The subscribers subscribed to the
topic will be listening for packets on that multicast address.
When a subscriber receives a new packet they will deseri-
alize the update and present it to the application via the
associated DataReader. While basic operation is fairly sim-
ple, the details of how the RTPS and IP/UDP PSM handles
data distribution changes based on the QoS settings used.

• BEST_EFFORT = true - If BEST_EFFORT QoS is active
then the publisher will “fire and forget” topic updates.
Updates lost in transit will not be recovered.

• RELIABLE = true - The IP/UDP PSM will use a re-
liable multicast procotol to recover lost update mes-
sages. Subscribers will keep track of each received up-
date’s sequence number. NACK messages are sent to
the publisher for each sequence number missed and
the publisher will retransmit the updates (that is has
cached) for the missing sequence numbers.

• HISTORY_DEPTH = n. When reliable transport is en-
abled, the publisher can only resend lost updates that
are present in its local cache. If the publisher no longer
has the update specified by a NACK it will notify the
subscriber that the data is no longer available.

• DESTINATION_ORDER = true. If a DataReader is set
to enforce ordering it will not present the most re-
cent update to the application until all previous up-
dates have been presented. If intermediate updates

have been lost due to network faults or contention, the
DataReader will wait to present recent updates until
either the missing updates have been recovered and
presented, or the publisher has indicated it no longer
has the missing updates in its update cache.

3. OPENFLOW BACKGROUND
OpenFlow [10] is a protocol designed to enable Software

Defined Networking (SDN). SDN separates the data plane
(where data packets are switched, routed and otherwise moved)
and the control plane, which decides how to configure the
data plane based on high-level routing or switching poli-
cies. Traditional networking equipment contains both the
control and data planes. For example, a typical COTS eth-
ernet switch implements the data-plane in hardware using a
specialized packet-switching ASIC while the firmware run-
ning on the switch’s general purpose CPU will configure
the switching ASIC according to whatever policy the switch
manufacturer has defined.

SDN protocols like OpenFlow enable the reconfiguration
of the switch hardware ASIC from a server process running
on a remote machine (called the OpenFlow controller). This
capability makes it posible to write “controller applications”
using a language like Java or C++ that learn the topology of
the network (i.e., learn what ports on what switches di↵er-
ent hosts are connected to) and then e↵ect complex routing,
forwarding and QoS strategies.

We now describe the operation of an OpenFlow network.
An OpenFlow network consists of OpenFlow switches and
OpenFlow controllers (e.g., Floodlight, Ryu, etc.). An Open-
Flow hardware switch is a Layer 2/3 Ethernet switch that
maintains a table of flow entries and actions.

The flow table associates each flow with a set of actions
that indicate to the switch how to handle packets matching
the flow. The OpenFlow standard defines a number of
di↵erent possible actions a switch may implement including
enqueue (place the packet on a specific egress queue), limit
(apply a rate-limiter) and drop (simply drop the packet).

When a switch receives a packet on one of its interfaces,
it tries to find a matching flow entry in its flow-table. If a
matching entry is found, the associated action set is applied.
If the packet does not match an existing entry the switch
performs a Packet-in. When the switch performs a Packet-
in, it sends a message to the OpenFlow controller (a piece
software running on a server in the network). The message
contains the packet that failed to match as well as meta-
information about the packet such as on which switch the
match failure occurred, the physical port of the switch that
the packet arrived on, and other statistics. The controller
can use the meta-information and the information in the
failed packet itself to decide on a course of action. The
controller can then either modify one or more switch’s flow
tables with a new rules and/or send the packet back to a
switch with instructions on how to deal with just that packet
(called Packet-out).

4. OVERVIEW
Our controller works by using the OpenFlow protocol to

transparently insert itself into the DDS discovery process.
It uses the OpenFlow protocol to dynamically learn where
DDS nodes exist on the network and what each nodes spec-
ified QoS is. If two nodes want to engage in a publish-

subscribe relationship, the controller extracts the specified
end-to-end QoS by intercepting and deserializing the discov-
ery messages. The controller will then attempt to derive a
network configuration and resource reservation that satisfies
the specified QoS. If the new configuration will guarantee the
QoS the controller will let the discovery process proceed and
then commit the new configuration to the network so DDS
data tra�c can flow from publisher to subscriber.

