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Summary 
Data-centric design is emerging as a key tenet for building 
advanced data-critical distributed real-time and embedded 
systems. These systems must find the right data, know where to 
send it, and deliver it to the right place at the right time. Data 
Distribution Service (DDS) specifies an API designed for 
enabling real-time data distribution and is well suited for such 
complex distributed systems and QoS-enabled applications. It is 
also, widely known that Control Area Networks (CAN) are used 
in real-time, distributed and parallel processing. 
Thus, the goal idea of this paper is to study an implementation of 
publish-subscribe messaging middleware that supports the DDS 
specifications and that is customized for real-time networking. 
This implementation introduces an efficient approach of data 
temporal consistency and real-time network-scheduler that 
schedules network traffic based upon DDS QoS-policies. A 
simulator has been developed to demonstrate that our 
implementation fulfills the guarantees predicted by the 
theoretical results. 
Key words: 
Publish-Subscribe, data distribution, Real-Time Middleware, 
CAN Bus, DDS, EDF, Distributed Control Systems. 

1. Introduction 

In recent years, there has been a growth in a category of 
performance-critical distributed systems and applications 
executing in open and unpredictable environments [1].  
Examples range from next generation military avionics 
and ship computing systems to current open systems. In 
these applications, data produced in one component of the 
system needs to be shared with other components of the 
system. Such applications may have stringent deadlines by 
which the data must be delivered in order to process it on 
time to make critical decisions. Further, the data that is 
distributed must be valid when it arrives at its target. That 
is, if the data is too old when it is delivered, it could 
produce invalid results when used in computations. A 
simple solution would be to provide point-to-point or 
client-server communication to deliver data within the 
real-time system. However, this communication can 
become extremely complex when multiple components 
require the same data at differing rates. Furthermore the 
communication infrastructure is inflexible. A decoupled 
solution where publishers of data do not communicate 

directly with subscribers (consumers) of data is more 
efficient and flexible. Such a solution would allow the 
publishers of data to produce the data at a rate that is 
consistent with the data production, and would allow 
subscribers (consumers) of the data to receive the data at a 
rate that consistent with the needs of the application. As 
theory and practice in distributed real-time computing, 
data-centric publish-subscribe (DCPS) and middleware 
networking mature, there is an increasing demand for 
automated solutions in real-time DCPS middleware to 
support scheduling end-to-end timing constraints.             
 Data-centric design is key to systems which exhibit some 
or all of the following five characteristics: (a) participants 
are distributed; (b) interactions between participants are 
data-centric and not object-centric; often these can be 
viewed as “dataflows” that may carry information about 
identifiable data-objects; (c) data is critical because of 
large volumes, predictable delivery requirements and the 
dynamic nature of the entities; (d) computation is time 
sensitive and may be critically dependent on the 
predictable delivery of data, (e) storage is local. In a large 
class of data-centric systems, real-time availability of 
information is of utmost importance. Information 
generated from multiple sources must be distributed and 
made available to 'interested parties' taking into account 
Quality of Service (QoS) offerings by information-
producers and requests by information-consumers. The 
problem to solve can be stated as: ‘How to get the right 
data at the right time at the right place in real-time and 
mission-critical systems’. In order to address this need the 
Object Management Group (OMG) defined the Data 
Distribution Service (DDS)  [2] specification which 
provides a set of profiles that target real-time information 
availability for domains ranging from small-scale 
embedded control systems up to large-scale enterprise 
information management systems. 
Data Distribution Service is a popular standard in 
embedded systems. It uses publish-subscribe 
communication model, and supports both messaging and 
data-object centric data models. DDS targets real-time 
systems; the API and Quality of Service (QoS) are chosen 
to balance predictable behavior and implementation 
efficiency/performance. One of the promising approaches 
is to make an efficient use of QoS mechanisms proposed 
by the DDS specification when adopting real-time network 
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messaging.  
A real-time communication system (RTCS) constitutes the 
backbone for distributed control applications. RTCS 
substantially differ in many respects from general purpose 
communication systems. In general, while the goals of 
general purpose communication systems center on 
throughput, RTCS focus on predictability of 
communication.  Controller Area Network (CAN) bus [3] 
provides advanced built-in features, which make it 
particularly suited to implement a publisher-subscriber 
model of communication. Some of these features are 
priority-based, multiparty bus access control using carrier 
sense multiple access with Arbitration on Message Priority 
(CSMA/AMP), bounded message length, message filtering, 
efficient implementation of positive/negative 
acknowledgment, and automatic fail-silence enforcement 
with different fault levels. These characteristics make it 
very challenging to run real-time data-centric publish-
subscribe applications. 
DDS provides the DEADLINE QoS Policy, 
LATENCY_BUDGET Qos Policy, 
TRANSPORT_PRIORITY QoS Policy and other policies 
specifically targeted to minimum latency, predictable real-
time operation in high-performance distributed data-
critical systems. However DDS specification is less 
explicit about the scheduling mechanisms that should be 
used to coordinate these policies and to make best benefit 
when exploiting the underlying facilities of the real-time 
network. This paper presents a solution to the data 
distribution when adopting the real-time communication 
systems. The solution consists on the design of new 
comprehensive scheduling strategy that provides: 

· an algorithm that determines scheduling 
parameters to ensure that data that is delivered 
will be valid when it is used. 

