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n Modern military satellite communications terminals have typically been 
built as multiprocessor systems. Because of increasing pressure for reuse and 
modularity, current programs have been encouraged to consider the use of 
component middleware. While Common Object Request Broker Architecture is 
the most mature middleware standard available, its invocation semantics present 
considerable challenges for the development of such systems. Through reasoning 
about quality attributes, we found that a real-time publish-subscribe middleware 
reduces coupling, improves composability, and reduces the risk of architectural 
mismatch, deadlock, and integration problems compared to an invocation-
based system. In building a communications-on-the-move (COTM) node, we 
found that this type of middleware, which exemplifies an implicit-invocation 
architectural style, promotes ease of system evolution and an incremental 
integration approach.

B ecause of the computational demands of 
modern military communications terminals, 
systems tend to be implemented as distributed 

real-time embedded (DRE) systems. We divide func-
tionality among several processes on different processors 
for two reasons: to enable the system to meet the real-
time requirements imposed on it, and to inject external 
inputs into the system, whether from a user interface or 
some sort of sensor. Because these processes must co-
operate to realize the functionality of the system, the 
consequence of this design decision is that they must 
exchange data and control messages. Therefore, one of 
the first design decisions an architect must make, after 
deciding to distribute functionality, is how to facilitate 
this exchange of data and control messages.

DRE systems architects are increasingly looking to 
middleware* to provide this capability. Middleware cre-
ates an abstraction layer that decouples an application 
from the system calls and network interfaces required to 
send and receive data on a particular platform. Middle-

ware typically provides location transparency, synchro-
nization, and bit representation conversion, as well as 
well-defined semantics for exchanging data. While mid-
dleware may not be applicable to all DRE systems, it is 
certainly worthy of consideration.

The use of middleware is not an all-or-nothing 
proposition. High-rate data traffic that may not be able 
to absorb the overhead of any abstraction can still be 
passed by lower-level network interfaces. In modern 
military communications systems, it is commonly ac-
cepted that middleware can be used for control, if not 
for data [1]. This article discusses the justification and 
implementation of a software control framework for a 
prototype communications system using publish-sub-
scribe middleware.

* Middleware is software that mediates between an application pro-
gram and a network. It manages the interaction between disparate ap-
plications across heterogeneous computing platforms [2].
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terminology

Before continuing, we must review a few terms that de-
scribe how components exchange data. A.D. Birrell and 
B.J. Nelson introduced Remote Procedure Call (RPC) 
in 1984 [3]. One of their guiding principles was for the 
semantics of RPC to be as similar to the semantics of lo-
cal procedure calls as possible. Object-oriented program-
ming introduced the term invocation to refer to calling 
a procedure exported by an object’s interface (hereafter 
referred to as a method). With the rise of middleware in 
the 1990s, software developers began referring to in-
voking a method of a remote object as remote invoca-
tion. However, one of the stated goals of middleware is 
distribution transparency, which implies that local and 
remote invocations are semantically and syntactically 
equivalent. As a result the term invocation is often used 
to refer to calling a method, whether or not the object is 
local or remote. 

It is also common to see the shorthand A invokes B 
to refer in general to activation of the object B’s inter-
face by object A. While middleware may obscure the 
distinction between local and remote invocation from a 
programmer’s perspective, from a software architecture 
perspective these two uses of the term are distinct, with 
very different implications. R. Guerraoui and M. Fayed 

provide a good discussion of architectural concerns with 
distribution transparency [4].

This article focuses on software architecture for DRE 
systems, and uses the partial taxonomy illustrated in 
Figure 1 and Table 1 to provide a vocabulary to discuss 
the semantics of connectors. D. Garlan and M. Shaw 
state that “connectors mediate interactions among com-
ponents, that is, they establish the rules that govern 
component interaction and specify any auxiliary mecha-
nisms required [5].” We say partial taxonomy because 
(a) only two dimensions are represented (synchroniza-
tion and connection type), and (b) the graph is obvious-
ly incomplete with respect to synchronous connectors.

While this taxonomy is by no means complete, it 
has the advantage of being convenient. It allows us to 
discuss the design of a distributed system in terms of 
the connectors rather than the components. Assume 
that middleware, which provides a type of connector, 
handles all the details of implementing that connector: 
message passing, synchronization, and marshalling* for 
any data exchanged with remote processes, and perhaps 
some sensible alternative to message passing for local 
processes such as shared memory.

Activation

Invocation
(1:1)

n:1 ?

Collection
(n:1)

Evocation
(1:1)

1:n ?
Delegation

(synchronous)

Distribution
(1:n)

Notification
(asynchronous)

FIGURE 1. Partial taxonomy of connector semantics, show-
ing the relationship between the different types of connector 
semantics for distributed interaction.

Table 1. Taxonomy Terms

Activation A general term for interaction  
 with a remote component.

Delegation A general term for synchronous  
 activation, whereby the originator 
 waits for and receives a response 
 that implies completion of the  
 operation.

Invocation A strictly one-to-one delegation.

Notification A general term for asynchronous 
 activation, whereby the originator  
 immediately continues its execution 
 after the message is sent.

Evocation A strictly one-to-one notification.

Distribution A general term for one-to-many 
 notification.

Collection A general term for many-to-one 
 notification.

* Marshalling is a term used in middleware to refer collectively to 
serialization and representation conversion.
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Previous Work with invocation

In our previous efforts, our team developed a custom 
middleware layer for control messages. With limited 
time and resources, we developed a simple framework 
similar in concept to basic Common Object Request 
Broker Architecture (CORBA) [6]. This framework 
provided both invocation and evocation semantics, 
and included features like serialization, representation 
conversion, and name resolution. The majority of the 
component interactions were designed as invocations 
consistent with object-oriented programming practices. 
However, as we designed this framework, we realized 
that there were conditions that could result in deadlock. 
Given our limited time and resources, this led us to 
strict design constraints for how the top-level compo-
nents could interact.