4.1 Proposed QoS Additions
While our system does not require any modifications to

the DDS middleware itself, it does need information that
can’t be easily derived from the existing standardized QoS
parameters. Here we propose two new QoS parameters that
will enable us to support automatic timing guarantees. While
our current system requires that the application developer
supply these parameters to the middleware via the User QoS
feature, we hope that these (or equivalent) parameters will
eventually be considered for inclusion in the DDS standard.

The first QoS we propose is called MINIMUM_SEPARATION.
MINIMUM_SEPARATION applies to Publishers and defines the
smallest allowed interval between the network transmissions
related to two consecutive updates to a topic. In this paper
we use minseptp to denote the MINIMUM_SEPARATION applied
to publisher p for topic t. Formally, we define minseptp as
follows:

Definition 1. Publisher minimum separation. Let ti
and ti+1 be any two moments when the publisher p starts
transmitting the data for topic t update i and i+ 1 respec-
tively. Then it is always the case that minseptp  ti+1 � ti.

MINIMUM_SEPARATION is essential for our ability to do
schedulability analysis: It precisely defines how often a pub-
lisher can transmit a data on the network. When com-
bined with the maximum data-size for an update to a given
data-type, MINIMUM_SEPARATION lets us derive how much
load the publisher can induce on the network which is re-
quired for schedulability analysis and the ability to guar-
antee QoS. The second proposed Qos parameter concerns
end-to-end latency. While the DDS standard already has the
LATENCY_BUDGET QoS, its semantics is purposely not well de-
fined. Furthermore, LATENCY_BUDGET is intended to apply to
publishers as a hint how to batch topic updates for network
transmission. We propose a new latency QoS in order to
prevent confusion with DDS’ LATENCY_BUDGET. Our new pro-
posed parameter for end-to-end latency, called E2E_LATENCY,
defines an upper bound on the amount of time it can take
an update to traverse the network from publisher to sub-
scriber. Unlike DDS’ LATENCY_BUDGET, E2E_LATENCY is in-
tended to be specified by Subscribers. Furthermore, the se-
mantics E2E_LATENCY require the underlying network infras-
tructure to guarantee that the specified latency always be
satisfied. In this paper we use lts to denote the E2E_LATENCY
specified by subscriber s for topic t:

Definition 2. End-to-end latency. Let tpi be the mo-
ment publisher p transmits the first bit of update i on the
network and tsi be the moment subscriber s receives the last
bit of update i. Then for any i, it is always the case that
tsi � tpi  lts.

4.2 Operation & Architecture
Figure 3a shows the functional software architecture of

our SDN controller and Figure 3b shows how DDS discov-
ery & data tra�c flows in our solution. The controller is
implemented in Java as a “controller” application running
on top of the Floodlight controller. Floodlight o↵ers basic
functionality including:

• TopologyService - Maintains the topology of the net-
work. The topology service periodically causes the
switches under the control of the controller to send
Link Layer Discovery Packets (LLDP) out of their ports.
Changes in the physical topology of the network (e.g.,
due to cable connect/disconnect) will be detected by
the topology service, which will then notify the other
Floodlight modules and controller applications.

• Forwarding/Routing - These two modules will learn
the MAC address of all network connected devices and
will push flow rules to ensure that non-DDS tra�c can
transit the network as if it was a normal (non-SDN)
ethernet. We’ve modified these modules from the ones
available in the normal Floodlight distribution to en-
sure that non-DDS tra�c will always be queued at a
lower priority than the DDS tra�c.

• DeviceManager - Maintains database of the hosts con-
nected to the network including their MAC/IP ad-
dresses and what port of what switch the host is plugged
into.

In addition to the above, our controller runs four more
modules specifically designed guarantee the QoS of DDS
tra�c:

• DDSDiscoveryInterceptor - Handles Packet-In events
for all DDS discovery (i.e., SPDP or SEDP) tra�c.
This module eavesdrops on the discovery procotol and
learns what network devices are DDS participants,
whether two participants have end-points that want
to engage in a publish-subscribe relationship, and what
the requested QoS for that relationship is.

• DDSFlowScheduler - Does admission control for publish-
subscribe relationships. Generates a network configu-
ration (i.e., flow rules) that potentially guarantees the
QoS of all publish-susbcribe flows. Uses schedulability
analysis to determine if the new network configuration
is feasible. If so uses the NetworkModel to safely up-
date the flow rules in the switches.