· a unique real-time network-scheduler that 
schedules network-traffic based upon DDS QoS-
policies such as 'Deadline', ‘LifeSpan’            
and ‘Transport_priority’. 

 
This scheduling strategy is implemented within the context 
of run-time simulator developed using real-time java to 
ensure that the delivered data is valid and on time.  
The remainder of this paper is organized as follows: In 
Section 2, we discuss the related work, comparing our 
approach with some existing solutions. Section 3 
summarizes the technical backgrounds of this work and 
describes basic principles of Real-Time DDS, Controller 
Area Network and some related real-time basic knowledge. 
Sections 4 and 5 describe the proposed architecture and 
mechanisms for supporting the temporal data validity and 
network traffic scheduling. In section 6, we describe the 
simulations for performance evaluation and discuss the 
simulation results. Finally, in Section 7, we conclude the 
paper with a summary. 

2. Related Works 

Real-time data distribution has recently emerged as an 
important area of research. There was a workshop 
dedicated to the topic (The First Workshop on Data 
Distribution for Real-Time Systems [4]) in May of 2003.  
The Object Management Group (OMG) contributes to the 
research efforts by standardizing data distribution in a 
middleware service. Developing dynamic scheduling       
strategies within the context of data-centric publish-
subscribe systems running over real-time networks is a 
very challenging research topic and during the last years, 
several teams and companies have prominently worked on 
these systems. In [5], the problem of scheduling the 
broadcast of real-time data is considered. It provides an 
approximate version of the Longest Wait First heuristic 
that reduces overhead. Similar work [6] describes a 
Broadcast on Demand technique that schedules the 
broadcast using earliest deadline first, periodic or hybrid 
scheduling algorithms. The work described in [7] is a 
speculative data dissemination service that uses 
geographic and temporal locality of reference to determine 
which data to be disseminated. These techniques take into 
account the deadline timing constraints of the clients, but 
do not consider nor the data temporal consistency neither 
the use of underlying real-time networks. 
An application area that has provided various research 
efforts towards data distribution is embedded sensor 
networks [8,9,10,11,12]. While all of the work described 
here provides valuable insights into solving the problem of 
data distribution in sensor networks, none considers real-
time characteristics of the data or of the applications. That 
is, neither deadlines on data delivery nor temporal 
consistency of the data is supported.  
A large amount of real-time data distribution research has 
been done at the University of Virginia (UVa) in the 
context of wireless sensor networks [13,14,15,16]. This 
work does address the deadlines of requests. Also, 
temporal validity is considered in the sense that data 
values are reported before they expire, but with 
corresponding confidence values. However, it does not 
provide assurance that the data is temporally valid when it 
arrives at the requestor.  
DDS being an API only specification does not specify a 
transport model. However, DDS does not depend on 
reliable and ordered delivery of messages, there is not 
enough works dealing with implementing DDS upon real-
time networks. There are several commercial products that 
support multiple network-interfaces for transparent 
forwarding of DDS-data and/or fault tolerant 
communication paths between nodes.  PrismTech[17] has  
a product called OpenSplice[18] which is compliant with 
real-time networking. DDS implementation compliant 
with CAN-based networks have not been treated yet, but 
similar works can be mentioned such as ROFES[19]. In 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007 
 
190 

the context of ROFES platform, S. Lankes, A. Jabs and T. 
Bemmel describe the implementation of a CAN-based 
connection-oriented point-to-point communication model 
and its integration into Real-Time CORBA; but this 
project hadn't been extended to support data distribution 
service. 
These research works has been enforced by several 
commercial products which are working on becoming 
compliant with the OMG’s Data Distribution specification.  
Real-Time Innovations [20] has a product called NDDS 
that provides publish-subscribe architecture for time-
critical delivery of data. Thales Naval Nederland [21] has 
a product called SPLICE [22] that provides a data-centric 
architecture for mission-critical applications.  Both of 
these products provide valuable real-time features in data 
distribution. But neither guarantees data temporal 
deadlines nor real-time network support. 

3. Technical Backgrounds                                  

3.1 Basic CAN Features 

The Controller Area Network (CAN) is an ISO defined 
serial communication bus. It was originally developed 
during the 80’s by the Robert Bosch GmbH for the 
automotive industry. The CAN bus works according to the 
Producer-Consumer-Principle: messages are not sent to a 
specific destination address, but rather as a broadcast 
(aimed at all receivers) or a multicast (aimed at a group of 
receivers). A CAN message has a unique identifier, which 
is used by devices connected to the CAN bus to decide 
whether to process or ignore the incoming message. 
Two variants of the CAN protocol exist. The main 
difference between the first (CAN 2.0A) and second  
variant (CAN 2.0B) is that the former uses 11 bits to 
uniquely identify each message, while the latter uses 29 bit 
identifiers. For correct operation of the CAN bus, the 
identifiers of two messages sent at the same time must 
never be the same, consequently CAN 2.0B offers a 
greater variety and scope for concurrent message Id’s.  
CAN bus is based on the arbitration scheme Carrier Sense 
Multiple Access/Arbitration on Message Priority 
(CSMA/AMP). During arbitration process, any node 
willing to send a CAN message starts sending bit by bit the 
11 or (in case of CAN 2.0B) 29 identifier bits. Each time a 
bit is applied to the bus, the sending node checks whether 
the bus really is at the corresponding voltage level―high 
for an applied logical 1 and low for an applied logical 0. 
As a common resource, the CAN bus has to be shared by 
all computing nodes. Access to the bus has to be scheduled 
in a way that distributed computations meet their deadlines 
in spite of competition for the communication line. Since 
the scheduling of the bus cannot be based on local 
decisions, a distributed consensus about the bus access has 