Deadlock Potential

In 1999, in its Evolutionary Design of Complex Soft-
ware (EDCS) announcement, the United States De-
fense Department stated that

“a major theme of this year’s demonstrations is the 
ability to build software systems by composing com-
ponents, and do it reliably and predictably. We want 
to use the right components to do the job. We want to 
put them together so the system doesn’t deadlock.” [7]

Because invocation semantics are synchronous, and an 
invoked method may, in turn, invoke other methods 
on other objects, connections may form a cyclic depen-
dency graph, as shown in Figure 2(a). Unless a separate 
thread handles incoming invocations, this dependency 

results in deadlock. Also, if an object tries to invoke a 
method on an object that does not exist, as shown in 
Figure 2(b), deadlock can occur.

Generally, middleware frameworks implement sever-
al tactics to avoid deadlock. Even if the middleware of-
fers advanced options for server-threading models such 
as support for concurrent requests [6], deadlock may 
still be a risk if there is contention for shared resources 
among methods. Time-outs are generally used to miti-
gate the availability problem shown above. However, 
potential for deadlock continues to be a concern in the 
design of distributed object systems [8]. While progress 
is being made toward proving deadlock freedom for dis-
tributed-object systems [9, 10], this design process ig-
nores the broader issue: invocation semantics limit the 
ways in which objects can be composed into a system. 
This reliance on invocation semantics limits the reuse 
potential of a component.

Some may argue that deadlock due to resource con-
tention occurs in multi-threaded non-distributed sys-
tems, and therefore is an essential, rather than an acci-
dental, complexity of the design process [11]. We assert 
that deadlock need not be an integration concern at all.

Architectural Mismatch

Two commonly used patterns for exchanging data via 
invocation are illustrated in Figure 3. A client may re-
quest data from a server, which returns it. Alternately, a 
forwarder may forward data to a receiver. The difference 
is that the data are either pulled or pushed.

The architectural mismatch illustrated in Figure 4 
suggests further limitations of invocation with respect 
to reusability [12]. We cannot connect a PositionClient 
and a PositionForwarder, even though one requires po-
sition and one provides it, because they each expect to 
initiate the invocation. Obviously we wouldn’t design a 

FIGURE 2. Potential deadlock in invocation semantics. (a) 
Cyclical dependency; (b) invocation of an unavailable object.
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FIGURE 3. Data flow in common design patterns for invoca-
tion. Comparing this with Figure 4 illustrates how data flow 
and direction of invocation are independent of each other.
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system with a PositionClient and a PositionForwarder, 
but the fact that the direction of data flow is indepen-
dent of the direction of invocation is a risk to the reus-
ability of these components.

Architectural mismatch will probably always be a 
challenge. However, we assert that it should not be so 
between two components that use the same type of con-
nector and agree on data format.

Timeliness

Timeliness concerns can propagate through invocation 
semantics. Consider the illustration in Figure 5. The 
timeliness of component A is dependent on the time re-
quired for component C to process method foo, which 
is dependent upon the time to invoke methods on com-
ponents D and E. Assume that B invokes method bar 
immediately after A invokes method foo. In a single-
threaded server model, B’s invocation will not occur 
until after foo (and the invocations to D and E) has 
completed. Even in a very clever threading model, the 
invocation process can still pose a problem if foo and 
bar both require exclusive access to the same shared 
resource.

If component A or B has very strict timeliness con-
straints, those constraints are inherited by components 
C, D, and E. If A’s invocation must complete in time 
t, then foo can take no longer then t – l, where l is the 
round-trip latency of the request-response from A to C. 

PositionClient
int main() {
double lat, lon, alt;
PositionServer x;
lon = x.getLongitude();
lat = x.getLatitude();
alt = x.getAltitude();

}

interface PositionServer{
double getLongitude();
double getLatitude();
double getAltitude();

} 

interface PositionReceiver{
double setLongitude();
double setLatitude();
double setAltitude();

} 

PositionForwarder
int main() {
double lat = 45.00;
double lon = 45.00; 
double alt = 100.00;
PositionReceiver x;
x.setLongitude(lon);
x.setLatitude(lat);
x.setAltitude(alt);

}

Invokes Invokes

FIGURE 4. Invocation direction in common design patterns. Components that are built to use invocation po-
tentially exhibit architectural mismatch.

A D

EB

C
foo()
bar()

FIGURE 5. Timeliness in invocation. Invocation of one com-
ponent can lead to invocations of other components and im-
pact timeliness. 

The time l then imposes timeliness constraints on D 
and E, which include the round-trip latencies for their 
invocations as well.

Another problem related to timeliness that can result 
from the use of invocation on systems with priority-
based scheduling is priority inversion. We were not us-
ing priority-based scheduling in our previous work, but 
we mention it here because of its implications to time-
liness. Since method invocations are synchronous, it is 
possible for a higher-priority client to synchronize with 
a low-priority server process, which is then preempted 
by a medium-priority process. Such issues are generally 
mitigated with an end-to-end priority policy and prior-
ity inheritance, although this policy does not completely 
eliminate the problem.
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considering notification

We consider the partial taxonomy of architectural styles 
found in L. Bass, P. Clements, and R. Kazman’s book 
[13], and find that systems of cooperating components 
can be built using the implicit-invocation style, a sub-
style of event systems, as shown in Figure 6. Event sys-
tems are also referred to as reactive or selective broadcast 
systems. M. Shaw and D. Garlan discuss the implemen-
tation of implicit invocation:

“…Instead of invoking a procedure directly, a compo-
nent can announce (or broadcast) one or more events. 
Other components in the system can register an in-
terest in an event by associating a procedure with it. 
When the event is announced, the system itself invokes 
all the procedures which have been registered for the 
event.” [14]

While the style refers to invocation, this is actually a 
reference to the callback procedure invoked. This is not 
a constraint on the connector used between processes, 
which could be notification.