• NetworkModel - Stores dynamic information about the
state of the network and resource reservations for DDS
clients. It tracks which nodes are DDS participants,
which participants are engaged in a publish-subscribe
relationship, the QoS of those relationships, and the
flow rules installed into each switch to support those
relationships.

• SwitchModelDB - Stores static information about the
performance characteristics of each switch in the net-
work. This information is used by the flow scheduler
to generate new network configurations and to per-
form feasibility testing of those configurations. The
information includes, for each model of switch used
in the network, multiplexing latency, the number of

DDSFlowScheduler
Admission	control	&

DDS	flow	config.	generation.

DDSDiscoveryInterceptor
Intercepts	DDS	discovery	traffic

SwitchModelDB
Info	re:	switch	queues,
scheduling,	rate-limits

NetworkModel
Abstracts	current	
network	config.

Forwarding
Routing

TopologyService
DeviceManager

Floodlight	Controller

Sequence of flow rules
updates (add,del, or mod)

Notify if admitted

Ask for admission

Packet-Out

Packet-
Out,
Flow-
Mod,
Continue

Flow-Mod

Packet-In

Packet-In

Controller App Components

Floodlight Modules

(a) Software architecture of the SDN controller.

DDS Data

DDS Discovery Traffic.
Openflow Rules

Switch Switch SwitchDDS
Publisher

DDS
Subscriber

SDN Controller

………… …………

(b) Routing of DDS data, DDS discovery, and OpenFlow flow-
modification messages.

Figure 3: SDN controller design & operation.

egress queues per port (and the depth of the queues),
the intra- and inter-queue packet scheduling discipline
used (e.g., FIFO, WFQ, FP, etc.), and the precision of
the ingress rate-limiters.

Using these modules the controller application works as
follows. When DDS clients start participant discovery via
the SPDP they will multicast discovery packets. We ensure
that the flowtable of each switch has no entry that can match
against SPDP tra�c. This causes a switch that receives
the SPDP tra�c to forward it to the controller via Packet-
In. On the controller side, Packet-In’s related to SPDP or
SEDP tra�c is forwarded to the DDSInterceptor module.
The DDSInterceptor deserializes the SDPD messages and
learns the IP address and network location (i.e., the switch
and port) of the DDS participant. This information is then
cached in the NetworkModel. The interceptor then Packet-
outs the SPDP packet to the other DDS participants.

Next, once the participants have discovered each other,
they will initiate end-point discovery with the SEDP. Again,
since the SEDP tra�c will not match any rule in any switch’s
flow table the SEDP tra�c will be forwarded to the con-
troller via Packet-In. The controller uses the SEDP tra�c to
learn which DDS participants want to engage in a publish-
subscribe relationship and the requested QoS settings for
that relationship. If both MINIMUM_SEPARATION (publisher)
and E2E_LATENCY (subscriber) has been specified then the in-
terceptor will initiate admission control with the FlowSched-
uler.

The FlowScheduler will attempt to derive a network con-
figuration that guarantees the requested QoS. The mathe-
matical details of how such a scheduler could work are be-
yond the scope of this paper (See [8] or [9] for two di↵erent
approaches. We follow the approach of [8]). Instead we will
give a high-level description. First the FlowScheduler uses
the publisher’s MINIMUM_SEPARATION and the topic’s data
type to infer a worst-case arrival pattern of bits that the flow
of updates from the publisher can induce onto the network.
Then, the FlowScheduler uses the information stored in the
NetworkModel to find a path for the flow across the network
that satisfies the latency requirement. The FlowScheduler
may choose to prioritize the new flow di↵erently at each
hop to ensure that each real-time DDS flow (both new and
old) will always satisfy its QoS. After it has generated a new
configuration, the FlowScheduler will test the configuration

for schedulability.
If any flow admitted to the system can miss its speci-

fied QoS the admission process for the new flow fails and
the FlowScheduler will instruct the DDSInterceptor to block
the matching process between the publisher and subscriber
in question. If the new configuration guarantees the flow’s
QoS the flow scheduler will give an ordered list of“flow mod”
commands to the NetworkModel. The NetworkModel will
cache the new flow configuration and then commit it to the
network in the order specified (The ordering generated by
the FlowScheduler ensures that QoS of existing flows will
not be violated during the reconfiguration process). After
the new configuration has been comitted to the network the
FlowScheduler will instruct the DDSInterceptor to let the
SEDP proceed so the publisher and subcriber can match.
Since flow rules matching the new publish-subscribe flow
are now present in the switches, all publish subscribe traf-
fic between the new end-points can flow freely and will be
processed at line rate.