to be achieved. The CSMA/AMP protocol is comparable 
with a priority-based dispatcher. Due to this analogy, it is 
possible to express scheduling decisions for the CAN-bus 
resource by dynamic priority orders. We argue that for 
embedded control systems built around data-centric 
publish-subscribe paradigm the CAN-Bus is particularly 
suited to implement a publisher-subscriber model of 
communication. 
 
The presented approach associates advantage of the built-
in CSMA/AMP access protocol of CAN bus and the 
temporal QoS policies proposed within DDS mechanisms 
to compute the priority of the CAN message. The 
comprehensive scheduling approach, we presented in this 
paper, determines the message priority (also called the 
network priority) that reflects the urgency of the requestor 
– the subscriber in the context of the DDS communication. 
 

3.2 Basic DDS Features 

DDS targets real-time systems; the API and Quality of 
Service (QoS) are chosen to balance predictable behavior 
and implementation efficiency/performance. The DDS 
specification describes two levels of interfaces: 
 

· A lower level Data-Centric Publish-Subscribe 
(DCPS) that is targeted towards the efficient 
delivery of the proper information to the proper 
recipients. 

· An optional higher-level Data-Local 
Reconstruction Layer (DLRL), which allows for a 
simpler integration into the application layer. 

 
 The DCPS model builds on the idea of a “global data 
space” of data-objects that any entity can access. 
Applications that need data from this space declare that 
they want to subscribe to the data, and applications that 
want to modify data in the space declare that they want to 
publish the data. A data-object in the space is uniquely 
identified by its keys and topic, and each topic must have a 
specific type. There may be several topics of a given type. 
A global data space is identified by its domain id, each 
subscription/publication must belong to the same domain 
to communicate. 
Figure 1 illustrates the overall data-centric publish-
subscribe model, which consists of the following entities: 
DomainParticipant, DataWriter, DataReader, Publisher, 
Subscriber, and Topic. All these classes extend Entity, 
representing their ability to be configured through QoS 
policies, be enabled, be notified of events via listener 
objects, and support conditions that can be waited upon by 
the application. Each specialization of the Entity base class 
has a corresponding specialized listener and a set of 
QoSPolicy values that are suitable to it. 
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Publisher represents the objects responsible for data 
issuance. A Publisher may publish data of different data 
types. A DataWriter is a typed facade to a publisher; 
participants use DataWriter(s) to communicate the value of 
and changes to data of a given type. Once new data values 
have been communicated to the publisher, it is the 
Publisher’s responsibility to determine when it is 
appropriate to issue the corresponding message and to 
actually perform the issuance (the Publisher will do this 
according to its QoS, or the QoS attached to the 
corresponding DataWriter, and/or its internal state). 
 

Fig. 1  UML diagram of the DDS data-centric publish-subscribe 
interfaces. 

 
A Subscriber receives published data and makes it 
available to the participants. A Subscriber may receive and 
dispatch data of different specified types. To access the 
received data, the participant must use a typed DataReader 
attached to the subscriber. The association of a DataWriter 
object (representing a publication) with DataReader 
objects (representing the subscriptions) is done by means 
of the Topic. A Topic associates a name (unique in the 
system), a data type, and QoS related to the data itself. The 
type definition provides enough information for the service 
to manipulate the data (for example serializes it into a 
network-format for transmission). The definition can be 
done by means of a textual language (e.g. something like 
“float x; float y;”) or by means of an operational “plugin” 
that provides the necessary methods. The DDS 
middleware handles the actual distribution of data on 
behalf of a user application. The distribution of the data is 
controlled by user settable Quality of Service (QoS).    
A Quality of Service is a set of characteristics that controls 
some aspects of the behavior of the DDS Service. Below, 
we mentioned some QoS policies that deeply impact the 
architectural design of our scheduling strategy: 

· The DEADLINE QoSPolicy expresses the 

maximum duration (deadline) within which a 
DataReader expects a data-object instance to be 
updated. If a sample is not received within the 
deadline, a listener method is called. 

· The LATENCY_BUDGET QosPolicy provides a 
hint as to the maximum acceptable delay from the 
time the data is written to the time it is received 
by the subscribing applications. 

· The LIFESPAN QosPolicy, on a DataWriter and 
Topic, which specifies how long the data written 
by a DataWriter is considered valid (“time to 
live”). 

· The TIME_BASED_FILTER QosPolicy specifies 
a minimum_separation value that allows a 
DataReader to specify that it interested only in 
(potentially) a sub-sampled set of the values for a 
data-object instance. 

· TRANSPORT_PRIORITY QoSPolicy, in a 
DataWriter, which allows a DDS application to 
take advantage of transports that are capable of 
sending messages with different priorities. 

