
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

188

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Design and Performance of DDS-based Middleware for Real-
Time Control Systems

 Tarek Guesmi, Rojdi Rekik, Salem Hasnaoui and Houria Rezig

SysCom Laboratory, National School of Engineering of Tunis, Tunisia

Summary
Data-centric design is emerging as a key tenet for building
advanced data-critical distributed real-time and embedded
systems. These systems must find the right data, know where to
send it, and deliver it to the right place at the right time. Data
Distribution Service (DDS) specifies an API designed for
enabling real-time data distribution and is well suited for such
complex distributed systems and QoS-enabled applications. It is
also, widely known that Control Area Networks (CAN) are used
in real-time, distributed and parallel processing.
Thus, the goal idea of this paper is to study an implementation of
publish-subscribe messaging middleware that supports the DDS
specifications and that is customized for real-time networking.
This implementation introduces an efficient approach of data
temporal consistency and real-time network-scheduler that
schedules network traffic based upon DDS QoS-policies. A
simulator has been developed to demonstrate that our
implementation fulfills the guarantees predicted by the
theoretical results.
Key words:
Publish-Subscribe, data distribution, Real-Time Middleware,
CAN Bus, DDS, EDF, Distributed Control Systems.

1. Introduction

In recent years, there has been a growth in a category of
performance-critical distributed systems and applications
executing in open and unpredictable environments [1].
Examples range from next generation military avionics
and ship computing systems to current open systems. In
these applications, data produced in one component of the
system needs to be shared with other components of the
system. Such applications may have stringent deadlines by
which the data must be delivered in order to process it on
time to make critical decisions. Further, the data that is
distributed must be valid when it arrives at its target. That
is, if the data is too old when it is delivered, it could
produce invalid results when used in computations. A
simple solution would be to provide point-to-point or
client-server communication to deliver data within the
real-time system. However, this communication can
become extremely complex when multiple components
require the same data at differing rates. Furthermore the
communication infrastructure is inflexible. A decoupled
solution where publishers of data do not communicate

directly with subscribers (consumers) of data is more
efficient and flexible. Such a solution would allow the
publishers of data to produce the data at a rate that is
consistent with the data production, and would allow
subscribers (consumers) of the data to receive the data at a
rate that consistent with the needs of the application. As
theory and practice in distributed real-time computing,
data-centric publish-subscribe (DCPS) and middleware
networking mature, there is an increasing demand for
automated solutions in real-time DCPS middleware to
support scheduling end-to-end timing constraints.
 Data-centric design is key to systems which exhibit some
or all of the following five characteristics: (a) participants
are distributed; (b) interactions between participants are
data-centric and not object-centric; often these can be
viewed as “dataflows” that may carry information about
identifiable data-objects; (c) data is critical because of
large volumes, predictable delivery requirements and the
dynamic nature of the entities; (d) computation is time
sensitive and may be critically dependent on the
predictable delivery of data, (e) storage is local. In a large
class of data-centric systems, real-time availability of
information is of utmost importance. Information
generated from multiple sources must be distributed and
made available to 'interested parties' taking into account
Quality of Service (QoS) offerings by information-
producers and requests by information-consumers. The
problem to solve can be stated as: ‘How to get the right
data at the right time at the right place in real-time and
mission-critical systems’. In order to address this need the
Object Management Group (OMG) defined the Data
Distribution Service (DDS) [2] specification which
provides a set of profiles that target real-time information
availability for domains ranging from small-scale
embedded control systems up to large-scale enterprise
information management systems.
Data Distribution Service is a popular standard in
embedded systems. It uses publish-subscribe
communication model, and supports both messaging and
data-object centric data models. DDS targets real-time
systems; the API and Quality of Service (QoS) are chosen
to balance predictable behavior and implementation
efficiency/performance. One of the promising approaches
is to make an efficient use of QoS mechanisms proposed
by the DDS specification when adopting real-time network

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

189

messaging.
A real-time communication system (RTCS) constitutes the
backbone for distributed control applications. RTCS
substantially differ in many respects from general purpose
communication systems. In general, while the goals of
general purpose communication systems center on
throughput, RTCS focus on predictability of
communication. Controller Area Network (CAN) bus [3]
provides advanced built-in features, which make it
particularly suited to implement a publisher-subscriber
model of communication. Some of these features are
priority-based, multiparty bus access control using carrier
sense multiple access with Arbitration on Message Priority
(CSMA/AMP), bounded message length, message filtering,
efficient implementation of positive/negative
acknowledgment, and automatic fail-silence enforcement
with different fault levels. These characteristics make it
very challenging to run real-time data-centric publish-
subscribe applications.
DDS provides the DEADLINE QoS Policy,
LATENCY_BUDGET Qos Policy,
TRANSPORT_PRIORITY QoS Policy and other policies
specifically targeted to minimum latency, predictable real-
time operation in high-performance distributed data-
critical systems. However DDS specification is less
explicit about the scheduling mechanisms that should be
used to coordinate these policies and to make best benefit
when exploiting the underlying facilities of the real-time
network. This paper presents a solution to the data
distribution when adopting the real-time communication
systems. The solution consists on the design of new
comprehensive scheduling strategy that provides:

· an algorithm that determines scheduling
parameters to ensure that data that is delivered
will be valid when it is used.

· a unique real-time network-scheduler that
schedules network-traffic based upon DDS QoS-
policies such as 'Deadline', ‘LifeSpan’
and ‘Transport_priority’.