5. EXPERIMENTAL EVALUATION
Our experiments have two goals. First, we want to un-

derstand how a real DDS implementation compensates for
network overloads. In particular, we want to evaluate how
network overload conditions a↵ect the end-to-end timing of
the publish-subscribe relationships and then how well the
DDS reliability and resilience features (e.g., RELIABLE, HIS-
TORY_DEPTH, and DESITINATION_ORDER QoS) help the ap-
plication recover from message losses incurred during the
overload. The second goal is to evaluate how well our SDN
controller is able to protect DDS tra�c from interference
from network overloads. We will compare the timing per-
formance of the system when our controller is enabled to
when it is not and when the network is and isn’t overloaded.

5.1 Setup
Figure 4 shows the experimental setup. We built a net-

work comprised of a single Pica8 P-3297 Gigabit top of rack
switch, three Linux computers (one for the publisher, one
for the subscriber, and one to run the SDN controller) and
a Linux desktop to act as a tra�c generator. In order to en-
sure that we can overload the queuing capacity of the switch
port connected to the subscriber host the tra�c generator
is connected to the switch with two 1Gbps links.

Pica8 Switch
(OVS Mode)

DDS
Publisher
(RT Linux)

1

2 4

3
C

DDS
Subscriber
(RT Linux)

Traffic
Generator

SDN
Controller

1Gbps

1Gbps 1Gbps

1Gbps

Figure 4: Experimental setup.

The publisher/subscriber computers were desktop machines
with Intel Core i7-3770 (publisher) or i7-4770 (subscriber)
processors, 8GB (publisher) or 16GB (subscriber) of RAM
and configured with the fully preemptible (i.e., RT_PREEMPT)
real-time Linux kernel version 4.4.4-rt11.

We wrote a custom application in real-time (RTSJ) Java
(running on IBM’s WebSphereRT real-time JVM) that pub-
lishes an update to topic TestTopic every 5ms. Likewise,
we wrote a subscriber application that uses DDS to sub-
scribe to TestTopic. We chose Real-Time Java because it
o↵ers a good combination of programmer productivity, pre-
dictability, and lets us avoid certain annoying issues that
can manifest when unmanaged programming languages are
used (e.g., heap fragmentation). Both the subscriber and
publisher have DEADLINE QoS set to 5ms. The publisher’s
MIN_SEPARATION is also set to set to 5ms and the E2E_LATENCY
of the subscriber is set to 1ms. The DDS implementation
used is Real-Time Innovation Inc.’s Connext DDS [7]

Each time the subscriber got an update it would record
when it got the update, the sequence number of the update,
and a count of the cummulative updates. The combina-
tion of real-time Java, IBM’s WebSphereRT, and real-time
Linux a↵orded us fairly precise control over when the pub-
lisher actually published an update to a topic, and when
the subscriber activated in response to receiving an update:
Observed dispatch jitters (i.e., variation in when scheduled
events, such as topic writes, happen in the Java application)
were always  100µs. Latency through the network card,
kernel networking stack, JVM and middleware were always
less than 1ms total.

The tra�c generator host was equipped pktgen packet
generator program. When activated, it generated a flood
of UDP packets towards a the subscriber’s IP address in a
specific pattern: The generator would cycle flooding for 1
second, then stop for one second. The goal of this pattern
is to help us see the e↵ects of transient overloads. Using
both network links the tra�c generator could consistently
flood the network at 2,000Mb/s, more than enough to over-
whelm the capacity of the subscriber’s 1000Mb/s connection
to the switch. We ran our test publish-subcribe applica-
tion a number of times with a variety of QoS settings and
with/without our SDN controller. For each run we ran our
publish-subscribe system for 25 seconds. Over the course of
these runs we captured two categories of data-sets. The first
category is cummulative updates received vs time. The other
is Normalized Latency vs. Seq. Number.