· The RELIABILITY QosPolicy, on a DataWriter, 
DataReader, or a Topic. This policy determines 
whether a message should be sent best effort 
(send once without expecting acknowledgments) 
or reliably (resent until positively acknowledged). 

 
With these QoS policies, and many others, the DDS 
publish-subscribe map well to the real-time 
communications problem.  However, publish-subscribe 
as we have described it so far is not enough. Real-time 
systems have several other needs. For example, real-time 
programs must be able to control the trade-off between 
delivery reliability and delivery timing. These problems 
can be solved when using a global scheduling strategy that 
works with the DDS QoS parameters (considered as end-
to-end scheduling parameters) and make efficient use of 
multicast and prioritized access of CAN-based networks. 
This global scheduling framework coordinates with local 
scheduling mechanisms to manage the network access and 
consequently makes globally sound scheduling decisions 
for the system. The scheduling strategy must resolve a 
number of design challenges. In the next sections we 
examine two challenges: 

· Design of an algorithm that computes the data 
delivery deadline for each published data, in 
order for DataReaders to read valid data. This 
computation is based on the DDS QoS parameters, 
we call it: LifeSpan-based Consistent Data 
Delivery. 

· Determining the CAN message priority using a 
mapping from the delivery deadline of published 
data to the message deadline. 
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4. The Proposed Architecture  

4.1 System Architecture 

To illustrate the utility of our Comprehensive Scheduling 
Strategy (CSS), we have chosen to work within a platform 
of a telecom equipment interconnection. In this system, a 
set of network processors subsystems produces routing 
data. This data must be distributed along a chain of 
components so that it can be used by the signaling 
processors and the switch fabric to perform an optimal 
switching/routing process. In previous works [23, 24, 25], 
we attempted to implement this system using the CORBA 
client/server architecture. This kind of implementation 
introduced complexity and inefficiencies.  
The main goal of the proposed architecture is to reduce 
this complexity when adopting the data-centric publish-
subscribe paradigm -according to the DDS specification - 
which is more adapted for the data representation and 
communication.  The framework architecture [26] is a set 
of nodes connected via a Real Time Transport protocol. In 
each node is embedded a Real Time Operating System, a 
middleware, and a Publish-Subscribe interface according 
to DDS specification. This is depicted in figure 2. 
 

 
Fig. 2  Architecture of distributed real-time system using                          

a publish-subscribe paradigm. 

The communication between nodes is achieved due to 
publish subscribe interface via the Global Data Space that 
is represented by a relational data model.The middleware 
has to keep track of the data objects instances, which are 
considered as rows in a table. Each data object is identified 
by the combination of a topic and a topic specified key. 
Figure 3 depicts our overall system architecture.  

 
Fig. 3  Matching the topic with the adequate data-object via the 

middleware 

This data-centric middleware allows the application to 
identify “data-objects” to the communication. The “data-
objects”   are unique in the ‘global data space’ of the 
distributed system across all participants. Each participant 
is regarded as having a local cache of the global data-
object. A message on a topic is regarded as an update to 
the data-object that can be identified and managed by the 
middleware. Local changes to a data-object are propagated 
by the middleware; the middleware can distinguish 
between messages or update samples from different data-
objects and manage their delivery to the interested 
participants on a per data-object basis. This scenario, in the 
proposed implementation, is achieved by a clustered 
distributed database based on ehcache and hibernates. The 
first element of the proposed scheduling solution is to 
develop the major components of the comprehensive 
scheduling framework. Figure 4 illustrates the design of 
the framework. 
There are five essential components in this framework, 
schedulable jobs (DataWriter/DataReader),   Local EDF 
Scheduler, Global Scheduling System (GSS), Local Info 
Collection and System Info Repository. These components 
are independent and coordinated with each other. 
DataReaders and DataWriters are the schedulable entities 
in our system architecture; we referred to them by 
schedulable jobs.  
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Fig. 4  Comprehensive Scheduling Framework. 

 
When a job is spawned by an application, it passes its 
scheduling parameters to the Local Scheduler. The latter 
sends these parameters to the GSS, which returns the 
globally sound scheduling parameters (e.g. delivery 
deadline). The parameters passed along are determined by 
the DDS QoS policies. On each node of the system, a local 
scheduling component (EDF scheduler) schedules access 
to resources within that node, and a local information 
collection component record a variety of status 
information such as CPU utilization, progress of 
application activities, and success or failure of jobs in 
meeting their deadlines. This local status information is 
distilled into higher-level information such as temporal 
parameters of local tasks. The higher level information is 
sent to a distributed information collection service called 
the System Information Repository (SIR). The global 
scheduling system makes efficient use of the SIR to 
compute the delivery deadline of each published data and 
the deadline of message when a transmission occurs. 
Some of the proposed system characteristics are 
summarized in the table below. 
 
