
OMG Data-Distribution Service: Architectural Overview

Gerardo Pardo-Castellote, Ph.D.

Real-Time Innovations, Inc.

gerardo@rti.com

Abstract
The OMG Data-Distribution Service (DDS) is an

emerging specification for publish-subscribe data-
distribution systems. The purpose of the specification is
to provide a common application-level interface that
clearly defines the data-distribution service. The
specification describes the service using UML, thus
providing a platform-independent model that can then be
mapped into a variety of concrete platforms and
programming languages.

The OMG DDS attempts to unify the common
practice of several existing implementations [2, 5]
enumerating and providing formal definitions for the QoS
(Quality of Service) settings that can be used to configure
the service.

This paper introduces the OMG DDS specification,
describes the main aspects of the model, QoS settings,
and gives examples of the communication scenarios it
supports.

1 Introduction

The organization of the information exchange
between modules is fundamental to publish-subscribe
(PS) systems. The PS model connects anonymous
information producers (publishers) with information
consumers (subscribers). The overall distributed
application (the PS system) is composed of processes,
each running in a separate address space possibly on
different computers. We will call each of these processes
a “participant”. A participant may simultaneously publish
and subscribe to information. The defining aspect of a PS
system is the decoupling in space, time, and flow between
publishers and subscribers [1].

The information transferred by data-centric
communications can be further classified into: Signals,
Streams, and States. Signals represent data that is
continuously changing (such as the readings of a sensor).
Signals can often be sent best-efforts. Streams represent
snapshots of the value of a data-object that must be
interpreted in the context of previous snapshots. Streams
often need to be sent reliably. States represent the state of
a set of objects (or systems) codified as the most current

value of a set of data attributes (or data structures). The
state of an object does not necessarily change with any
fixed period. Fast changes may be followed by long
intervals without change. Consumers of “state data” are
typically interested in the most current state. However, as
the state may not change for a long time, the middleware
may need to ensure that the most current state is delivered
reliably. In other words, if a value is missed, then it is not
always acceptable to wait until the value changes again.

The goal of the DDS specification is to facilitate the
efficient distribution of data in a distributed system.
Participants using DDS can ‘read’ and ‘write’ data
efficiently and naturally1 with a typed interface.
Underneath, the DDS middleware will distribute the data
so that each reading participant can access the ‘most-
current’ values. In effect, the service creates a global
“data space” that any participant can read and write. It
also creates a name space to allow participants to find and
share objects.

DDS targets real-time systems; the API and QoS are
chosen to balance predictable behavior and
implementation efficiency/performance2. We will note
some of these tradeoffs in this paper.

The DDS specification describes two levels of
interfaces:

• A lower Data-Centric Publish-Subscribe (DCPS) level
that is targeted towards the efficient delivery of the
proper information to the proper recipients

• An optional higher Data-Local Reconstruction Layer
(DLRL) level, which allows for a simpler integration
into the application layer.

This paper focuses on the DCPS layer. Figure 1
illustrates the overall model.

1 Here “naturally” means that the interface should be similar to
the one used to read/write local variables.

2 For example, the DDS API requires each process to pre-declare
the data it will generate as well as the data it wants to consume.



Communication is accomplished with the aid of the
following entities: DomainParticipant, DataWriter,
DataReader, Publisher, Subscriber, and Topic. All these
classes extend DCPSEntity, representing their ability to
be configured through QoS policies, be notified of events
via listener objects, and support conditions that can be
waited upon by the application. Each specialization of the
DCPSEntity base class has a corresponding specialized
listener and a set of QoSPolicy values that are suitable to
it.

Topic

QosPolicy

Publisher Subscriber

<<interface>>

Listener

DataReader

DCPSEntity

DataWriter

Data

WaitSet

Condition

<<interface>>

DataType

*

0..1

*

*

1

11

*

*

*
1

*

1
*

Figure 1 Overall DCPS model

Publisher represents the objects responsible for data
issuance. A Publisher may publish data of different data
types. A DataWriter is a typed facade to a publisher;
participants use DataWriter(s) to communicate the value
of and changes to data of a given type. Once new data
values have been communicated to the publisher, it is the
Publisher's responsibility to determine when it is
appropriate to issue the corresponding message and to
actually perform the issuance (the Publisher will do this
according to its QoS, or the QoS attached to the
corresponding DataWriter, and/or its internal state).