This scheduling strategy is implemented within the context
of run-time simulator developed using real-time java to
ensure that the delivered data is valid and on time.
The remainder of this paper is organized as follows: In
Section 2, we discuss the related work, comparing our
approach with some existing solutions. Section 3
summarizes the technical backgrounds of this work and
describes basic principles of Real-Time DDS, Controller
Area Network and some related real-time basic knowledge.
Sections 4 and 5 describe the proposed architecture and
mechanisms for supporting the temporal data validity and
network traffic scheduling. In section 6, we describe the
simulations for performance evaluation and discuss the
simulation results. Finally, in Section 7, we conclude the
paper with a summary.

2. Related Works

Real-time data distribution has recently emerged as an
important area of research. There was a workshop
dedicated to the topic (The First Workshop on Data
Distribution for Real-Time Systems [4]) in May of 2003.
The Object Management Group (OMG) contributes to the
research efforts by standardizing data distribution in a
middleware service. Developing dynamic scheduling
strategies within the context of data-centric publish-
subscribe systems running over real-time networks is a
very challenging research topic and during the last years,
several teams and companies have prominently worked on
these systems. In [5], the problem of scheduling the
broadcast of real-time data is considered. It provides an
approximate version of the Longest Wait First heuristic
that reduces overhead. Similar work [6] describes a
Broadcast on Demand technique that schedules the
broadcast using earliest deadline first, periodic or hybrid
scheduling algorithms. The work described in [7] is a
speculative data dissemination service that uses
geographic and temporal locality of reference to determine
which data to be disseminated. These techniques take into
account the deadline timing constraints of the clients, but
do not consider nor the data temporal consistency neither
the use of underlying real-time networks.
An application area that has provided various research
efforts towards data distribution is embedded sensor
networks [8,9,10,11,12]. While all of the work described
here provides valuable insights into solving the problem of
data distribution in sensor networks, none considers real-
time characteristics of the data or of the applications. That
is, neither deadlines on data delivery nor temporal
consistency of the data is supported.
A large amount of real-time data distribution research has
been done at the University of Virginia (UVa) in the
context of wireless sensor networks [13,14,15,16]. This
work does address the deadlines of requests. Also,
temporal validity is considered in the sense that data
values are reported before they expire, but with
corresponding confidence values. However, it does not
provide assurance that the data is temporally valid when it
arrives at the requestor.
DDS being an API only specification does not specify a
transport model. However, DDS does not depend on
reliable and ordered delivery of messages, there is not
enough works dealing with implementing DDS upon real-
time networks. There are several commercial products that
support multiple network-interfaces for transparent
forwarding of DDS-data and/or fault tolerant
communication paths between nodes. PrismTech[17] has
a product called OpenSplice[18] which is compliant with
real-time networking. DDS implementation compliant
with CAN-based networks have not been treated yet, but
similar works can be mentioned such as ROFES[19]. In

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

190

the context of ROFES platform, S. Lankes, A. Jabs and T.
Bemmel describe the implementation of a CAN-based
connection-oriented point-to-point communication model
and its integration into Real-Time CORBA; but this
project hadn't been extended to support data distribution
service.
These research works has been enforced by several
commercial products which are working on becoming
compliant with the OMG’s Data Distribution specification.
Real-Time Innovations [20] has a product called NDDS
that provides publish-subscribe architecture for time-
critical delivery of data. Thales Naval Nederland [21] has
a product called SPLICE [22] that provides a data-centric
architecture for mission-critical applications. Both of
these products provide valuable real-time features in data
distribution. But neither guarantees data temporal
deadlines nor real-time network support.

3. Technical Backgrounds

3.1 Basic CAN Features

The Controller Area Network (CAN) is an ISO defined
serial communication bus. It was originally developed
during the 80’s by the Robert Bosch GmbH for the
automotive industry. The CAN bus works according to the
Producer-Consumer-Principle: messages are not sent to a
specific destination address, but rather as a broadcast
(aimed at all receivers) or a multicast (aimed at a group of
receivers). A CAN message has a unique identifier, which
is used by devices connected to the CAN bus to decide
whether to process or ignore the incoming message.
Two variants of the CAN protocol exist. The main
difference between the first (CAN 2.0A) and second
variant (CAN 2.0B) is that the former uses 11 bits to
uniquely identify each message, while the latter uses 29 bit
identifiers. For correct operation of the CAN bus, the
identifiers of two messages sent at the same time must
never be the same, consequently CAN 2.0B offers a
greater variety and scope for concurrent message Id’s.
CAN bus is based on the arbitration scheme Carrier Sense
Multiple Access/Arbitration on Message Priority
(CSMA/AMP). During arbitration process, any node
willing to send a CAN message starts sending bit by bit the
11 or (in case of CAN 2.0B) 29 identifier bits. Each time a
bit is applied to the bus, the sending node checks whether
the bus really is at the corresponding voltage level―high
for an applied logical 1 and low for an applied logical 0.
As a common resource, the CAN bus has to be shared by
all computing nodes. Access to the bus has to be scheduled
in a way that distributed computations meet their deadlines
in spite of competition for the communication line. Since
the scheduling of the bus cannot be based on local
decisions, a distributed consensus about the bus access has

to be achieved. The CSMA/AMP protocol is comparable
with a priority-based dispatcher. Due to this analogy, it is
possible to express scheduling decisions for the CAN-bus
resource by dynamic priority orders. We argue that for
embedded control systems built around data-centric
publish-subscribe paradigm the CAN-Bus is particularly
suited to implement a publisher-subscriber model of
communication.