 
 
 

Table 1:  System Characteristics 

System Characteristics Data Characteristics 

dynamic applications 
real-time network 
static infrastructure 
hard/soft real-time 
dynamic scheduling policy 

single source of each data item 
temporally constrained data 
periodic data production 
relational data structure 
asynchronous data production 

 

4.2 Data Distribution Model  

In this section we describe the model on which our work is 
based. Figure 5 depicts the elements of the model. The 
DataObject represents the data that is being distributed. A 
topic can identify a collection of DataObject instances. In 
case a set of instances is gathered under the same topic, 
different instances must be distinguishable. This is 
achieved by means of the values of some data fields that 
form the key to that data set. (Topic, Key) is a unique 
identifier of the data object within the system; we referred 
to this couple by Data Identifier (DID).  Value is the 
value of the data object. This can be a simple atomic value, 
or a structured value depending upon the granularity of the 
data. According to the DDS specification, 
SOURCE_TIMESTAMP (S_TS) is the time (timestamp) 
at which the object was last updated. LifeSpan (LS) is the 
object validity, a time interval within which the data object 
is considered to be valid after its update. When the 
LifeSpan expires, the data is considered temporally invalid. 
 

DataObject = <DID; Value; S_TS; LS> 
DataWriter DW = <WID; Node; DID; SP> 
DataReader DR = <RID; Node; DID; SP, CT> 
Distribution Dist = <Dist_ID; DID; SP> 
Transmission Tr =  <Tr_ID; Tr_Deadline;                                                                                                                                       

Tr_Priority > 
Scheduling Parameters SP =  <P; D; R; E> 
 

Fig. 5  Real-Time Data Distribution Model. 

The DataWriter is the entity that produces the data that is 
to be distributed. WID is a unique identifier for the 
DataWriter. The DataReader is the entity that takes/reads 
the data. RID is a unique identifier for a DataReader. Node 
is the computing element on which the 
DataWriter/DataReader executes. SP is a set of scheduling 
parameters. P is the period of the task. Recall that our 
solution addresses the problem space of periodic data 
distribution. D is a deadline within the period. R is the 
release time within the period after which the task may 
start to execute. E is the worst-case execution time of the 
task. Note that the DataWriter and the DataReader may 
have different scheduling parameters, but these parameters 
have to be compatible. CT represents the DataReader 
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Completion time i.e. the point of time in which the 
DataReader takes the dataobject. 
Dist is a distribution of data from the source node (the 
node on witch executes the corresponding DataWriter). A 
distribution has its own unique identifier Dist_ID. It also 
has its own scheduling parameters that can be determined 
by the LifeSpan-based Consistent Data Delivery algorithm 
described in the next section. This algorithm consider the 
scheduling parameters of the  data topic, DataWriters, 
DataReaders, and the data object validity interval to 
determine the scheduling parameters of the distribution 
(especially the distribution deadline). When the new data 
instance has to be transmitted by the real-time network, the 
scheduler computes the message priority using the 
distribution deadline.  

4.3 Task Model 

In this section, we develop a tasks and subtasks model that 
describes the execution and communications of the 
DataWriters and DataReaders over the distributable 
system.  In our model the schedulable entity (DataWriter 
or DataReader) is modeled with periodic real-time Task 
(T), the scheduling parameters of this entity represent real-
time attributes of the task. Four temporal parameters will 
be taken in consideration in the model: 1) the task release 
time, 2) the task deadline, 3) the task period and 4) the task 
execution time. 
We believe that this model encompasses the 
communication subsystem, i.e., the CAN bus. That is 
sending messages can be viewed as another type of 
subtask. For instance, let T be a task composed of two 
subtasks T1 (running on node N1) and T2 (running on node 
N2), say that after T1 completes, it is necessary to send a 
message from N1 to N2 containing the inputs for T2.  Then 
after T2 finishes it is necessary to ship the final result to 
some other site. The two transmissions can be seen as two 
additional subtasks, Ta, Tb, so that the global task is really 
T=T1, Ta, T2, Tb. Below we describe the basic formalism of 
our task model. A distributed real-time system consists of 
several nodes representing system components. Each node 
manages one or more resources, for example, a database, a 
cycle server, or a communication channel. At each node, 
there is a real-time Scheduler prioritizing tasks according 
to some real-time queuing discipline, e.g., earliest deadline 
first (EDF). Associated with each task X (or a subtask) is 
five attributes denoted by the following functions: 
 

· R(X) = arrival (or release) time of X, 
· Sl(X) = slack of X, 
· D(X) = deadline of X, 
· E(X) = real-time execution of X, 
· P(X) = period of X, 
· Pex(X) = predicted execution time of X. 

 

The first four attributes are related by the following 
equation: 

D(X) = R(X) + E(X) + Sl(X)                 
(1) 

  
We assume that the deadline and the execution time of the 
task are known, since they are member of the scheduling 
parameters, introduced by the application QoS policy 
when submitting a DataWriter or DataReader. These QoS 
policy parameters are mapped to the task attributes. The 
slack can be computed using the above equation. The next 
section will introduce the algorithms we developed to 
evaluate the distribution deadline and the transmission 
deadline. 

5. Predictable Delivery Enhancement 

DDS provides QosPolicies specifically targeted to 
minimum latency, predictable real-time operation in high-
performance distributed data-critical systems. The 
DEADLINE QoSPolicy expresses the maximum duration 
(deadline) within which a DataReader expects a data-
object instance to be updated.  This section describes the 
algorithms developed within the context of the 
comprehensive scheduling strategy. The main goal of 
these algorithms is to ensure that all DataReaders take 
their requested data within the specified deadlines, and that 
all   DataReaders read temporally valid data. 