A Subscriber receives published data and makes it
available to the participant. A Subscriber may receive and
dispatch data of different specified types. To access the
received data, the participant must use a typed
DataReader attached to the subscriber.

The association of a DataWriter object (representing
a publication) with DataReader objects (representing the
subscriptions) is done by means of the Topic. A Topic
associates a name (unique in the system), a data type, and
QoS related to the data itself. The type definition
provides enough information for the service to manipulate
the data (for example serialize it into a network-format for
transmission). The definition can be done by means of a
textual language (e.g. something like “float x; float y;”) or
by means of an operational “plugin” that provides the
necessary methods.

DCPS can also support content-based subscriptions
by means of a filter (see Section 5). This is an optional
feature because content-based filtering can be
computationally intensive and introduce hard-to-predict
delays. However, recent research [3] has proven that
there are efficient algorithms to address this problem; and
in any case, the application can restrict the filters to
Topics where predictable distribution is not an issue.

DDS differs from “enterprise” publish-subscribe
systems (such as Rendezvous [7], Vitrias’s architecture
[6], SmartSockets [8] and JMS [11]) in its binding of
Topic to a data-type. Topic is therefore more than a
“routing” label. This coupling (with the additional QoS
settings) enables implementation optimizations such as
pre-allocating the resources needed to send or receive a
Topic.

The DCPS layer is composed of five modules:
Infrastructure, Topic, Publication, Subscription, and
Domain:

• The Infrastructure Module contains the DCPSEntity,
QosPolicy, Listener , Condition, and WaitSet classes.
These abstract classes support two interaction styles:
notification-based and wait-based. They implement
interfaces that are refined by the other modules.

• The Topic-Definition Module contains the Topic and
the TopicListener classes and more generally all that is
needed by the application to define data-types, create
topics, and attach QoS policies to them.

• The Publication Module contains the Publisher, the
DataWriter and the PublisherListener classes, and more
generally all that is needed on the publication side.

• The Subscription Module contains the Subscriber, the
DataReader and the SubscriberListener classes, and
more generally all that is needed on the subscription side.

• The Domain module contains the class
DomainParticipantFactory (not shown in the figure) that
acts as an entry-point for the service, as well as the class
DomainParticipant that is a container for the other
objects.



Details on each of these modules can be found in the
OMG submission [10]. Here we will focus on a few
aspects of the DDS that illustrate its suitability for data-
centric communications: the identification of data-objects,
the read and write access, the quality of service settings,
and the interaction styles.

2 Identification of data-objects

A distinguishing aspect of publish-subscribe systems
is the mechanism that producers use to identify the
information published and subscribers use to specify the
information they want. Application-defined strings
(sometimes called topics or subjects) are a common
minimalist approach. For event-distribution such strings
combined with filters that that can operate on the contents
or additional attributes added to the events may be
sufficient. This is the approach taken, for example, by the
CORBA Notification Service [9].

However, in data-centric systems, the information
exchanges refer to values of an imaginary global data
object. Given that new values typically override prior
values, both application and middleware need to identify
the actual instance of the “Global data object” the value
applies to. In other words, a publisher writing the value of
a data-object must have the means to indicate uniquely
the data object it is writing. This way, the middleware
can distinguish the instance being written and decide, for
example to keep only the most current value. The
performance and fault-tolerance requirements of real-time
applications make centralized approaches impractical.
Hence, it is not reasonable to expect that the “true value”
of each data-object will “live” in a single computer. This
implies that (a) there must be a global way to identify the
instances of data objects, and (b) ownership QoS must be
carefully defined to not force a “centralized”
implementation. Topics already provide a network-wide
addressing scheme. However, for applications with large
numbers of data objects it is not practical (due to the
overhead introduced by topic propagation) to introduce a
different topic for each data-object instance.

To reduce the number of topics, the OMG DDS uses
the combination of a Topic object introduced in Section 1
and a key to uniquely identify data-object instances. The
representation and format of the key depends on the data
type. However, since a Topic is bound to a unique type,
the service can always interpret the key properly given the
Topic and the value of a data object.