The presented approach associates advantage of the built-
in CSMA/AMP access protocol of CAN bus and the
temporal QoS policies proposed within DDS mechanisms
to compute the priority of the CAN message. The
comprehensive scheduling approach, we presented in this
paper, determines the message priority (also called the
network priority) that reflects the urgency of the requestor
– the subscriber in the context of the DDS communication.

3.2 Basic DDS Features

DDS targets real-time systems; the API and Quality of
Service (QoS) are chosen to balance predictable behavior
and implementation efficiency/performance. The DDS
specification describes two levels of interfaces:

· A lower level Data-Centric Publish-Subscribe
(DCPS) that is targeted towards the efficient
delivery of the proper information to the proper
recipients.

· An optional higher-level Data-Local
Reconstruction Layer (DLRL), which allows for a
simpler integration into the application layer.

 The DCPS model builds on the idea of a “global data
space” of data-objects that any entity can access.
Applications that need data from this space declare that
they want to subscribe to the data, and applications that
want to modify data in the space declare that they want to
publish the data. A data-object in the space is uniquely
identified by its keys and topic, and each topic must have a
specific type. There may be several topics of a given type.
A global data space is identified by its domain id, each
subscription/publication must belong to the same domain
to communicate.
Figure 1 illustrates the overall data-centric publish-
subscribe model, which consists of the following entities:
DomainParticipant, DataWriter, DataReader, Publisher,
Subscriber, and Topic. All these classes extend Entity,
representing their ability to be configured through QoS
policies, be enabled, be notified of events via listener
objects, and support conditions that can be waited upon by
the application. Each specialization of the Entity base class
has a corresponding specialized listener and a set of
QoSPolicy values that are suitable to it.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

191

Publisher represents the objects responsible for data
issuance. A Publisher may publish data of different data
types. A DataWriter is a typed facade to a publisher;
participants use DataWriter(s) to communicate the value of
and changes to data of a given type. Once new data values
have been communicated to the publisher, it is the
Publisher’s responsibility to determine when it is
appropriate to issue the corresponding message and to
actually perform the issuance (the Publisher will do this
according to its QoS, or the QoS attached to the
corresponding DataWriter, and/or its internal state).

Fig. 1 UML diagram of the DDS data-centric publish-subscribe
interfaces.

A Subscriber receives published data and makes it
available to the participants. A Subscriber may receive and
dispatch data of different specified types. To access the
received data, the participant must use a typed DataReader
attached to the subscriber. The association of a DataWriter
object (representing a publication) with DataReader
objects (representing the subscriptions) is done by means
of the Topic. A Topic associates a name (unique in the
system), a data type, and QoS related to the data itself. The
type definition provides enough information for the service
to manipulate the data (for example serializes it into a
network-format for transmission). The definition can be
done by means of a textual language (e.g. something like
“float x; float y;”) or by means of an operational “plugin”
that provides the necessary methods. The DDS
middleware handles the actual distribution of data on
behalf of a user application. The distribution of the data is
controlled by user settable Quality of Service (QoS).
A Quality of Service is a set of characteristics that controls
some aspects of the behavior of the DDS Service. Below,
we mentioned some QoS policies that deeply impact the
architectural design of our scheduling strategy:

· The DEADLINE QoSPolicy expresses the

maximum duration (deadline) within which a
DataReader expects a data-object instance to be
updated. If a sample is not received within the
deadline, a listener method is called.

· The LATENCY_BUDGET QosPolicy provides a
hint as to the maximum acceptable delay from the
time the data is written to the time it is received
by the subscribing applications.

· The LIFESPAN QosPolicy, on a DataWriter and
Topic, which specifies how long the data written
by a DataWriter is considered valid (“time to
live”).

· The TIME_BASED_FILTER QosPolicy specifies
a minimum_separation value that allows a
DataReader to specify that it interested only in
(potentially) a sub-sampled set of the values for a
data-object instance.

· TRANSPORT_PRIORITY QoSPolicy, in a
DataWriter, which allows a DDS application to
take advantage of transports that are capable of
sending messages with different priorities.

· The RELIABILITY QosPolicy, on a DataWriter,
DataReader, or a Topic. This policy determines
whether a message should be sent best effort
(send once without expecting acknowledgments)
or reliably (resent until positively acknowledged).

With these QoS policies, and many others, the DDS
publish-subscribe map well to the real-time
communications problem. However, publish-subscribe
as we have described it so far is not enough. Real-time
systems have several other needs. For example, real-time
programs must be able to control the trade-off between
delivery reliability and delivery timing. These problems
can be solved when using a global scheduling strategy that
works with the DDS QoS parameters (considered as end-
to-end scheduling parameters) and make efficient use of
multicast and prioritized access of CAN-based networks.
This global scheduling framework coordinates with local
scheduling mechanisms to manage the network access and
consequently makes globally sound scheduling decisions
for the system. The scheduling strategy must resolve a
number of design challenges. In the next sections we
examine two challenges:

· Design of an algorithm that computes the data
delivery deadline for each published data, in
order for DataReaders to read valid data. This
computation is based on the DDS QoS parameters,
we call it: LifeSpan-based Consistent Data
Delivery.