5.1.1 Cummulative Updates vs. Time
The cummulative updates vs. time datasets give the num-

ber of updates to TestTopic the subscriber’s DataReader re-
ceived and processed by time t. We ran 11 categories of this
experiment, 6 with BEST_EFFORT QoS and 5 with RELIABLE

QoS. In all categories DESTINATION_ORDER QoS is active:

• BEST_EFFORT without contention or SDN, DataSize =
100 bytes: This variations is to establish a baseline of
“ideal” behavior. As DEADLINE = 5ms we expect the
subscriber to receive updates at a uniform rate of 200
per second because there is no network contention.

• BEST_EFFORT without SDN but with periodic contention,
DataSize = n bytes with n 2 {100, 500, 1000, 1400}:
Captures the performance degradation due to network
contention.

• BEST_EFFORT with SDN, periodic contention and
DataSize = 1400. Captures the ability of the SDN
controller to e↵ectively manage the contention and pre-
serve the specified timing behavior of the publish sub-
scribe system.

• RELIABLE without SDN but with periodic contention,
HISTORY_DEPTH = n bytes with n 2 {1, 50, 100,1}:
Captures the ability of the reliable transport to com-
pensate for network packet drops.

• RELIABLE with contention and SDN, HISTORY_DEPTH
= 1: This variations captures the performance of the
system when the SDN control is enforcing QoS and the
reliable multicast transport is being used.

Additionally, for each category subject to tra�c loads
from the tra�c generator we ran 15 sub-variations where
we varied the size of the generated packets from 100 - 1500
bytes in steps of 100 bytes while keeping the overall tra�c
rate constant (in e↵ect varying the packets per second).

5.1.2 Normalized Latency vs. Seq. Number
The normalized latency vs. seq. number datasets give

when a particular update was received vs. when it was ex-
pected:

Definition 3. Expected Update Time - Let i denote an
update. Let t0 be the time the first update to the topic is
received. Then the expected update time for update i, e (i)
is calculated with the following equation:

e (i) = (i⇥ 5ms) + t0 (1)

Definition 4. Normalized Latency - Let ti be the time up-
date i is actually received. Then the normalized latency of
an update i, nl (i) is the di↵erence of the actual update time
from the expected time:

nl (i) = ti � e (i) (2)

Normalized latency helps us understand the e↵ects of net-
work contention on how the application perceives the global
data space with respect to time. As with the cummulative
updates vs. time data sets we capture data for a number
of QoS variations including BEST_EFFORT & RELIABLE trans-
ports, di↵erent HISTORY_DEPTH and with/without SDN sup-
port.

Observe that, even in the ideal case, we don’t expect the
normalized latency to be 0 due to processing and network
jitters. Also, when SDN support is enabled, we expect small
variations in the normalized latency because E2E_LATENCY
= 1ms (update i could have an actual latency close to 0 but
update i+ 1 could have an actual latency of 1ms).

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25

R
ec

ei
ve

d
C

ou
nt

Time(s)

Best-Effort(No-load) w/o SDN
Best-Effort(Data-Size=100) w/o SDN
Best-Effort(Data-Size=500) w/o SDN

Best-Effort(Data-Size=1000) w/o SDN
Best-Effort(Data-Size=1400) w/o SDN
Best-Effort(Data-Size=1400) w/ SDN

(a) BEST_EFFORT with 1400-byte background tra�c packets.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25

R
ec

ei
ve

d
C

ou
nt

Time(s)

Best-Effort(No-load) w/o SDN
Reliable(Depth=1) w/o SDN

Reliable(Depth=50) w/o SDN
Reliable(Depth=100) w/o SDN

Reliable(Depth=∞) w/o SDN
Reliable(Depth=1) w/ SDN

(b) RELIABLE with 1400-byte background tra�c packets.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25

R
ec

ei
ve

d
C

ou
nt

Time(s)

Best-Effort(No-load) w/o SDN
Best-Effort(Data-Size=100) w/o SDN
Best-Effort(Data-Size=500) w/o SDN

Best-Effort(Data-Size=1000) w/o SDN
Best-Effort(Data-Size=1400) w/o SDN
Best-Effort(Data-Size=1400) w/ SDN

(c) BEST_EFFORT with 100-byte background tra�c packets.

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25

R
ec

ei
ve

d
C

ou
nt

Time(s)

Best-Effort(No-load) w/o SDN
Reliable(Depth=1) w/o SDN

Reliable(Depth=50) w/o SDN
Reliable(Depth=100) w/o SDN

Reliable(Depth=∞) w/o SDN
Reliable(Depth=1) w/ SDN

(d) RELIABLE with 100-byte background tra�c packets.