The combination of a fixed-type Topic and a key is
sensible for data-centric systems because the Topic
represents either a unique data object (e.g. a temperature
sensor) in the case where there are no keys, or a set or
related data-objects that are treated uniformly (e.g. track
information of aircraft as generated by a radar system),

where each individual aircraft can be distinguished by a
key. The DDS delegates to the type the interpretation of
the key so that it is possible for the key to be a single
value within the data-object (e.g. a serial number field) or
a combination of fields (e.g. airline-name and flight-
number).

This use of a key is unique to data-centric systems [2,
4] and is neither used in “enterprise” publish-subscribe
systems [7, 6, 8, 11] nor in event-distribution systems [9].

3 Read and write access

Another distinguishing aspect of publish-subscribe
systems is the interface used to read and write global data-
objects (see Figure 2).

Publisher

DataWriter

Data

Topic

suspend_publications()

resume_publications()

begin_coherent_changes()

end_coherent_changes()

1

*

* 1

write()

write_w_timestamp()

dispose()

register_instance()

get_liveliness_lost_status()

get_offered_deadline_missed_status()

get_offered_incompatible_qos_status()

Figure 2 OMG Write interface

3.1 Publishing interface
The participant writes data using the write operation

on the DataWriter. The write operation takes as a
parameter an object of the appropriate type (i.e. the type
specified when defining the Topic associated with the
DataWriter).

The write operation just informs the middleware that
there is a new value for the data object. It does not
necessarily cause any immediate network
communications. The actual generation of messages is
controlled by the Publisher and the QoS. This is key
because in a real-time system it may be important that the



actual transport write is performed by a separate, lower-
priority thread. This can be configured via QoS.

The dispose operation also takes a data-instance as a
parameter and requests the middleware to delete that
instance of the data (identified by the key). The
semantics of deletion is as follows: existing participants
that have already received values for that Data instance
will be made aware of the deletion by means of
operations on the related DataReader; participants that
have not been previously informed of the existence of
the Data instance will not see it at all.

The Publisher acts on behalf of one or several
DataWriter objects that are related to it. When it is
informed of a change to the data associated with one of
its DataWriter objects, it is responsible for determining
when to send, and actually sending, the data. This
behavior is driven by the attached QoS.

In addition, the operations suspend_publications
and resume_publications provide a hint to the
middleware that multiple data-objects within the
Publisher are about to be written, and thus allow the
middleware to use bandwidth more efficiently by
batching the distribution of a set of writes. An
implementation could disable the dissemination of
messages and accumulate changes until
resume_publications is called. This is only a hint. The
middleware is free to send messages at any time and it
must do so if, for example, other QoS, such as
LATENCY_BUDGET would be violated.

The participant can also request that a set of changes
be propagated in such a way that they are interpreted at
the receivers' side as a consistent set of modifications3.
For this, the Publisher4 offers two operations, namely
begin_coherent_changes to start a coherent set and
end_coherent_changes to terminate it. These calls can
be nested. The subject of coherent changes is explored
more extensively in Section 4.

3.2 Subscribing interface
On the reading side there are two interaction styles:

Listener-based and Wait-based.

3 This does not imply that the middleware has to encapsulate all
the modifications in a single message; it only implies that the receiving
application-process will behave as if it that were the case.

4 This functionality is offered on a Publisher basis to respect a
reasonable trade-off between usefulness and affordability. The counter-
part (i.e. the ability to be made aware of a coherent set of
modifications) has been defined on a Subscriber basis for the same
reasons. Therefore coherence scope is restricted to the intersection
between the publications of a Subscriber and the subscriptions of a
Subscriber.

3.2.1 Listener-based data access
In the Listener-based approach, the participant is

notified of the appearance or change in value of data-
objects by means of a Listener object that the user installs
with the middleware. The Listener is an object that
implements a specified interface. The DDS middleware
informs the participant asynchronously by invoking the
appropriate methods in the Listener.

This approach is simple and efficient. Whenever a
data value changes, or a new data object that matches a
subscription appears, the middleware simply informs the
participant. A possible disadvantage is that the access is
performed in the context of a middleware thread; it may
be more complex to weave the data read by this thread
with the actions taken by other concurrent threads inside
the same participant.