· Determining the CAN message priority using a
mapping from the delivery deadline of published
data to the message deadline.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

192

4. The Proposed Architecture

4.1 System Architecture

To illustrate the utility of our Comprehensive Scheduling
Strategy (CSS), we have chosen to work within a platform
of a telecom equipment interconnection. In this system, a
set of network processors subsystems produces routing
data. This data must be distributed along a chain of
components so that it can be used by the signaling
processors and the switch fabric to perform an optimal
switching/routing process. In previous works [23, 24, 25],
we attempted to implement this system using the CORBA
client/server architecture. This kind of implementation
introduced complexity and inefficiencies.
The main goal of the proposed architecture is to reduce
this complexity when adopting the data-centric publish-
subscribe paradigm -according to the DDS specification -
which is more adapted for the data representation and
communication. The framework architecture [26] is a set
of nodes connected via a Real Time Transport protocol. In
each node is embedded a Real Time Operating System, a
middleware, and a Publish-Subscribe interface according
to DDS specification. This is depicted in figure 2.

Fig. 2 Architecture of distributed real-time system using

a publish-subscribe paradigm.

The communication between nodes is achieved due to
publish subscribe interface via the Global Data Space that
is represented by a relational data model.The middleware
has to keep track of the data objects instances, which are
considered as rows in a table. Each data object is identified
by the combination of a topic and a topic specified key.
Figure 3 depicts our overall system architecture.

Fig. 3 Matching the topic with the adequate data-object via the

middleware

This data-centric middleware allows the application to
identify “data-objects” to the communication. The “data-
objects” are unique in the ‘global data space’ of the
distributed system across all participants. Each participant
is regarded as having a local cache of the global data-
object. A message on a topic is regarded as an update to
the data-object that can be identified and managed by the
middleware. Local changes to a data-object are propagated
by the middleware; the middleware can distinguish
between messages or update samples from different data-
objects and manage their delivery to the interested
participants on a per data-object basis. This scenario, in the
proposed implementation, is achieved by a clustered
distributed database based on ehcache and hibernates. The
first element of the proposed scheduling solution is to
develop the major components of the comprehensive
scheduling framework. Figure 4 illustrates the design of
the framework.
There are five essential components in this framework,
schedulable jobs (DataWriter/DataReader), Local EDF
Scheduler, Global Scheduling System (GSS), Local Info
Collection and System Info Repository. These components
are independent and coordinated with each other.
DataReaders and DataWriters are the schedulable entities
in our system architecture; we referred to them by
schedulable jobs.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

193

Fig. 4 Comprehensive Scheduling Framework.

When a job is spawned by an application, it passes its
scheduling parameters to the Local Scheduler. The latter
sends these parameters to the GSS, which returns the
globally sound scheduling parameters (e.g. delivery
deadline). The parameters passed along are determined by
the DDS QoS policies. On each node of the system, a local
scheduling component (EDF scheduler) schedules access
to resources within that node, and a local information
collection component record a variety of status
information such as CPU utilization, progress of
application activities, and success or failure of jobs in
meeting their deadlines. This local status information is
distilled into higher-level information such as temporal
parameters of local tasks. The higher level information is
sent to a distributed information collection service called
the System Information Repository (SIR). The global
scheduling system makes efficient use of the SIR to
compute the delivery deadline of each published data and
the deadline of message when a transmission occurs.
Some of the proposed system characteristics are
summarized in the table below.

Table 1: System Characteristics

System Characteristics Data Characteristics

dynamic applications
real-time network
static infrastructure
hard/soft real-time
dynamic scheduling policy

single source of each data item
temporally constrained data
periodic data production
relational data structure
asynchronous data production

4.2 Data Distribution Model

In this section we describe the model on which our work is
based. Figure 5 depicts the elements of the model. The
DataObject represents the data that is being distributed. A
topic can identify a collection of DataObject instances. In
case a set of instances is gathered under the same topic,
different instances must be distinguishable. This is
achieved by means of the values of some data fields that
form the key to that data set. (Topic, Key) is a unique
identifier of the data object within the system; we referred
to this couple by Data Identifier (DID). Value is the
value of the data object. This can be a simple atomic value,
or a structured value depending upon the granularity of the
data. According to the DDS specification,
SOURCE_TIMESTAMP (S_TS) is the time (timestamp)
at which the object was last updated. LifeSpan (LS) is the
object validity, a time interval within which the data object
is considered to be valid after its update. When the
LifeSpan expires, the data is considered temporally invalid.

DataObject = <DID; Value; S_TS; LS>
DataWriter DW = <WID; Node; DID; SP>
DataReader DR = <RID; Node; DID; SP, CT>
Distribution Dist = <Dist_ID; DID; SP>
Transmission Tr = <Tr_ID; Tr_Deadline;

Tr_Priority >
Scheduling Parameters SP = <P; D; R; E>

Fig. 5 Real-Time Data Distribution Model.

The DataWriter is the entity that produces the data that is
to be distributed. WID is a unique identifier for the
DataWriter. The DataReader is the entity that takes/reads
the data. RID is a unique identifier for a DataReader. Node
is the computing element on which the
DataWriter/DataReader executes. SP is a set of scheduling
parameters. P is the period of the task. Recall that our
solution addresses the problem space of periodic data
distribution. D is a deadline within the period. R is the
release time within the period after which the task may
start to execute. E is the worst-case execution time of the
task. Note that the DataWriter and the DataReader may
have different scheduling parameters, but these parameters
have to be compatible. CT represents the DataReader

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

194

Completion time i.e. the point of time in which the
DataReader takes the dataobject.
Dist is a distribution of data from the source node (the
node on witch executes the corresponding DataWriter). A
distribution has its own unique identifier Dist_ID. It also
has its own scheduling parameters that can be determined
by the LifeSpan-based Consistent Data Delivery algorithm
described in the next section. This algorithm consider the
scheduling parameters of the data topic, DataWriters,
DataReaders, and the data object validity interval to
determine the scheduling parameters of the distribution
(especially the distribution deadline). When the new data
instance has to be transmitted by the real-time network, the
scheduler computes the message priority using the
distribution deadline.