5.1 Distribution Deadline Computation 

This section describes the LifeSpan-based Consistent Data 
Delivery algorithm.  The main goal of this algorithm is to 
examine the specified system, and compute the scheduling 
parameters for the required data distributions. The 
algorithm considers the periods of the DataWriters and the 
periods and deadlines of the DataReaders to determine a 
deadline for the distribution.  The following assumptions 
are made about the environment in which the algorithm 
works: 

1. All nodes, data objects, and scheduling 
parameters are known a priori. 

2. Each DataReader/DataWriter has a local node, 
where it originates. 

3. The period of a DataWriter is always less than its 
LifeSpan. 

4. The “offered deadline period” (DataWriter) is 
always less then the “requested deadline period” 
(DataReader). 

In order for DataReaders to read valid data, the scheduling 
parameters of the data distribution must be such that the 
distribution will finish delivering the data before the 
DataReaders use it. Further, there can be more than one 
DataReader that requires the delivery of the same data 
object, possibly at different rates, with different deadlines. 
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Thus, the computation of the scheduling parameters for the 
distribution should be able to consider the deadlines of all 
DataReaders that require the data. The period of the 
distribution is the same as the period of the DataWriter of 
the data. The release time of the distribution should be at 
the start of its period. Let d be the deadline that is 
computed for a distribution Dist from DataWriter DW to a 
set of m DataReaders       DR1,…,DRm for a request of 
data object DID. The period of DW (and therefore of Dist) 
is p. Let N be the least common multiple of the periods of 
all DataReaders of DID and the period of the DataWriter 
DW. Let n be the number of periods that should be 
considered for the analysis, where n is computed as 

n = N/p 
We call N the superperiod of the distribution because it 
represents a complete cycle of all DataReaders for the 
specified data. We define LSi (LifeSpan) to be the point in 
time in the ith period of the distribution that the data-object 
(from the most recent update) becomes temporally invalid. 
An invalid interval is an interval of time during which the 
data-object does not have a valid value associated with it, 
that is, the data-object is temporarily inconsistent. Figure 6 
depicts an invalid interval. LSi is the time within period Pi 
that the data that was updated during period Pi-1 becomes 
invalid. The d in the figure represents the deadline of the 
distribution within its period. The invalid interval is the 
time between LSi and this deadline because after the 
deadline, a new value of the data will have been delivered. 

Fig.6  Data Distribution Deadline. 

Initially we set the deadline of the distribution equal to its 
period. The deadline computation process is described by 
the following algorithm. 
 
Algorithm:  LifeSpan-based Consistent Data  
Delivery 
1. Input: DID (data Identifier), SP_DW  
2. scheduling parameters of the DataWriter,                
3. SP_DR1 ... SP_DRm (scheduling parameters of the m  
4. DataReaders), Output: d (Distribution deadline)  
5. Initialization: Dist.deadline = Dist.period = 
DW.period; 
6. i := 1; 
7. function Distribution_Deadline_Computing 
8. for each of the n  periods in the superperiod do 
8.    P i := i*P(DW) ; 
9.    x := min {R(DR1), R(DR2),..., R(DRm) } = R(DRk) ; 
10.     if (x > Pi  +  Dist.deadline)  
11.      d : = Dist.deadline ; 
/* maintaining the last computed distribution deadline */ 

12.     end if 
13.     if (( x  > LS(DW)) and (x < P i + d)) 
14.     d := x – Pi ; 
15.     end if 
16.     if  (( x <  LS(W) ) and (x+E(DRk) ) 
17.     d := LS(DW) – Pi ; 
18.    end if 
19.   i := i + 1; 
20.  end for 
21. return d ; 
 
There are three cases to consider when calculating the 
deadline: 1) if no DataReader's release time belongs to the 
invalid interval, the deadline is unchanged, because no 
DataReader will be using invalid data. 2)  If some 
DataReader is released time x, after LS(DW) then the 
deadline is changed to x – Pi. 3)  If any DataReader has 
started before or at LS(DW)  and continues to execute in 

the invalid interval, then the deadline is changed to  
LS(DW) – Pi . 

  Fig.7 Data distribution deadline evaluation diagram 

 
Figure 7 depicts the way the DataWriter, DataReader, the 
local scheduler, the global scheduling system and the 
system repository interact in order to evaluate the 
distribution deadline. 

5.2 Transport Priority Computation 

As we indicated above, to achieve the predictable 
communication, DDS specification defines the transport 
priority QoS policy. The purpose of this QoS is to allow 
the application to take advantage of transports capable of 
sending messages with different priorities. The 
Transport_Priority policy depends on the ability of the 
underlying transports to set a priority on the messages they 
send. Any value within the range of a 32-bit signed integer 
may be chosen; higher values indicate higher priority. 
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However, any further interpretation of this policy is 
specific to a particular transport and a particular 
implementation of the Service. For example, a particular 
transport is permitted to treat a range of priority values as 
equivalent to one another. It is expected that during 
transport configuration the application would provide a 
mapping between the values of the 
TRANSPORT_PRIORITY set on DataWriter and the 
values meaningful to each transport. This mapping would 
then be used by the infrastructure when propagating the 
data written by the DataWriter.  The CAN bus is well 
adapted for such transport.  The CSMA/AMP access 
protocol, used to regulate the access to the CAN bus, is 
comparable with a priority based dispatcher. Due to this 
analogy optimal scheduling of soft real-time 
communication can be achieved by EDF scheduling 
strategy. The first step done by the scheduler is to calculate 
the message transmission deadline using the subtask 
deadline assignment [27]. The second is to map this 
deadline into the transport priority. 
We consider the Distribution as a global task T that 
consists of three subtasks T1, T2, and T3. The DataWriter 
(DW) and the DataReader (DRk) are considered, 
respectively, as the first and the third subtasks. The 
message transmission on the CAN bus can be seen as the 
second subtask T2 and its deadline can be calculated using 
the Equal Slack strategy (EQS) [27]. 