3.2.2 Wait-based data access
The wait-based approach provides a set of conditions

that threads inside the participant can use to block while
waiting for specific sets of changes. When any of the
changes of interest occur, the thread is unblocked and can
access the data directly in its own context. This
interaction style is similar to the one obtained by using the
UNIX select() call or the Win32
WaitForMultipleObjects() call. While this interaction
style may be easier to handle in certain applications, the
specification of the conditions and waits is more complex.

Regardless of whether the participant uses a listener-
based or a wait based approach, the data is accessed by
invoking the read or take operations on the DataReader.

4 Semantics of state propagation

An important use case for data-centric publish
subscribe systems is the propagation of state information.
Here we use the word “state” in the classic meaning of
system theory and state-machines. That is, the state of the
system is the information needed to determine future
responses without reference to the past history of inputs
and outputs. The present state of the system, the present
inputs and the sequence of future input interactions allow
computation of all future states and output interactions.
For example, the balance of a checking account is the
state of the account system. Any sequence of transactions
that resulted in that state will be treated the same in the
future.

The very definition of state makes it clear that, other
than for the purposes of logging, only the most current
state matters.

In general, the state of a system is described by the
combined values of a set of data objects that dynamic
systems call the “state variables”.



State propagation is important because it provides a
compact way for an application to model a remote system
as well as allowing a late-joining participant to behave as
if it had seen the complete history of the system.

Assume that the “state-variables” of a particular
system are A, B, and C. Furthermore assume that these
variables undergo changes in the following order: A1, B1,
A2, B2, C1, A3. The corresponding sequence of states for
the system: S1, S2, S3, S4, S5, S6 is given by the
combined value of all state variables:

S1 = {A1}

S2 = {A1, B1}

S3 = {A2, B1}

S4 = {A2, B2}

S5 = {A2, B2, C1}

S6 = {A3, B2, C1}

Assume that a remote participant has subscribed to A,
B, and C for the purposes of tracking the current state of
the system. As it receives new values for A, B, and C, it
reconstructs the state. Clearly (at least in some cases), it is
not desirable that the remote participant infers states that
never existed at the source. This would occur for
example if the remote participant saw the value B2 before
ever seeing the value A2, and thus reconstructed a state S
= {A1, B2} that never existed at the source.

This section examines the proper sequences of states
the remote participant should be allowed to see, and the
support required from the DCPS middleware.

For data-centric systems, it seems reasonable to
assume that, if so desired by the application, the DCPS
service should ensure that:

(a) The states reconstructed by the subscribing
participant should be restricted to states that actually
existed in the publishing participant.

(b) The order in which the states are reconstructed on the
subscribing participant should preserve the order in
which the states happened in the publishing
participant.

(c) If the state on the publishing side settles (i.e. does not
change for “a while”) the state seen by the
subscribing participant should match that of the
publishing participant.

These restrictions mean that the subscribing
participant could see sequences such as:

S1,S2,S3,S4,S5,S6; or

S1, S3, S6; or

S5, S6; or

S6

But is should not see sequences such as

S3, S1, S6; [violates order]

S1, S3 [does not settle on the last state S6]

4.1 Incoherent states
Sometimes multiple state variables must be updated

together for the state to transition to the next coherent (or
valid) state. Imagine for example that the latitude,
longitude, velocity vector, and altitude of an aircraft are
kept as three separate state variables A=(latitude,
longitude), B=(velocity_vector) and C=(altitude)5. The
DDS interface must provide the participant the means to
update A, B, and C “atomically”6 in the sense that the
receiving participant should not be allowed to see a new
value of A without simultaneously seeing the new value
for B and C as well. Otherwise they may erroneously
infer the aircraft is on a collision course.

This functionality is provided by the operations
begin_coherent_changes and end_coherent_changes
described in Section 3.

4.2 Presentation access units
In large systems, it may not be practical to model all

the state variables as defining a single monolithic state. It
may also not be practical to insist that all changes to state
variables made by a participant are propagated in order
without introducing delays. For this reason, the
application may partition the state into separate
independent units, each composed of several variables.
DCPS refers to each of these units as an “access unit.”
DCPS offers several ways for the application to define the
access units by means of grouping DataReader
(DataWriter) objects under Publisher (Subscriber)
objects and also by means of the PRESENTATION QoS
policy.

5 Quality of service policies

The data-distribution service relies on the use of QoS
(Quality of Service) to tailor the service to the application
requirements. A QoS is actually a set of characteristics
that drives a given behavior of the service. It is made of
individual QoS policies (objects of type deriving from
QoSPolicy).