According to Garlan and Shaw, implicit invocation 
is very good at promoting reuse and extensibility, which 
are essential requirements for our system. They mention 
that it “eases system evolution,” which will be discussed 
in a later section [15].

We look to architectural design patterns for examples 
of an implicit-invocation pattern for distributed systems 
communication. One communication design pattern, 
Publisher-Subscriber [16], uses notification semantics. 
We prefer the term Publish-Subscribe to Publisher-Sub-
scriber because the former emphasizes the connector 
rather than the components. This distinction seems ap-

propriate when we consider an architectural design pat-
tern for connecting components. Publish-Subscribe spe-
cializes the distribution and collection connectors with a 
registration scheme, and then composes them to create 
a Publish-Subscribe connector by adding a variation of 
the Mediator pattern [17] called a Topic, or event chan-
nel. A Topic is an intermediate abstraction represented 
by a name and type.

A Publisher registers its intent to publish a particu-
lar Topic. A Subscriber registers to receive updates on 
a particular Topic. These two events can occur in any 
order. The middleware maintains mappings of Publish-
ers to Topics and Topics to Subscribers. When a Pub-
lisher has an update, the middleware publishes it to all 
current Subscribers of that Topic. In this way, Publish-
Subscribe provides location transparency and many-to-
many, anonymous notification between Publishers and 
Subscribers, as shown in Figure 7.

According to Bass et al., consideration of quality 
attributes is an integral part of the architecture design 
process [13]. It is important to recognize that there are 
trade-offs inherent in any design, and that there is no 
way to maximize all quality attributes. It is also impor-
tant to realize that architectural design is a sequence 
of design trade-offs, and the most important decisions 
should be made first. In the design of the architecture 
for a distributed system, the way the components con-
nect should be one of the first decisions the designer 
should make.

Given our resources and time constraints, we were 
not able to perform an extensive analysis of quality attri-
butes, or develop a complete set of quality attribute sce-
narios for our system. On the basis of Bass et al.’s work 

Independent
components

Communicating
processes 

Event
systems

Implicit
invocation

FIGURE 6. Partial taxonomy of architecture styles for coop-
erating components. Implicit invocation is a type of event-
driven architectural style for cooperating components.

“VehiclePosition”
struct Position {
double latitude;
double longitude;
double altitude;

}

Publisher SubscriberTopic

FIGURE 7. Publish-Subscribe. A publisher and a subscriber 
are decoupled through a topic, which is defined by a name 
and a type.
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[13], we were able to reason about quality attributes and 
use them as a guide for architectural design. Now we 
examine the trade-offs among different qualities for in-
vocation versus notification.

Simplicity and Composability

There are several dimensions to simplicity, but obvious-
ly one of them is algorithm simplicity. With invocation, 
programming a sequence of synchronous interactions 
between components is a trivial exercise. Implementing 
a sequence of synchronous interactions is more work 
with notification. One approach is by implementing the 
components as state machines. Clearly, this approach is 
not as straightforward as the invocation approach.

Algorithms are further complicated by using Publish-
Subscribe, since there are no guarantees that there are 
any Subscribers when an update is published. Likewise, 
there are no guarantees to a Subscriber that the system 
contains a Publisher for a given Topic. So, Publishers 
and Subscribers can make no assumptions about which 
other components are present in the system, or when 
they are present.

The simplicity of invocation semantics comes at the 
cost of potential for deadlock, as mentioned previously. 
Notification, being asynchronous, does not suffer from 
this drawback. If the system uses notification exclusive-
ly, it has the advantage of removing deadlock from the 
integration problem. Removing deadlock as an integra-
tion concern removes constraints on how components 
may be composed to create a system.

Reliability and Predictability

When considering invocation and notification, we thus 
know that there is an obvious trade-off between reliabil-
ity and predictability. Using invocation, the calling pro-
cess waits for and receives a result, guaranteeing that the 
remote method has completed successfully. The trade-
off for this reliability is the fact that the time required 
to complete an invocation depends on the object and 
method invoked, the current load of the processor it re-
sides on, and the current network load.

With notification, the sender must assume that the 
message will be received and processed correctly. The 
time required to complete a notification is only the time 
required to create and send a message, which is inde-
pendent of the object(s) being notified. Obviously, if 
distribution semantics were not optimized with some 
multicast or broadcast messaging scheme, notification 

would be slightly less predictable, since it would create 
and send a message to each receiver.

Timeliness

The timeliness of a notification is independent of the 
processing time of the receiver(s). It is solely depen-
dent on the processing required to create and send 
the notification(s). As long as the component is not 
designed to busy wait for a response to a notification 
(which would be a serious design mistake, given the ar-
chitectural style), its timeliness is completely indepen-
dent of the other components in the system.

The design trade-off is one of progress. While a 
component’s timeliness can be verified in component 
testing, its progress is solely dependent upon the inputs 
it receives, and therefore the other components it is in-
tegrated with. If a component expects to be provided 
with vehicle position, and uses that information to cal-
culate velocity, then it obviously will not make progress 
in calculating velocity if it receives no notifications of 
position.

Reusability

We have identified two risks related to reuse for invoca-
tion: limitations on system structure due to deadlock, 
and potential for architectural mismatch. We have al-
ready observed that deadlock should not be an integra-
tion problem with notification. There is also less risk of 
architectural mismatch because the data source always 
initiates the interaction. With publish-subscribe, com-
ponents cannot make assumptions about the existence 
of other components. Of course, components must 
agree on data type to exchange data in any case. Evoca-
tion could also have a mismatch if the interface-method 
signatures were not the same. However, publish-sub-
scribe does not suffer from this limitation.