4.3 Task Model

In this section, we develop a tasks and subtasks model that
describes the execution and communications of the
DataWriters and DataReaders over the distributable
system. In our model the schedulable entity (DataWriter
or DataReader) is modeled with periodic real-time Task
(T), the scheduling parameters of this entity represent real-
time attributes of the task. Four temporal parameters will
be taken in consideration in the model: 1) the task release
time, 2) the task deadline, 3) the task period and 4) the task
execution time.
We believe that this model encompasses the
communication subsystem, i.e., the CAN bus. That is
sending messages can be viewed as another type of
subtask. For instance, let T be a task composed of two
subtasks T1 (running on node N1) and T2 (running on node
N2), say that after T1 completes, it is necessary to send a
message from N1 to N2 containing the inputs for T2. Then
after T2 finishes it is necessary to ship the final result to
some other site. The two transmissions can be seen as two
additional subtasks, Ta, Tb, so that the global task is really
T=T1, Ta, T2, Tb. Below we describe the basic formalism of
our task model. A distributed real-time system consists of
several nodes representing system components. Each node
manages one or more resources, for example, a database, a
cycle server, or a communication channel. At each node,
there is a real-time Scheduler prioritizing tasks according
to some real-time queuing discipline, e.g., earliest deadline
first (EDF). Associated with each task X (or a subtask) is
five attributes denoted by the following functions:

· R(X) = arrival (or release) time of X,
· Sl(X) = slack of X,
· D(X) = deadline of X,
· E(X) = real-time execution of X,
· P(X) = period of X,
· Pex(X) = predicted execution time of X.

The first four attributes are related by the following
equation:

D(X) = R(X) + E(X) + Sl(X)
(1)

We assume that the deadline and the execution time of the
task are known, since they are member of the scheduling
parameters, introduced by the application QoS policy
when submitting a DataWriter or DataReader. These QoS
policy parameters are mapped to the task attributes. The
slack can be computed using the above equation. The next
section will introduce the algorithms we developed to
evaluate the distribution deadline and the transmission
deadline.

5. Predictable Delivery Enhancement

DDS provides QosPolicies specifically targeted to
minimum latency, predictable real-time operation in high-
performance distributed data-critical systems. The
DEADLINE QoSPolicy expresses the maximum duration
(deadline) within which a DataReader expects a data-
object instance to be updated. This section describes the
algorithms developed within the context of the
comprehensive scheduling strategy. The main goal of
these algorithms is to ensure that all DataReaders take
their requested data within the specified deadlines, and that
all DataReaders read temporally valid data.

5.1 Distribution Deadline Computation

This section describes the LifeSpan-based Consistent Data
Delivery algorithm. The main goal of this algorithm is to
examine the specified system, and compute the scheduling
parameters for the required data distributions. The
algorithm considers the periods of the DataWriters and the
periods and deadlines of the DataReaders to determine a
deadline for the distribution. The following assumptions
are made about the environment in which the algorithm
works:

1. All nodes, data objects, and scheduling
parameters are known a priori.

2. Each DataReader/DataWriter has a local node,
where it originates.

3. The period of a DataWriter is always less than its
LifeSpan.

4. The “offered deadline period” (DataWriter) is
always less then the “requested deadline period”
(DataReader).

In order for DataReaders to read valid data, the scheduling
parameters of the data distribution must be such that the
distribution will finish delivering the data before the
DataReaders use it. Further, there can be more than one
DataReader that requires the delivery of the same data
object, possibly at different rates, with different deadlines.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

195

Thus, the computation of the scheduling parameters for the
distribution should be able to consider the deadlines of all
DataReaders that require the data. The period of the
distribution is the same as the period of the DataWriter of
the data. The release time of the distribution should be at
the start of its period. Let d be the deadline that is
computed for a distribution Dist from DataWriter DW to a
set of m DataReaders DR1,…,DRm for a request of
data object DID. The period of DW (and therefore of Dist)
is p. Let N be the least common multiple of the periods of
all DataReaders of DID and the period of the DataWriter
DW. Let n be the number of periods that should be
considered for the analysis, where n is computed as

n = N/p
We call N the superperiod of the distribution because it
represents a complete cycle of all DataReaders for the
specified data. We define LSi (LifeSpan) to be the point in
time in the ith period of the distribution that the data-object
(from the most recent update) becomes temporally invalid.
An invalid interval is an interval of time during which the
data-object does not have a valid value associated with it,
that is, the data-object is temporarily inconsistent. Figure 6
depicts an invalid interval. LSi is the time within period Pi
that the data that was updated during period Pi-1 becomes
invalid. The d in the figure represents the deadline of the
distribution within its period. The invalid interval is the
time between LSi and this deadline because after the
deadline, a new value of the data will have been delivered.

Fig.6 Data Distribution Deadline.

Initially we set the deadline of the distribution equal to its
period. The deadline computation process is described by
the following algorithm.