The description of all the QoS policies supported by
the DCPS service is beyond the scope of this paper. Rather

5 This admittedly contrived example is a simple illustration of the
more general case.

6 This does not mean DCPS supports transactions. The
“atomicity” by DCPS to support coherent changes does not allow the
change to be “aborted.” Moreover, DCPS only serializes the changes of
each Publisher (not across Publishers) and offers a weaker durability
model.



we will only describe the general characteristics and
provide some concrete examples.

A QoSPolicy can be set on all DCPSEntity objects.
In many cases, for communications to occur properly, a
QoSPolicy on the publisher side must be compatible with
a corresponding policy on the subscriber side. For
example, if a Subscriber requests to receive data reliably
while the corresponding Publisher defines a best-effort
policy, communication will not happen as requested. To
address this issue and maintain the desirable decoupling
of publication and subscription as much as possible, the
specification for QoSPolicy follows the subscriber-
requested, publisher-offered pattern. In this pattern, the
subscriber side can specify an ordered list of “requested”
values for a particular QoSPolicy in decreasing order of
preference. The Publisher side specifies a set of “offered”
values for that QoSPolicy. The middleware will then pick
the most-preferred value requested by the subscriber side
that is offered by the publisher side, or may reject the
establishment of communications between the two
DCPSEntity objects if the QoS requested and offered
cannot be reconciled.

The following table lists some of the supported
QoSPolicy options.

DEADLINE

Parameters:

A duration
“deadline_peri
od”

DataReader expects a new sample
updating the value of each instance at least
once every deadline_period.

DataWriter indicates that the participant
commits to write a new value for each
instance managed by the DataWriter at
least once every deadline_period.

LATENCY_B
UDGET

Parameters:

A duration
“delay_laxity”

Provides a hint as to the maximum
acceptable delay from the time the data is
written to the time it is received by the
subscribing participants.

TIME_BASE
D_FILTER

Parameters:

A duration
“minimum_se
paration”

Filter that allows a DataReader to specify
that it is interested only in (potentially) a
subset of the values of the data. The filter
states that the DataReader does not want
to receive more than one value each
minimum_separation, regardless of how
fast the changes occur.

CONTENT_B
ASED_FILTE
R

A string
“expression”
and a sequence
of strings
“parameters”

[optional] Filter that allows a DataReader
to filter the data received from a given
Topic based on the contents of the data
itself.

Syntax of “expression” is like an SQL
WHERE clause. Only the parameter part
may be changed.

This policy affects the participant’s
ability to:

(1) Specify and receive coherent
updates.

(2) See the relative order of updates.

The “access_scope” determines the
largest scope spanning the entities for
which the order and coherency of updates
can be preserved.

The two booleans control whether
“coherent access” and “ordered access”
are supported within the “access_scope.”

INSTANCE scope. Scope spans only a
single instance. Coherence and order
apply to each instance separately.

TOPIC scope. Scope spans to all
instances within the same DataWriter (or
DataReader), but not across instances in
different DataWriter (or DataReader).

PRESENTATION

An
“access_scope”:
INSTANCE,

TOPIC,

GROUP

And two booleans:

“coherent_access”

“ordered_access”

[optional] GROUP scope. Scope spans to
all instances belonging to DataWriter (or
DataReader) entities within the same
Publisher (or Subscriber).

In addition to the values in the table, the following
QoS policies are also supported: DURABILITY,
OWNERSHIP, LIVELINESS, PARTITION,
RELIABILITY, and DESTINATION_ORDER.

6 Relation to other standards

The specifications most closely related to the DDS
are the OMG Notification Service [9] and the High-Level
Architecture (HLA) [4].

6.1 The OMG Notification Service

This service models information exchange as events
flowing in a channel. Applications must attach to
channels (which can be named and accessed from a name
server) and then use Supplier and Consumer objects to
produce and consume the events. Events are independent
entities that can have optional fields that allow an
application to filter for the events of interest. QoS
settings on the channel and on each event allow the
notification service to schedule the underlying
communications (for instance batching events to save
bandwidth) and re-arrange the order in which events are
delivered (for example, according to priority). Events can
have a data payload but there is no explicit concept that
associates events to changes on the values of global data
structures.