As we consider these qualities in the context of a 
DRE system, predictability should be given priority 
over reliability. We don’t mean that reliable communica-
tions aren’t necessary. However, the nature of architec-
tural design is a series of trade-off decisions. Since we 
are building a system that must be predictable by defini-
tion, we choose to make a decision that promotes pre-
dictability and defer the reliability problem. It still must 
be resolved, because a system that loses control messages 
will not act predictably either. As we will see, however, 
there are other ways to achieve reliability that don’t have 
the same trade-off with predictability.
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Reusability and extensibility are essential as well, 
since the plan for this system calls for incrementally add-
ing functionality over the course of at least three spirals 
spanning several years. These were the factors that led 
us to consider applying publish-subscribe to our mobile 
communications node prototype.

Middleware comparison

We considered two potential middleware frameworks: 
CORBA and the Network Data Distribution Service 
(NDDS). CORBA, a standards-based middleware spec-
ification published by the Object Management Group 
(OMG), has many commercial and open-source imple-
mentations. NDDS is a commercial product of Real-
Time Innovations (RTI).

CORBA

The design of CORBA has evolved from its origins in 
enterprise-distributed systems. The fact that its primary 
connector type is invocation is an artifact of those ori-
gins. With the publication of the Real-Time CORBA 
specifications for dynamic [18] and static [19] schedul-
ing, it has been retrofitted for use in distributed real-
time systems. However, the primary connector is still 
invocation.

CORBA has the advantage of flexibility: we can use 
invocation, evocation, or a special connector called de-
ferred synchronous. This last option is like evocation with 
a return value that gets cached by the middleware. The 
trade-off of this flexibility is that the more connector 
types that middleware provides, the more opportunities 
there are for architectural mismatch. This flexibility thus 
represents an increased risk to potential reuse.

CORBA has the advantage of maturity and stan-
dardization. A number of open-source and commercial 
CORBA implementations can interoperate with one 
another. Several are fully compliant with the Real-Time 
CORBA specification and the minimum CORBA spec-
ification (designed to reduce memory and storage foot-
print) [20]. CORBA does have a fault-tolerance specifi-
cation, but it is not clear how much vendor support it 
has. Furthermore, it is not at all apparent how to inte-
grate Fault-Tolerant CORBA with Real-Time CORBA.

Due to its maturity, CORBA has the additional ad-
vantage of offering a host of supporting services such as 
Naming, Event, Notification, Lifecycle, Concurrency, 
Security, and Transaction. A CORBA vendor is not 
required to implement all these services, but many im-

plementations supply most or all of the services. Some 
implementers of the Real-Time CORBA specification 
provide real-time implementations of the Event [21] 
and Notification [22] services.

CORBA has language mappings for C, C++, Java, 
Ada, COBOL, Smalltalk, Lisp, Python, and several oth-
er languages. CORBA’s Event and Notification services 
do not specify any multicast optimizations.

NDDS

NDDS has been designed and built for distributed real-
time control systems. The fact that its primary connec-
tor type uses notification semantics is an artifact of its 
origins. NDDS did provide a client-server option in the 
version we used, but it was being phased out. The lat-
est version of NDDS offers only notification semantics. 
This version is not as flexible as the alternatives available 
in CORBA, but it does help mitigate the opportunities 
for architectural mismatch resulting from mismatched 
connectors. The version of NDDS we used was a pro-
prietary commercial product. The vendor did publish 
their wire format, Real-Time Publish-Subscribe (RTPS) 
[23].

NDDS provides a variety of parameters to tune Qual-
ity of Service (QoS), and provides end-to-end QoS guar-
antees. One of the disadvantages of this flexibility is the 
potential for architectural mismatch. Two components 
may agree on a topic, but disagree on QoS expectations 
that may prevent them from communicating. Also, not 
all combinations of parameter settings are semantically 
valid, which can make tuning them a challenge.

NDDS was available for Java, C, and C++, which 
was sufficient for our needs. NDDS provides a multicast 
option to optimize its distribution semantics. NDDS 
provides a reliable notification mode, which adapts no-
tification with an acknowledgement scheme that is han-
dled completely by the middleware. Publishing is still 
asynchronous. However, the middleware sets a timer 
and expects an acknowledgement from the subscriber’s 
middleware. If the timer elapses without acknowledge-
ment, the middleware resends. This option trades off a 
small amount of predictability (i.e., the uncertainty of 
when an acknowledgement will be handled and the pos-
sibility that the middleware may have to resend a mes-
sage) to ensure reliable delivery.

Reliable delivery is a weaker guarantee than the reli-
ability of invocation, since a complete invocation guar-
antees that the receiver has successfully processed the 
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message. However, there seems to be an appropriate 
separation of concerns. The message is a concern of the 
sender until passed to the middleware. It is the concern 
of the middleware until delivered to the receiver, and it 
is then a concern of the receiver for correctly processing 
the message.

NDDS has a mechanism for active fault tolerance us-
ing the concept of publication strength. Two identical 
copies of a component can be run on different proces-
sors. Since they subscribe to the same publications, they 
receive the same inputs and generate the same outputs 
in the form of publications. However, one of the com-
ponents can be set with a higher publication strength, 
meaning that its publications supersede those of its twin. 
If this primary component crashes, the backup (publish-
ing at a lower publication strength) is still active.