Figure 5: Cummulative updates vs. time.

5.2 Results & Discussion
Figure 5 shows the cummulative updates vs. time dataset.

The results for background tra�c packet sizes � 200 is
the same so we only show the results for packet sizes 1400
(Figures 5a & 5b) and 100 (Figure 5c & 5d). For both
BEST_EFFORT (Figure 5a) and RELIABLE (Figure 5b) QoS
the e↵ects of periodic network contention are readily ap-
parent when SDN support is disabled. However, the e↵ects
manifest di↵erently depending on whether BEST_EFFORT or
RELIABLE is used. When there is no contention the be-
havior of the system very closely matches the idealized ex-
pected behavior: the slope of the line indicates that the sub-
scriber is uniformly receiving updates every ⇠ 5ms. When
BEST_EFFORT QoS is used periodic networking contention
causes both updates to be dropped in the network and the
overall update rate to be depressed (causing DEADLINE QoS
violations in the DataReader).

The periodic pattern of the contention is clearly visible in
Figure 5a: For the lines representing the data sets without
SDN support, their slope is depressed for the 1 second du-
rations the tra�c generator is active and the slope returns
to the idealized rate once the tra�c generator is o↵. The
di↵erence between the line “idealized” line (representing the
run where there is no load) and the other lines is number
of updates that were lost due to network overloads. As we
can see, the the data-size of the update does not a↵ect the
impact of the network contention. When the SDN controller
is managing the tra�c flows the tra�c generator causes no
a↵ect on the rate the subscriber receives updates. Indeed,
the line for “Best-E↵ort(Data-Size=1400) w/ SDN” exactly

tracks the line for when there is no contention.
A system running with RELIABLE QoS reacts di↵erently

to network contention (see Figure 5b). Instead of only ex-
periencing an update rate slowdown when the contention is
active (i.e., for 1 second durations) like with BEST_EFFORT
QoS, updates are prevented from being processed by the
DataReader for over 8 seconds with RELIABLE QoS. Why
is this? There are two factors at play (confirmed via code
inspections and discussions with the middleware vendor).
First, because DESTINATION_ORDER = true the middleware
won’t manifest updates to DataReader until all previous up-
dates have been manifested: If one update is dropped, all
subsequent updates that are received are held back from the
application by the middleware until the subscriber receives
the missing update in e↵ect. Second, since the publisher
must retransmit the missed updates, network contention is
actually increased, making it more likely for further updates
to drop.

Though RELIABLE QoS can exaggerate the duration that
updates are missed, if the publisher’s HISTORY_DEPTH is large
enough the middleware is able to exploit network idle times
to recover the missing data. We see this behavior with the
line for“Reliable(Depth=1) w/o SDN”: No updates are pro-
cessed by the DataReader once the tra�c generator activates
at t = 1 second until t = 8 seconds, at which point all the
missing updates have been recovered and the received up-
date count jumps to where it should be if no updates had
been lost. Again, like with BEST_EFFORT QoS, the SDN con-
troller manages the tra�c flows to ensure idealized behavior
when RELIABLE QoS is used.

However, for both RELIABLE and BEST_EFFORT QoS with
100 byte background tra�c packet sizes (Figures 5c & 5d)
our SDN controller is apparently not able to enforce the
specified QoS. After an investigation we discovered that it
was not the network dropping packets but the subscriber
host itself: The host’s NIC and kernel could not keep up with
the packet rate induced by the small packets as confirmed
by the rx_no_buffer_count and rx_missed_errors kernel
driver statistics.

Figure 6 shows the normalized latency of each update for
runs of the system with a variety of di↵erent QoS settings.
Figure 6a shows the “idealized” behavior: BEST_EFFORT QoS
with no interference from the tra�c generator. The nor-
malized latency in the idealized case remains close to 0 for
the entire run. The normalized latency is actually usually
slightly less than 0. How can this be? Recall that the ex-
pected arrival time is computed relative to the time the first
update is received. The publisher starts out sending the
first few updates with a frequency slightly greater then the
specified MIN_SPEARATION (verified by inspecting the sending
timestamps). It is unclear why this behavior occurs but we
hypothesize speed increases are due to optimizations result-
ing from JIT compilation of the Java application or cache
e↵ects in the CPU.