It would be possible for an application developer to
use the Notification Service to propagate the changes to
data structures and in this manner provide the
functionality of the DDS. However, doing this would be
significantly complex because the Notification Service
does not have a concept of data objects or data-object
instances nor does it have a concept of state coherence.
The application designer would have to develop these
services on top, adding significant complexity to the
Notification Service.

Similarly, it is conceivable to build the DDS on top
of the NS. This layered approach, however, is not likely
to be as efficient as an implementation that directly maps
the DDS API into the implementation middleware
without serializing each change as an event.

6.2 The High-Level Architecture (HLA)
HLA, also known as the OMG Distributed

Simulation Facility, is a standard from both IEEE and
OMG. It describes a data-centric publish-subscribe
facility and a data model. The OMG specification is an
IDL-only specification and can be mapped on top of
multiple transports. The specification address several of
the requirements of data-centric publish subscribe: The
application uses a publish-subscribe interface to interact
with the middleware, it includes a data model and
supports content-based subscriptions. However, the HLA
model is quite specific to combat simulations; the data
model supports a specialization hierarchy, but not an
aggregation hierarchy. The set of types defined cannot
evolve over time. Moreover, the data elements
themselves are un-typed and un-marshaled (they are
plain sequences of octets). HLA also offers no generic
QoS facilities.

7 Conclusion

Many real-time applications have a requirement to
model some of their communication patterns as a pure
data-centric exchange where applications publish (supply
or stream) “data” which is then available to the remote
applications that are interested in it. These types of real-
time applications can be found in C4I systems, industrial
automation, distributed control and simulation, telecom
equipment control, and network management. Of primary
concern to these real-time applications is the efficient
distribution of data with minimal overhead and the ability
to control QoS properties that affect the predictability,
overhead, and resources used. Distributed shared
memory is a classic model that provides data-centric
exchanges. However, this model is difficult to implement
efficiently over the Internet.

Therefore, another model, the Data-Centric Publish-
Subscribe (DCPS) model, has become popular in many
real-time applications. While there are several
commercial and in-house developments providing this
type of facility, to date, there have been no general-
purpose data-distribution standards. As a result, no
common models directly support a data-centric system for
information exchange.

The OMG Data-Distribution Service (DDS) is an
attempt to solve this situation. This specification defines
a model of a data-centric publish-subscribe system in
terms of objects such as DomainParticipant, DataWriter,
Publisher, DataReader, Subscriber, and Topic. The
specification also defines the operations and QoS
attributes each of these objects supports and the interfaces
an application can use to be notified of changes to the
data or wait for specific changes to occur.

Bibliography
1. Oki, B., Pfluegl, M., Siegel, A., Skeen, D., "The

Information Bus -- An Architecture for Extensible
Distributed Systems", SOSP14, pp 58-68, Dec, 1993.

2. M Boasson and E. de Jong. Control System Software. IEEE
Transactions on Automatic Control, Vo. 38, No. 7, July
1993.

3. Françoise Fabret, H.-Arno Jacobesen, François Llirbat,
João Pereira, Kenneth Ross, Dennis Shasha. Filtering
Algorithms and Implementation for very fast
publish/subscribe systems. SIGMOD Conference, Santa
Barbara, CA. May, 2001.

4. HLA: Distributed Simulation Systems V1.1 Document
formal/2000-12-01 www.omg.org.

5. Gerardo Pardo-Castellote, Stan Schneider, Mark Hamilton,
NDDS: The Real-Time Publish-Subscribe Network, Real-
Time Innovations, Inc. White Paper http://www.rti.com,
1999.

6. Skeen. Vitria's Publish-Subscribe Architecture: Publish-
Subscribe Overview. http://www.vitria.com, 1998.

7. TIBCO. TIB/Rendezvous White Paper.
http://www.rv.tibco.com/, 1999. 6.

8. Talarian Corporation “Mission critical Interprocess
Communications – an Introduction to Smartsockets,”
whitepaper www.talarian.com.

9. OMG The CORBA Notification Service. Document
orbos/98-11-01. http://www.omg.org.

10. OMG Data-Distribution Service for Real-Time Systems.
http://www.omg.org/cgi-bin/doc?mars/2003-01-05

11. The Java Messaging Service (JMS) specification.
http://java.sun.com/products/jms/.