Comparing Publish-Subscribe in CORBA and NDDS

Both CORBA and NDDS provide publish-subscribe 
capabilities. However, what is the primary communi-
cation mechanism in NDDS is an add-on service in 
CORBA. The CORBA Event and Notification services 
provide publish-subscribe semantics. They are standard 
CORBA layered services, meaning that they are built 

on top of the object request broker (ORB) and gener-
al inter-ORB protocol (GIOP). The limitations of the 
CORBA Event service are discussed by D.C. Schmidt 
and C. O’Ryan [24]. The CORBA Notification service 
is based on the Event service, and is designed for just 
a few event channels and receiver-side content filtering. 
NDDS is designed for many topics and effectively fil-
ters on the publisher side.

OMG has recently published the Data Distribution 
Service for Real-Time Systems Specification for COR-
BA [25], which specifies publish-subscribe semantics. 
This is a specialized CORBA specification, meaning that 
it does not mandate the use of a layered implementa-
tion that is based on ORB and GIOP. RTI, who devel-
oped NDDS, is one of the primary contributors to this 
standard. The specification identifies different profiles, 
representing levels of compliance. The latest version of 
NDDS complies with several of the profiles identified in 
the DDS specification. The version of NDDS we used 
was not compliant with the standard, which was still be-
ing finalized when we were considering middleware.

While it is possible to do asynchronous messaging 
with CORBA, or to use an add-on service to approxi-
mate Publish-Subscribe semantics, the model doesn’t 

WLAN

CDL

GBS WGS (Ka)

Commercial (Ku)

MILSTAR

DVB

LDR/
MDR

WLAN

HMMWV HMMWV with MCN

FIGURE 8. Mobile communication node (MCN) on a high-mobility multipurpose wheeled vehicle (HMMWV)–
system content, showing the communications links between the MCN and other systems. MILSTAR stands for 
military strategic tactical and relay satellite connected through low and medium data rate (LDR/MDR) links; GBS 
is a global broadcast system communicating through the DVB digital video broadcast link; WGS is a wideband 
gapfiller satellite; CDL is a converged data link; and WLAN is a wireless local area network.
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seem conducive to the needs of DRE systems com-
posed of cooperating processes such as the system we 
are building. On the basis of these considerations, we 
selected NDDS as the middleware for our software con-
trol plane.

System context

The mobile communications node, shown in Figure 8, 
is a prototype vehicle-mounted communications system 
built to demonstrate how exploitation of an ensemble 
of networks containing links of various types (e.g., 
ground-to-space, ground-to-air, ground-to-ground) can 
provide for reliable, wideband, on-the-move commu-
nications. The prototype currently has some real-time 
requirements that are not particularly strict. There is 
some uncertainty as to which links the system will need 
to support in the future. Therefore, the system must ac-
commodate the insertion of new COTS and/or custom 
link components, which may or may not have real-time 
control requirements. The system must make some ba-

sic services available to the different links, such as con-
figuration, vehicle position, and spacecraft tracking.

System architecture

The system architecture concept for our prototype mo-
bile communications node is illustrated in Figure 9. The 
currently supported links are low and medium data rate 
(LDR/MDR), global broadcast system (GBS) receive-
only, and wireless local area network (WLAN). While 
only three links are currently implemented (two recon-
figurable and one static), the system supports the inser-
tion of additional link components or COTS radios. 
The specific components of the system architecture are

1. Node Agent. This control component is responsible 
for configuring the other components of the node and 
monitoring their status as necessary. It may also respond 
to changes in status by reconfiguring or notifying other 
components. It may also reconfigure the router to at-
tempt to reroute traffic destined for failed links.

2. Reconfigurable Links. These are links that can be 

Reconfigurable links

Static links

HAIPE
Red
LAN

INU 

Node component
Link component
User data (IP/RF)
Node control
Aperture pointing
COTS/custom API
Adapter

RF

Modem

Modem

COTS radio

Node
agent 

Black
LAN

FIGURE 9. MCN system architecture, showing the top-level notational components required to realize the MCN. HAIPE is a 
high-assurance internet protocol encryption device. COTS/custom API stands for a customized commercial off-the-shelf appli-
cation programming interface, LAN stands for local area network, and INU is an inertial navigation unit
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composed from available link components. Such links 
have three elements: a modem, a radio frequency (RF) 
component, and an antenna. In the prototype, either 
a GBS or a military strategic tactical and relay satellite 
(MILSTAR) link can be created by using the same RF 
and antenna (but different modems).

3. Static Links. These links are not dynamically re-
configurable by the Node Agent in real time. A node 
may contain multiple such links. Each link transmits 
and receives data by using its own dedicated radio con-
taining both an RF module and an antenna.

4. Inertial Navigation Unit. This package is used by 
the node to determine its location and orientation in in-
ertial space.

5. Router. The router in the node performs store-
and-forward routing of IP-encapsulated data packets. 
The router is connected to each modem via an Ethernet 
cable. We made the assumption that COTS modems or 
radios would have an Ethernet data port. We accepted 
the constraint that custom modems would provide an 
Ethernet data port.

6. High-Assurance Internet Protocol Encryption. This 
device, also called HAIPE, performs the encryption and 
decryption required to support connection of a classi-
fied local area network (LAN) to the node.

7. Unclassified and Classified LANs. Users connect 
hosts to these networks to run various applications.

Our hardware team made several key hardware and 
platform decisions that enabled us to consider the use 
of middleware for this system. For the node agent and 
other node components we selected a CompactPCI 
backplane with Ethernet support and an Intel x86 sin-
gle-board component (SBC) running the Linux oper-
ating system. Decisions on future modem applications 
included using PowerPC and VxWorks, which are 
supported by several middleware vendors, and using a 
general-purpose protocol as a modem controller to hide 
special-purpose protocol modem components from the 
rest of the node architecture. The first two decisions are 
realized in the existing prototype. The second two are 
design constraints on the custom modems we may build 
in the future. Obviously, there may be requirements for 
some future modem that invalidates either or both of 
these decisions, and so we are gambling to some extent.