kD is t D W T r D R= + +                     

(2) 
Using the EQS strategy, each subtask (including message 
transmission) should have its fair share of its global task’s 
slack and this can be done when dividing the total 
remaining slack equally among the remaining subtasks. 
Equation 3 describes the EQS strategy: 
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In our situation, the global task which is the distribution 
Dist is composed of the DataWriter, DataReader and the 
transmission subtasks. Thus, equation (3) gives 
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· D(Tr): the transmission deadline is a point of time, 
when a message must be completely transmitted to 
receiving nodes. As long as a sending node is 
pending for the bus, its communication subsystem 
checks and updates the transmission deadline of 
the ready message periodically. 

· R(Tr): release time of the transmission, i.e., the 
point of time when the middleware begins the 
message transmission. 

· Pex(DRk): predictable execution time of the 
DataReader DRk. which realizes the condition: 

R(DRk) = min {R(DR1), R(DR2),..., R(DRm) }     (5) 

· Pex(Tr): predictable execution time of Tr, 
corresponds to the time taken by the message 
transmission over the CAN bus. Pex(Ti) can be 
assumed to the longest time taken to transmit 
message m (Cm), based on bounding the number 
of bits sent on the bus for this message. For CAN 
networks we have the fellow expressions: 

For CAN 2.A: 

             

m
m bit

34+8S
= +47+8S     Cm 4 τ
ì üæ ö
í ýç ÷
è øî þ                 
(6) 

For CAN 2.B: 

             

m
m bit

54+8S
= +57+8S     Cm 4 τ
ì üæ ö
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è øî þ                 
(7) 

The term Sm is the number of bytes in payload field of the 
message and τbit is the bit time of the bus (i.e. 1µs at a bus 
speed of 1 MBPS). This time delay includes the 47 bit 
overhead per message and 34 bits of the overhead added to 
the message content, both are subjected to bit stuffing. 
Recall that the stuffing consists on an additional bit of 
opposite value added after 5 successive bits of identical 
value. The same reasoning can be made for CAN 2.B. The 
question is: how to map this deadline to the transport 
priority defined by the DDS specification? 

Having a range {Pmin … Pmax} for the priority field, a 

deadline DL is mapped to a priority P, where 

ë û min/ PtLP p +DD=  If  ( ) ptPPL D*-<D minmax  

and maxPP =  if ( ) ptPPL D*-³D minmax .   

· The period ptD  is called the priority slot. Each 

value of the transmission laxity is mapped to a 

portion of future time, a priority tick ptD . Since 

there are only a limited number of different 
priorities (26=64 priority levels), only a limited 
number of priority ticks are visible 

· Pmin: The highest priority = lowest binary value for 
real-time priorities. 

· Pmax: The lowest priority = highest binary value 
for real-time priorities. 
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We denote P as the transport priority value; this value will 
be mapped to the CAN priority of the message transmitted 
when propagating the data written by the DataWriter. 
Figure 8 shows how the system components interact to 
compute the transport priority of the message. 

  Fig.8  Transport Priority computation diagram 

6. Implementation and Evaluation 

6.1 Implementation Details 

Here we evaluate the performance of the proposed 
scheduling schemes. Before we present the detailed 
discussion of the results, we describe the simulation 
platform, workloads, and the performance metrics used in 
this study. We implemented the proposed scheduling 
schemes onto an extensible/unified simulation framework 
termed DDSoverCAN. The implementation is 
programmed in Real-Time Java and runs on Jamaica VM, 
which is a compatible RTSJ Virtual Machine, and Linux 
Kernel 2.6. The simulator provides users with graphical 
interfaces to specify the overall system configuration. A 
set of ASCII files containing descriptions of all of the 
topics, data, nodes, publishers, subscribers and network 
configuration, are created and stored. We chose to use 
real-time Java specification to implement our simulator; 
because it illustrates the real-time needs expressed by our 
framework. Real-Time Specification for Java (RTSJ) [28] 
is designed to support both hard and soft real-time 
applications. Among its major features are: scheduling 
properties suitable for real-time applications with 
provisions for  periodic and sporadic tasks, support for 
deadlines and CPU time budgets, and tools to let tasks 
avoid garbage collection delays. The key features of the 
RTSJ are: 

· Real time thread: executable entity of work which, 
at a minimum, characterized by a worst-case 
execution time and a time constraint. 

· Scheduling: the default scheduler guards against 

priority inversion, it is also possible to define user 
schedulers. 

· Timing: RTSJ defines relative and absolute times, 
with a Nanosecond precision time values. 