Algorithm: LifeSpan-based Consistent Data
Delivery
1. Input: DID (data Identifier), SP_DW
2. scheduling parameters of the DataWriter,
3. SP_DR1 ... SP_DRm (scheduling parameters of the m
4. DataReaders), Output: d (Distribution deadline)
5. Initialization: Dist.deadline = Dist.period =
DW.period;
6. i := 1;
7. function Distribution_Deadline_Computing
8. for each of the n periods in the superperiod do
8. P i := i*P(DW) ;
9. x := min {R(DR1), R(DR2),..., R(DRm) } = R(DRk) ;
10. if (x > Pi + Dist.deadline)
11. d : = Dist.deadline ;
/* maintaining the last computed distribution deadline */

12. end if
13. if ((x > LS(DW)) and (x < P i + d))
14. d := x – Pi ;
15. end if
16. if ((x < LS(W)) and (x+E(DRk))
17. d := LS(DW) – Pi ;
18. end if
19. i := i + 1;
20. end for
21. return d ;

There are three cases to consider when calculating the
deadline: 1) if no DataReader's release time belongs to the
invalid interval, the deadline is unchanged, because no
DataReader will be using invalid data. 2) If some
DataReader is released time x, after LS(DW) then the
deadline is changed to x – Pi. 3) If any DataReader has
started before or at LS(DW) and continues to execute in

the invalid interval, then the deadline is changed to
LS(DW) – Pi .

 Fig.7 Data distribution deadline evaluation diagram

Figure 7 depicts the way the DataWriter, DataReader, the
local scheduler, the global scheduling system and the
system repository interact in order to evaluate the
distribution deadline.

5.2 Transport Priority Computation

As we indicated above, to achieve the predictable
communication, DDS specification defines the transport
priority QoS policy. The purpose of this QoS is to allow
the application to take advantage of transports capable of
sending messages with different priorities. The
Transport_Priority policy depends on the ability of the
underlying transports to set a priority on the messages they
send. Any value within the range of a 32-bit signed integer
may be chosen; higher values indicate higher priority.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

196

However, any further interpretation of this policy is
specific to a particular transport and a particular
implementation of the Service. For example, a particular
transport is permitted to treat a range of priority values as
equivalent to one another. It is expected that during
transport configuration the application would provide a
mapping between the values of the
TRANSPORT_PRIORITY set on DataWriter and the
values meaningful to each transport. This mapping would
then be used by the infrastructure when propagating the
data written by the DataWriter. The CAN bus is well
adapted for such transport. The CSMA/AMP access
protocol, used to regulate the access to the CAN bus, is
comparable with a priority based dispatcher. Due to this
analogy optimal scheduling of soft real-time
communication can be achieved by EDF scheduling
strategy. The first step done by the scheduler is to calculate
the message transmission deadline using the subtask
deadline assignment [27]. The second is to map this
deadline into the transport priority.
We consider the Distribution as a global task T that
consists of three subtasks T1, T2, and T3. The DataWriter
(DW) and the DataReader (DRk) are considered,
respectively, as the first and the third subtasks. The
message transmission on the CAN bus can be seen as the
second subtask T2 and its deadline can be calculated using
the Equal Slack strategy (EQS) [27].

kD is t D W T r D R= + +

(2)
Using the EQS strategy, each subtask (including message
transmission) should have its fair share of its global task’s
slack and this can be done when dividing the total
remaining slack equally among the remaining subtasks.
Equation 3 describes the EQS strategy:

()

() () ()

() () ()
1

n

i j
j i

i i i

D T R T Pex T

D T R T Pex T
n i

=

- -

= + +
- +

å

(3)

In our situation, the global task which is the distribution
Dist is composed of the DataWriter, DataReader and the
transmission subtasks. Thus, equation (3) gives

() () ()

() () (() ()

2

k

D Tr R Tr Pex Tr

D Dist R DW Pex Tr Pex DR

= + +

- - +é ùë û
 (4)

· D(Tr): the transmission deadline is a point of time,
when a message must be completely transmitted to
receiving nodes. As long as a sending node is
pending for the bus, its communication subsystem
checks and updates the transmission deadline of
the ready message periodically.

· R(Tr): release time of the transmission, i.e., the
point of time when the middleware begins the
message transmission.

· Pex(DRk): predictable execution time of the
DataReader DRk. which realizes the condition:

R(DRk) = min {R(DR1), R(DR2),..., R(DRm) } (5)

· Pex(Tr): predictable execution time of Tr,
corresponds to the time taken by the message
transmission over the CAN bus. Pex(Ti) can be
assumed to the longest time taken to transmit
message m (Cm), based on bounding the number
of bits sent on the bus for this message. For CAN
networks we have the fellow expressions:

For CAN 2.A:

m
m bit

34+8S
= +47+8S Cm 4 τ
ì üæ ö
í ýç ÷
è øî þ
(6)

For CAN 2.B:

m
m bit

54+8S
= +57+8S Cm 4 τ
ì üæ ö
í ýç ÷
è øî þ
(7)

The term Sm is the number of bytes in payload field of the
message and τbit is the bit time of the bus (i.e. 1µs at a bus
speed of 1 MBPS). This time delay includes the 47 bit
overhead per message and 34 bits of the overhead added to
the message content, both are subjected to bit stuffing.
Recall that the stuffing consists on an additional bit of
opposite value added after 5 successive bits of identical
value. The same reasoning can be made for CAN 2.B. The
question is: how to map this deadline to the transport
priority defined by the DDS specification?

Having a range {Pmin … Pmax} for the priority field, a

deadline DL is mapped to a priority P, where

ë û min/ PtLP p +DD= If () ptPPL D*-<D minmax

and maxPP = if () ptPPL D*-³D minmax .

· The period ptD is called the priority slot. Each

value of the transmission laxity is mapped to a

portion of future time, a priority tick ptD . Since

there are only a limited number of different
priorities (26=64 priority levels), only a limited
number of priority ticks are visible

· Pmin: The highest priority = lowest binary value for
real-time priorities.