Software architecture

The software control architecture for our mobile-com-
munications-node prototype is illustrated in Figure 10. 

NDDS is running over the CompactPCI backplane. 
There are currently two Intel x86 SBCs plugged into 
the backplane: the node control processor and the space 
tracking processor. Empty slots are available for addi-
tional SBCs or custom boards to support the insertion 
of additional modems.

Several legacy subsystems from our previous work 
have been integrated into the prototype. The MIL-
STAR-on-the-move (MOTM) terminal was developed 
by using the custom remote-invocation framework 
mentioned previously. This is a completed terminal 
for receive-only MDR and LDR MILSTAR protected 
satcom that is plugged via Ethernet cable into the node 
backplane. It uses remote invocation to interact with the 
physics package unit over this Ethernet link. It is also 
connected to the node controller via serial cable, to fa-
cilitate the operation of the LDR adapter [17], which 
publishes signal-strength metrics retrieved from the 
LDR modem.

The second link selected for insertion into the pro-
totype was a COTS GBS receive capability, which uses 
the same RF and antenna positioner as the MOTM 
terminal. The inertial navigation unit (INU), RF, and 
antenna subsystem from that system were integrated as 
a separate subsystem into the prototype to allow it to be 
shared with GBS. The antenna control processor is con-
nected via serial interface to the space-tracking proces-
sor. The INU device is controlled by the physics pack-
age unit, which is adapted to NDDS by the Attitude 
Heading Reference System (AHRS) adapter. The legacy 
antenna subsystem is controlled by the physics package 
unit via the antenna adapter. The RF interface module 
was also built as an adapter. The tracker is responsible 
for spacial tracking of the GBS satellite. We designed a 
digital video broadcasting (DVB) adapter for control of 
the GBS DVB receiver, but found that GBS DVB had a 
convenient web interface for setting modem parameters. 
Once set, these parameters become the default. There-
fore, the DVB adapter is not currently necessary.

The network agent, router manager, and wireless 
adapter, illustrated in Figure 10, have not been built yet. 
They will be required for our experiments with fast re-
routing, but are not currently necessary for the opera-
tion of the prototype. The network agent will receive 
signal-strength metrics from the links (e.g., the wireless 
adapter). It will then use the router manager to reroute 
traffic destined for failed links. Until we begin experi-
mentation with fast rerouting, static routes and links are 
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sufficient. This simplification of the problem demon-
strates how we are benefiting from one of the advantages 
of publish-subscribe, the ease of system evolution.

Software Design

Component design with publish-subscribe requires a 
different approach than its current object-based invoca-
tion. In object-based invocation, one of the consequenc-
es of distribution transparency is that a component is 
typically structured as an object. With publish-sub-
scribe, it makes more sense to structure components as 
state machines that change state according to events. 
Object-oriented design still plays a vital role in building 
the elements that make up a component.

High-level design using NDDS is mostly about par-

titioning the data to be exchanged into topics. No re-
mote methods are invoked or object-oriented interfaces 
specified in IDL, only topics that consist of a name and 
a type. A topic type is defined in IDL, and code gen-
eration is used to create the appropriate structure (or 
class) definition and marshalling code for the target lan-
guage. The topic name is used to differentiate topics of 
the same type. For example, the topic in Figure 7 has 
a type position, and a name VehiclePosition. We could 
also create another topic named SatellitePosition, which 
has the same type.

Figure 11 illustrates how the topics currently imple-
mented in the node prototype map to publishers and 
subscribers. The individual topics are described in Tables 
2 and 3 and in the following sections. The logger, which 
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FIGURE 10. MCN software architecture. This is a run-time view illustrating how the various top-level components of the MCN 
software are connected via the Network Data Distribution Service (NDDS) to peripheral devices. AHRS stands for attitude and 
heading reference system; DTR is data terminal ready, RIM is an RF interface module; SSH and UDP are secure-shell and user-
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is not shown in the figure, can potentially subscribe to 
all topics.

Just as interface methods in object-based invocation 
can be notionally divided into commands and queries, 
topics types in publish-subscribe can be divided into 
two subtypes: samples and events.

Samples. Samples are periodic, typically represent-
ing measurements of the environment. Because of their 
periodic nature, samples can be sent best effort; reliable 
delivery is not necessary. The consequences of losing a 
single update are relative to the rate of publication, and 
since samples are typically fairly high rate, the loss of 
one is not a serious problem. Refer to Figure 11 for a 
mapping of publishers and subscribers to the sample 
topics listed in Table 2.

Events. Events are aperiodic, representing unique 
changes in component or system state. Events can be 
commands, parameter updates, status updates, or ex-
ception notifications. Because they represent unique 
changes in component or system state, the loss of a sin-
gle event could cause a serious error. Therefore, events 
are sent by using the reliable mode provided by the 
middleware. Status messages are also set with a time-to-
keep quality-of-service value. This information enables 
late-joining subscribers to get the complete sequence of 
status events for all components in the system. Refer to 
Figure 11 for a mapping of publishers and subscribers to 
the event topics listed in Table 3.

Within the node prototype, several topics appear to 
have no current subscribers. These topics may be de-
signed for functionality that is to be added, like fast re-
routing, or for debugging purposes. An update that is 
published when there are no subscribers to that topic 
gets dropped by the middleware, and no network traf-
fic is generated. It is also possible for a component to 
subscribe to a topic for which there are no publishers. It 
simply means that the callback for that subscription will 
never get called.

Some topics are being published to more than one 
subscriber. These are currently being sent unicast, be-
cause the difference in end-to-end latency between one-
to-one unicast and one-to-four unicast is on the order 
of 80 msec [26]. Granted, these are vendor performance 
metrics, but they would need to be off by several orders 
of magnitude to be a concern. If it became a timeliness 
concern, we could switch to multicast to optimize the 
publications.