Real-time tasks are implemented as real-time threads 
according to a specific mapping (shown in table 2). The 
EDF schedulers are defined as an extension of the default 
scheduling class (javax.realtime.PriorityScheduler). The 
CAN access is controlled by a set of daemons that 
implements the network controllers, the message queues 
and the bus behavior. 

Table 2:  System Characteristics 

Task model RT-Java implementation 

periodic real-time task T periodic Realtime Thread 
RT_Thrd 

D(T) RT_Thrd.deadline 

Pex(T) RT_Thrd.Cost 

R(T) RT_Thrd.release 

 
The following metrics are defined to evaluate the 
performance of the proposed scheduling scheme: 

· The age of the data: for each data instance, the 
age represents the difference between the point of 
time when the DataReader reads the instance (an 
absolute time) and the point of dime the data is 
updated by the DataWriter, also called source 
timestamp (absolute time). Thus, the data age is 
represented as a relative time (difference between 
absolute times).  

     
· The delivery rate: Suppose the publishers have 

published k dataobjects in the super-period, 
denoted by d1, d2… dk. For a dataobject di, let the 
number of DataReaders interested in it be tsi, and 
the number of DataReaders that receive it before 
the deadline be dsi. We can define a metric called 
delivery rate of the system as follows: 

1

1
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i
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i
i

d s

t s

=

=

å

å

                         (8) 

· The completion time: represents the difference 
between the point of time in which the 
DataReader’s execution cycle takes end and the 
release time of the DataReader. 

( ) ( )C T DR R D R-                         

(9) 
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6.2 Performance Results 

In order to demonstrate the effectiveness of our 
implementation, we have developed an evaluation test 
scenario. In the simulated network, there are 3 nodes, 2 data 
source (2 Topics) – each source is associated to a DataWriter 
– and 4 Subscribers. Each subscriber is associated to 5 
DataReaders having the same scheduling parameters as the 
subscriber. Table 3 shows the parameters and ranges of 
values used in the test scenario. 
 

Table 3:  System Setup 

Name Period 
(ms) 

Release 
(ms) 

Deadline 
(ms) 

Life 
Span 

Cost 
(ms) 

PUB1_T1_N1 80 0 10 150 5 
PUB2_T2_N1 140 0 20 170 8 
SUB1_T1_N2 80 50 50 - 7 
SUB2_T1_N3 130 50 50 - 3 
SUB3_T2_N1 150 90 60 - 4 
SUB4_T2_N3 200 120 60 - 6 
 
Figure 9 shows the temporal consistency results for Topic1 
which is published by Publisher1. The horizontal line in 
the graph represents the LifeSpan value of the dataobject 
being distributed. The other points represent the ages of 
the data objects at the time they were read by the interested 
DataReaders.  

Publisher_1: Data Age
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  Fig.9  Topic 1 Consistent Distribution 

 
Figure 10 displays the delivery rate of the DataReaders 
associated with SUB3_T2_N1 and SUB4_T2_N3.  It is 
clear to see that all of the DataReaders, in each of the 
periods, read temporally consistent data. 
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Fig.10  Topic 2 Consistent Distribution 

Figures 11 and 12 display the deadline results for the test 
scenario. The horizontal line in each graph indicates the 
deadline for the specified Subscriber. The other points in 
the scatter graph represent the completion times of the 
DataReaders over the super-period cycle. As the figure 
indicates, except for a few statistical anomalies in the first 
few periods, all of the DataReaders complete before the 
specified deadline, as the theoretical results had predicted. 
 

Topic_1: Subscriber's Completion Time
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 Fig. 11 Topic 1 Subscriber’s Completion Time 

Subscriber_4 Completion Time
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Fig. 12 Subscriber 4 Completion Time with/without Network Priority 
Support 
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In the first few periods, there was an overloading, on each 
node, caused by the local information collection and the 
system repository constitution that caused the tasks to 
complete after the deadline. Figure 12 shows that the 
proposed Network priority mapping algorithm 
significantly outperforms the global scheduling solution by 
up to 19.4% in the average task completion time. This 
improvement is achieved by reducing wasted network idle 
time (by introducing network priority that best reflects the 
task urgency without sacrificing fairness). 

7. Conclusion 

Data-Centric Publish-subscribe (DCPS) is a widespread 
communication paradigm for asynchronous messaging that 
naturally fits the decoupled nature of real-time distributed 
systems, allowing simple and effective development of 
distributed applications. With the work described herein, 
the CAN bus has been rendered more usable in the field of 
distributed DCPS systems. We tried to design a 
comprehensive scheduling system that interacts with the 
main actors described by the DDS specification. This 
interaction aims to integrate the DDS QoS parameters to 
improve the consistent data delivery and to optimise 
network behaviour. This interaction aims to integrate the 
network resources control to high level middleware and 
thus enabling a new generation of flexible DRE 
applications that have more precise control over their end-
to-end resources. The priority based mechanism and the 
EDF scheduling strategy used within the context of this 
work is adapted with soft real-time communication system. 
One promising research direction is to combine priority-
based mechanisms in conjunction with implicit 
coscheduling mechanisms and to extend this strategy to 
support the hybrid real-time bus scheduling mechanisms 
for CAN. 
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