· Pmax: The lowest priority = highest binary value
for real-time priorities.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

197

We denote P as the transport priority value; this value will
be mapped to the CAN priority of the message transmitted
when propagating the data written by the DataWriter.
Figure 8 shows how the system components interact to
compute the transport priority of the message.

 Fig.8 Transport Priority computation diagram

6. Implementation and Evaluation

6.1 Implementation Details

Here we evaluate the performance of the proposed
scheduling schemes. Before we present the detailed
discussion of the results, we describe the simulation
platform, workloads, and the performance metrics used in
this study. We implemented the proposed scheduling
schemes onto an extensible/unified simulation framework
termed DDSoverCAN. The implementation is
programmed in Real-Time Java and runs on Jamaica VM,
which is a compatible RTSJ Virtual Machine, and Linux
Kernel 2.6. The simulator provides users with graphical
interfaces to specify the overall system configuration. A
set of ASCII files containing descriptions of all of the
topics, data, nodes, publishers, subscribers and network
configuration, are created and stored. We chose to use
real-time Java specification to implement our simulator;
because it illustrates the real-time needs expressed by our
framework. Real-Time Specification for Java (RTSJ) [28]
is designed to support both hard and soft real-time
applications. Among its major features are: scheduling
properties suitable for real-time applications with
provisions for periodic and sporadic tasks, support for
deadlines and CPU time budgets, and tools to let tasks
avoid garbage collection delays. The key features of the
RTSJ are:

· Real time thread: executable entity of work which,
at a minimum, characterized by a worst-case
execution time and a time constraint.

· Scheduling: the default scheduler guards against

priority inversion, it is also possible to define user
schedulers.

· Timing: RTSJ defines relative and absolute times,
with a Nanosecond precision time values.

Real-time tasks are implemented as real-time threads
according to a specific mapping (shown in table 2). The
EDF schedulers are defined as an extension of the default
scheduling class (javax.realtime.PriorityScheduler). The
CAN access is controlled by a set of daemons that
implements the network controllers, the message queues
and the bus behavior.

Table 2: System Characteristics

Task model RT-Java implementation

periodic real-time task T periodic Realtime Thread
RT_Thrd

D(T) RT_Thrd.deadline

Pex(T) RT_Thrd.Cost

R(T) RT_Thrd.release

The following metrics are defined to evaluate the
performance of the proposed scheduling scheme:

· The age of the data: for each data instance, the
age represents the difference between the point of
time when the DataReader reads the instance (an
absolute time) and the point of dime the data is
updated by the DataWriter, also called source
timestamp (absolute time). Thus, the data age is
represented as a relative time (difference between
absolute times).

· The delivery rate: Suppose the publishers have

published k dataobjects in the super-period,
denoted by d1, d2… dk. For a dataobject di, let the
number of DataReaders interested in it be tsi, and
the number of DataReaders that receive it before
the deadline be dsi. We can define a metric called
delivery rate of the system as follows:

1

1

k

i
i

k

i
i

d s

t s

=

=

å

å

 (8)

· The completion time: represents the difference
between the point of time in which the
DataReader’s execution cycle takes end and the
release time of the DataReader.

() ()C T DR R D R-

(9)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

198

6.2 Performance Results

In order to demonstrate the effectiveness of our
implementation, we have developed an evaluation test
scenario. In the simulated network, there are 3 nodes, 2 data
source (2 Topics) – each source is associated to a DataWriter
– and 4 Subscribers. Each subscriber is associated to 5
DataReaders having the same scheduling parameters as the
subscriber. Table 3 shows the parameters and ranges of
values used in the test scenario.

Table 3: System Setup

Name Period
(ms)

Release
(ms)

Deadline
(ms)

Life
Span

Cost
(ms)

PUB1_T1_N1 80 0 10 150 5
PUB2_T2_N1 140 0 20 170 8
SUB1_T1_N2 80 50 50 - 7
SUB2_T1_N3 130 50 50 - 3
SUB3_T2_N1 150 90 60 - 4
SUB4_T2_N3 200 120 60 - 6

Figure 9 shows the temporal consistency results for Topic1
which is published by Publisher1. The horizontal line in
the graph represents the LifeSpan value of the dataobject
being distributed. The other points represent the ages of
the data objects at the time they were read by the interested
DataReaders.

Publisher_1: Data Age

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

Publisher_1 Data Periods

D
a
ta

 A
g

e
e

Sub1_T1_N2

Sub2_T1_N3

LifeSpan

 Fig.9 Topic 1 Consistent Distribution

Figure 10 displays the delivery rate of the DataReaders
associated with SUB3_T2_N1 and SUB4_T2_N3. It is
clear to see that all of the DataReaders, in each of the
periods, read temporally consistent data.

Publisher_2: Delivery Rate

0

0,2

0,4

0,6

0,8

1

1,2

D
R

_
1
_
1

D
R

_
1
_
2

D
R

_
1
_
3

D
R

_
1
_
4

D
R

_
1
_
5

D
R

_
2
_
1

D
R

_
2
_
2

D
R

_
2
_
3

D
R

_
2
_
4

D
R

_
2
_
5

Delivery Rate

D
a
ta

R
e
a
d
e
rs

 (
T
o
p
ic

2
)d

d
d

Delivery Rate

Fig.10 Topic 2 Consistent Distribution

Figures 11 and 12 display the deadline results for the test
scenario. The horizontal line in each graph indicates the
deadline for the specified Subscriber. The other points in
the scatter graph represent the completion times of the
DataReaders over the super-period cycle. As the figure
indicates, except for a few statistical anomalies in the first
few periods, all of the DataReaders complete before the
specified deadline, as the theoretical results had predicted.