Some command publications have a device ID field, 
which represents a command directed at a particular ob-
ject. How is this any different than invoking an object? 
For one thing, invocation contains an implicit assump-
tion that the object exists. Sending an event with a de-
vice ID is like saying “if a device with this ID exists, it 
should perform this command.” There is no presump-
tion of existence. This decoupling is what contributes to 
the ease of system evolution.
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Client Services

We have recognized the need for three client services so 
far. A client service is defined as some service relating to 
the control of the node prototype that may be utilized 
by clients on the unclassified LAN.

Node Controller. The node controller provides a sim-
ple command-line user interface to the node, with shell 

features such as tab completion. Clients can use secure 
shell (SSH) for a secure remote login into the node con-
trol processor and launch the node controller process to 
send commands to devices and check their status.

Logger. As mentioned previously, the logger is used 
primarily for system monitoring and debugging pur-
poses. It is capable of subscribing to one or more top-
ics, which is a little like using a tool to snoop network 

Table 2. Sample Topics*

UtcTime (S1)   Universal Time Coordinated (UTC) time, published at 10 Hz for time synchronization.

AhrsLocation (S2)  Longitude, latitude, and altitude of the vehicle published at 1 Hz.

AhrsDisplacement (S3)  Displacement of the vehicle from a known point published at 1 Hz.

AhrsVelocity (S4)  Three vectors indicating the vehicle-position rate of change, published at 1 Hz.

AntennaReferenceAngle (S5) Pointing angle for the antenna subsystem.

AcquisitionMetric (S6)  Energy measurement to aid in debugging acquisition problems,  
    published as the antenna scans a particular pattern.

AntennaAngles (S7)  Current reference, dither, offset, and bias angles for the antenna.

DtrSamples (S8)  Received power and carrier-to-noise ratio published at 10 Hz.

LdrEnergyMetric (S9)  Measurement of LDR energy from the MILSTAR terminal.

* Labels S1 through S9 are coded to locations in Figure 11.

Table 3. Event Topics†

DeviceStatus (E1) Typically, devices that are commanded will send a notification of update in device status. This 
   notification includes a device ID (to distinguish the device, since many devices publish to this  
   topic), a status code or error code, and an optional string (for reporting any details to the user).

TrackCommand (E2) Issues commands to the Tracker. A TrackCommand update contains a device ID, a command,  
   and a satellite name. Commands to start, stop, suspend, or resume.

AntennaCommand (E3) Issues commands to the Antenna subsystem. An AntennaCommand consists of a device ID, 
   a command, and a bias angle used for acquisition. Commands to start and stop acquisition,  
   and set bias angle.

DtrParams (E4)  This topic is used to update various parameters on the DVB tracking receiver. Publishing an  
   update to the topic sets the new parameters on the device.

DeviceCommand (E5) This topic is used for basic operations common to all devices, like reset and kill.  
   A DeviceCommand consists of a device ID and a command.

LdrCommand (E6) Commands to enable/disable energy metrics, antenna commands, encoding, and interleaving, 
   as well as commands to set downlink mode and interleaver size.

RimCommand (E7) Commands to switch RF Interface Multiplexer to LDR/MDR or GBS.

† Labels E1 through E7 are coded to locations in Figure 11.
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traffic. The logger allows a user to see what one or more 
components in the system are publishing at any given 
time. Several instances of the logger can be launched 
and set to log different sets of topics.

Position Service. The position service subscribes to the 
AHRS adapter’s publications for the vehicle’s position 
and velocity, and can be configured upon launch to send 
these data in a custom user-datagram protocol (UDP) 
format to designated client IP addresses on the user data 
network. These clients can run Precision Lightweight 
Global Positioning System Receiver (PLGR) simula-
tor software called PLGRsim, which was developed by 
Mark Smith in the Laboratory’s Wideband Technical 
Networking group. PLGRsim enables clients on the 
LAN to run applications that require vehicle position 
via PLGR, such as FBCB2.

Node Controller—Drivers and Adapters

The Node Controller is the node user’s interface for 
commanding the various elements of the node. It can 
be used for such node functions as switching between 
LDR/MDR and GBS receive, activating GBS satellite 
tracking, and querying the status of any device. The 
node controller has a collection of drivers, which act as 
proxies for the adapters in the system.

Because of the loosely coupled design, the node con-

troller process can be killed without any negative impact 
to the operation of the node prototype. When the node 
controller is relaunched, it retrieves the cached status of 
each device in the system, and picks up exactly where it 
left off. Figure 12(a) illustrates how the node controller 
component uses a driver object to communicate with a 
device through its associated adapter component.

Drivers are used to send command and parameter 
updates to devices. Drivers also represent a cache of an 
active device’s last status, exception, and sample publi-
cations. The user can retrieve this information with a 
simple command. Drivers are also used by a test case in 
our automated test suites to verify the correct behavior 
of the adapter, as shown in Figure 12(b).

Adapters are used to adapt the native interface of a 
device to published events and samples. Adapters in test 
cases are run in a dummy mode, which does not actually 
invoke the device. This facilitates testing of the device-
adapter interface for each device, even when the device 
is not available. Integration tests between adapters and 
devices are performed manually.

Logging Notification Yields Behavioral Decoupling

The logging of events during the execution of software 
applications has become an area of increasing interest 
and activity. Over the past ten years, flexible and con-
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FIGURE 12. Drivers and adapters. (a) Enabling the node controller to manage devices; (b) test-harness facilitating the 
testing of events.
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trollable freeware logging packages have been developed 
and used in the construction of large software projects 
[27]. Modern loggers are flexible enough to allow event 
data to be logged to any combination of files, databases, 
or custom listeners. They are controllable enough that 
their output can be selectively enabled and/or redirected 
at run time on the basis of parameters of each individual 
events, such as program component or debug level.