Figures 6b, 6c, 6d, 6e, and 6f all show the normalized la-
tency under a variety of QoS configurations while the system
is subjected to periodic network contention and no SDN sup-
port. In each case, the periodic interference pattern is visible
in the normalized latency. For BEST_EFFORT QoS (Figure 6
(b)) updates are delayed or dropped while the tra�c gener-
ator is active. Interestingly, the normalized latency of the
received updates plateaus. Why is this? We believe that
the plateau results from the size of the egress queue on the
switch: Updates that would take longer due to queue con-
tention are dropped because the queue is already at capacity.

For RELIABLEQoS (Figures 6c, 6d, 6e, and 6f) we again see
how the network contention, reliable multicast, and DESTI-
NATION_ORDER causes a cascade of delays due to dropped up-
dates. This e↵ect is most striking when the HISTORY_DEPTH
= 1 (Figure 6f): The network contention causes an update
to be missed early in each of the tra�c generator’s active
periods which causes all subsequent messages to be delayed.
However, once the dropped update is recovered subsequent
updates flow steadily.

When our SDN controller is used to manage the tra�c
flows, the normalized latency for both BEST_EFFORT and RE-
LIABLE runs closely matches the idealized run where there
is no background tra�c.

6. RELATED WORK
The most closely related work is by King et al. [8]. King et

al. proposed a custom publish-subscribe middleware specif-
ically designed to work with OpenFlow networks to enforce
end-to-end QoS. While [8] provides the results of a prelim-
inary evaluation demonstrating the potential of using SDN
to enforce QoS in publish-subscribe networks no comparison
was made to an “industrial strength” middleware with ad-
vanced reliability and resilience features like DDS: The cus-
tom middleware used in [8] only supports unreliable UDP
multicasting to transport data from publisher to subcriber.
While this limitation does not cast doubt on the evaluation
presented in [8] it does mean that King et al.’s results might
not have applied to more realistic middleware implementa-

tions. The experimental evaluation in this paper should be
considered confirmation, using industrial strength middle-
ware, of ideas originally proposed in [8].

Also related is the work by Bertaux et al. in [2]. In [2],
Bertaux et al. describes an OpenFlow SDN architecture
intended to capture DDS QoS and optimize the network at
Layers 2 & 3 to achieve the specified QoS. Unfortunately, [2]
does not provide many details of their system nor do they
provide any sort of experimental evaluation.

Recently there have been a number of e↵orts to augment
DDS with the ability to optimize its QoS parameters on the
fly [6]. These approaches work by adding a“QoS monitor”to
the middleware. The QoS monitor reacts to changes in the
actual runtime performance of the system and attempts to
globally optimize performance by tweaking the local perfor-
mance of each DDS participant (e.g., causing the publishers
to slow down or speed up how often they transmit updates).

[13] performed a number of di↵erent performance eval-
uations of DDS middleware implementations. Unlike our
evaluation the experiments in [13] do not specifically how
well the middleware performs under faulty or overload con-
ditions. Instead, the goal was to evaluated the average case
behavior of the implementation and to test its scalability
(i.e., the number of DDS participants that could be e↵ec-
tively managed).

7. CONCLUSION & FUTURE WORK
In this paper we evaluated how a real DDS middleware im-

plementation performs under network overload conditions.
Because an increasing amount of critical infrastructure is
depending on DDS for correct function, it is important to
understand how the middleware compensates for less than
ideal conditions. As far as we know, this is the first evalua-
tion of its kind for DDS middleware.

We also presented solution that uses software defined net-
working to fully “lift” timing properties into the DDS pro-
gramming abstraction: Our SDN controller ensures that the
requested QoS is guaranteed. Our solution has a number of
advantages, including the fact that it can work with com-
modity o↵ the shelf networking hardware and does not re-
quire any modification to the DDS middleware implemen-
tation. Our experiments indicate that our SDN controller
is able to e↵ectively mitigate the overload conditions that
would normally negatively impact the performance of a DDS
publish-subscribe system.

Our results are promising but preliminary. For example,
our experiments only involved a network with one switch
and one real-time flow. Real publish-subscribe applications
can span many networking switching elements and involve
many thousands of publish-susbcribe flows, each with their
own QoS requirements. One very important direction for
future work is larger scale experimental evaluations, both in
terms of the number of network switching elements and the
number of flows with real-time requirements.