The benefits of easier debugging and data gather-
ing are not lessened in the case of distributed applica-
tions, but they can be more difficult to realize. Consider 
a system consisting of processes A and B executing on 
separate machines and communicating via invocation. 
A run-time logging service that accepts logging invo-
cations from both A and B is, in effect, an additional 
distributed component C. This logging service adds to 
the complexity of the system’s interactions and to the 
risk of deadlocks, bottlenecks, and priority inversions. 
Furthermore, executing such a system under different 
logging configurations can result in different behaviors 
when the interactions between A and B are sensitive to 
the temporal effects of interactions with C. Bugs that 
appear or disappear on the basis of logging or debug-
ging efforts are known as heisenbugs (after Heisenberg’s 
Uncertainty Principal), and are notoriously difficult to 
isolate [28].

The decoupling of A and B from C removes this 
added risk by using publish-subscribe instead of invoca-
tion. Conceptually, A and B always publish all of their 
events. The fact that C subscribes or does not subscribe 
to a given set of logging events does not affect A or B’s 
behavior. Furthermore, it becomes possible to log all of 
the communications between distributed components 
in the system by configuring the logger to record every 
publication of any sort. It is also possible to have any 
number of loggers running at once, on any number of 
attached systems, recording any subset of the events and 
communications in the system, with no effect on the 
behavior of the other components. Certainly this mul-
tiplicity of functions could have a significant impact on 
timeliness, if sufficient subscribers were added. Howev-
er, this concern is mitigated by optimizing publications 
with multicast.

Our architecture always executes one logger to record 
all events in human-readable format. Users wishing to 
use the system to gather data may launch additional log-
ger instances themselves to record specific publications 
in human- or machine-readable format.

C++ Exceptions: Stack Traces and Notification

We augment the standard C++ exception behavior on 
Linux in the following four ways.

1. Stack traces. Our exceptions generate stack-trace 
strings containing the symbol name and address asso-
ciated with each unwound stack frame, by using the 
GNU C++ Compiler’s (gcc) backtrace function. We 
translate these addresses when available, to source file 
and line numbers by spawning an external addr2line 
process, which is included on most Linux systems, and 
having it parse the running binary. The resulting string 
included in each exception is similar in appearance to a 
Java stack trace.

2. Signals. We instantiate signal handlers for a set of 
signals, which upon execution throw exceptions. On 
modern Linux systems, this instantiation correctly un-
winds the stack as the signal handler stack is situated 
upon the regular application stack frame. For example, 
a null pointer dereference will generate a full stack trace 
with line numbers right up to the receipt of a segmenta-
tion violation signal.

3. Uncaught exceptions. We install handlers to display 
the textual information for all uncaught exceptions.

4. Notification. We provide convenient macros so that 
adapter-derived objects can automatically publish any 
exception generated by the contained code fragment.

Our code was inspired by an IBM developer Works 
article and does much to ease the C++ development 
process [29]. By tying notification into our exception 
handling, we made it possible that both the user at the 
console at the time of failures and the developer read-
ing log files after the fact receive sensible, context-rich 
information.

future Work

We want to consider the problem of dynamic routing 
on shorter time scales than are currently supported by 
typical routing protocols such as OSPF. Adding a cus-
tom modem with more stringent hard real-time control 
requirements using publish-subscribe would be an in-
teresting evolution of the system architecture. We would 
like to consider a software design that implements com-
ponents as hierarchical state machines, as described in 
Reference 30.

Obviously, as we add more links to the prototype, the 
fast rerouting problem gets more interesting. If we add 
directional links, then topology decision making would 
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be interesting. Also, we’re interested in the capability of 
reconfiguring links to take full advantage of available re-
sources. We would like to spend some time modeling 
link state and decision making, and developing and im-
plementing a link abstraction to create a unified control 
interface for link components.

conclusion

Military communications systems can be constructed by 
using many different software technologies. The ques-
tion we have considered is which architectural approach 
for middleware best supports the goals of DRE systems. 
Not all DRE systems have the same requirements or 
quality attribute goals. However, some qualities are es-
sential to the definition of a DRE system. We have con-
sidered two architectural approaches in the context of 
these qualities.

We observe that invocation makes component pro-
gramming slightly easier and system integration much 
harder, while publish-subscribe makes component pro-
gramming slightly harder and system integration much 
easier. Since RPC was developed, many advances, such 
as languages and library support, have made program-
ming easier. Many modern-day software projects strug-
gle in the integration phase. It therefore makes sense to 

choose an architectural approach that trades off some 
component simplicity for integration simplicity. Because 
components cannot be integrated until they are built, 
integration naturally falls after component construc-
tion. Selecting an approach that increases integration 
complexity shifts uncertainty and risk to the latter stages 
of a project. On the other hand, choosing an approach 
that complicates construction but simplifies integration 
front-loads the risk and uncertainty. This architectural 
approach should lead to a progressive reduction of un-
certainty throughout the project schedule.

We observe that publish-subscribe, a distribution 
system implementation of the implicit-invocation ar-
chitectural style, promotes reuse and extensibility. By 
decoupling communicating components, this approach 
insulates them from one another’s behavior, timeli-
ness, and predictability concerns. This decoupling also 
removes deadlock as an integration problem, improv-
ing the composability of components developed for 
publish-subscribe.

While systems can certainly be built by using a num-
ber of architectural approaches, we must consider some 
inherent trade-offs. We have shown, and we believe, 
that publish-subscribe demonstrates some very attrac-
tive qualities as a middleware for DRE systems.
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