Lastly, while this paper focused on using SDN to enforce
the timing properties of publish-subscribe systems one can
imagine that SDN could also be used to enforce other non-
functional properties such as security. For example, many
security-sensitive systems require that classified data only
flow between classified nodes. SDN could automatically en-
force dataflow properties in the network itself by only gener-
ating flow rules that satisfy the security requirements. Inves-
tigating how publish-subscribe middleware and SDN could

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000

D
el

ay
(s

)
..

(a)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000

...

(a) (b)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000

...

(a) (b) (c)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000

D
el

ay
(s

)

..

...

..

...

..

(a) (b) (c)

(d)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000

..

...

..

..

..

(a) (b) (c)

(d) (e)

0.0
1.0
2.0
3.0
4.0
5.0
6.0

 0 1000 2000 3000 4000
Sequence

...

...

..

...

..

.............................

(a) (b) (c)

(d) (e) (f)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000

D
el

ay
(s

)

Sequence

..

(a) (b) (c)

(d) (e) (f)

(g)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 0 1000 2000 3000 4000
Sequence

..

(a) (b) (c)

(d) (e) (f)

(g) (h)
(a) Best-effort(No-load) w/o SDN
(b) Best-Effort w/o SDN
(c) Reliable(depth=1) w/o SDN
(d) Reliable(depth=50) w/o SDN
(e) Reliable(depth=100) w/o SDN
(f) Reliable(depth=∞) w/o SDN
(g) Best-Effort w/ SDN
(h) Reliable(depth=1) w/ SDN

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6: Normalized update latency vs. sequence number. 1400 byte background tra�c packets.

be combined to create a robust security architecture could
be interesting future work.

8. REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito. The internet of

things: A survey. Computer networks,
54(15):2787–2805, 2010.

[2] L. Bertaux, A. Hakiri, S. Medjiah, P. Berthou, and
S. Abdellatif. A dds/sdn based communication system
for e�cient support of dynamic distributed real-time
applications. In Distributed Simulation and Real Time
Applications (DS-RT), 2014 IEEE/ACM 18th
International Symposium on, pages 77–84. IEEE, 2014.

[3] DoD. The Data Distribution Service: Reducing Costs
Through Agile Integration. Technical report, U.S.
Department of Defense, 2011.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys (CSUR), 35(2):114–131,
2003.

[5] M. Gill. Rti data distribution service selected for
upgrade of grand coulee dam‘s control system.
Rueters, 2009.

[6] J. Ho↵ert, A. Gokhale, and D. C. Schmidt. Timely
autonomic adaptation of publish/subscribe
middleware in dynamic environments. Innovations and
Approaches for Resilient and Adaptive Systems, page
172, 2012.

[7] R.-T. Innovations. Rti connext dds professional, 2014.
[8] A. L. King, S. Chen, and I. Lee. The middleware

assurance substrate: Enabling strong real-time
guarantees in open systems with openflow. In
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on, pages 133–140. IEEE,
2014.

[9] J.-Y. Le Boudec and P. Thiran. Network calculus: a
theory of deterministic queuing systems for the
internet, volume 2050. Springer Science & Business
Media, 2001.

[10] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[11] G. Pardo-Castellote. Omg data-distribution service:
Architectural overview. In Distributed Computing
Systems Workshops, 2003. Proceedings. 23rd
International Conference on, pages 200–206. IEEE,
2003.

[12] J. Plourde, D. Arney, and J. M. Goldman. Openice:
An open, interoperable platform for medical
cyber-physical systems. In Cyber-Physical Systems
(ICCPS), 2014 ACM/IEEE International Conference
on, pages 221–221. IEEE, 2014.

[13] S. Sierla, J. Peltola, and K. Koskinen. Evaluation of a
real-time distribution service.

[14] J. A. Stankovic. Research directions for the internet of
things. Internet of Things Journal, IEEE, 1(1):3–9,
2014.

[15] S. Vinoski. Corba: integrating diverse applications
within distributed heterogeneous environments.
Communications Magazine, IEEE, 35(2):46–55, 1997.

[16] A. Vukojevic, S. Laval, and J. Handley. An integrated
utility microgrid test site ecosystem optimized by an
open interoperable distributed intelligence platform.
In Innovative Smart Grid Technologies Conference
(ISGT), 2015 IEEE Power & Energy Society, pages
1–5. IEEE, 2015.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