Topic_1: Subscriber's Completion Time

0,00

10,00

20,00

30,00

40,00

50,00

60,00

0

16
0

30
0

48
0

60
0

72
0

90
0

10
40

Periods

C
o
m

p
le

ti
o

n
 T

im
e
g
g

Sub1_T1_N2

Sub2_T1_N3

Subscription Deadline

 Fig. 11 Topic 1 Subscriber’s Completion Time

Subscriber_4 Completion Time

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

0

6
0
0

1
2
0
0

1
8
0
0

2
4
0
0

3
0
0
0

3
6
0
0

4
2
0
0

Periods

C
o
m

p
le

ti
o
n
 T

im
e
g
g

Sub4_without_NP

Sub4_with_NP

Subscription Deadline

Fig. 12 Subscriber 4 Completion Time with/without Network Priority
Support

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

199

In the first few periods, there was an overloading, on each
node, caused by the local information collection and the
system repository constitution that caused the tasks to
complete after the deadline. Figure 12 shows that the
proposed Network priority mapping algorithm
significantly outperforms the global scheduling solution by
up to 19.4% in the average task completion time. This
improvement is achieved by reducing wasted network idle
time (by introducing network priority that best reflects the
task urgency without sacrificing fairness).

7. Conclusion

Data-Centric Publish-subscribe (DCPS) is a widespread
communication paradigm for asynchronous messaging that
naturally fits the decoupled nature of real-time distributed
systems, allowing simple and effective development of
distributed applications. With the work described herein,
the CAN bus has been rendered more usable in the field of
distributed DCPS systems. We tried to design a
comprehensive scheduling system that interacts with the
main actors described by the DDS specification. This
interaction aims to integrate the DDS QoS parameters to
improve the consistent data delivery and to optimise
network behaviour. This interaction aims to integrate the
network resources control to high level middleware and
thus enabling a new generation of flexible DRE
applications that have more precise control over their end-
to-end resources. The priority based mechanism and the
EDF scheduling strategy used within the context of this
work is adapted with soft real-time communication system.
One promising research direction is to combine priority-
based mechanisms in conjunction with implicit
coscheduling mechanisms and to extend this strategy to
support the hybrid real-time bus scheduling mechanisms
for CAN.

References
[1] G. Blair, G. Coulson, P. Robin, M. Papathomas, An

Architecture for next generation middleware, Proc, 4th Annu,
IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, London, England,
1998.

[2] OMG, "Data Distribution Service for Real-Time Systems
Specification", March 2004.

[3] ROBERT BOSCH GmbH, CAN Specification version 2.0 (1s
edition, 1991).

[4] First International Workshop on Data Distribution for Real-
Time Systems, In conjunction with International Conference
on Distributed Computing Systems, May 2003.

[5] M. Karakaya, O. Ulusoy, Evaluation of a Broadcast
Scheduling Algorithm, Lecture Notes in Computer Science,
Springer-Verlag, v. 2151, 2001.

[6] P. Xuan, S. Sen, O. Gonzalez, J. Fernandez, K. Ramamritham,
Broadcast on Demand: Efficient and Timely Dissemination
of Data in Mobile Environments, Proceedings of the Fourth

IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’97), 1997.

[7] A. Bestavros, Speculative Data Dissemination and Service to
Reduce Server Load, Network Traffic and Service Time in
Distributed Information Systems, Proceedings of the 1996
International Conference on Data Engineering, New Orleans,
LA, March 1996.

[8] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin,
Data-Centric Storage in Sensornets, First Workshop on Hot
Topics in Networks (HotNets-I) 2002.

[9] F. Ye, H. Luo, J. Cheng, S. Lu, L. Zhang, A Two-Tier Data
Dissemination Model for Large-Scale Wireless Sensor
Networks, MOBICOM’02, September 23-28, 2002, Atlanta,
GA.

[10] Y. Yao, J. Gehrke, Query Processing for Sensor
Networks, Proceedings of the 2003 Conference on Innovative
Data Systems Research, Jan. 2003.

[11] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proceedings of the Second International
Conference on Mobile Data Management, 2001.

[12] W. Heinzelman, A. Chandrakasan and H. Balakrishnan,
Energy-Efficient Communication Protocol for Wireless
Microsensor Networks, In HICSS '00, January 2000.

[13] B. C. Lu, B. M. Blum, T. Abdelzaher, J. A. Stankovic,
T. He, RAP: A Real-Time Communication Architecture for
Large-Scale Wireless Networks, Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’02), 2002.

[14] T. Abdelzaher, J. Stankovic, S. Son, B. Blum, T. He,
A.Wood, C. Lu, A Communication Architecture and
Programming Abstractions for Real-Time Embedded Sensor
Networks, Proceedings of the First International Workshop
on Data Distribution for Real-Time Systems, Providence, RI,
May 2003.

[15] S. Kim, S. H. Son, J. A. Stankovic, S. Li, Y. Choi,
SAFE: A Data Dissemination Protocol for Periodic Updates
in Sensor Networks, Proceedings of the First International
Workshop on Data Distribution for Real-Time Systems,
Providence, RI, May 2003.

[16] S. Bhattacharya, H. Kim, S. Prabh, T. Abdelzaher,
Energy-Conserving Data Placement and Asynchronous
Multicast in Wireless Sensor Networks, Proceedings of the
First International Conference on Mobile Systems,
Applications and Services, San Francisco, CA, May 2003.

[17] PrismTech, http://www.prismtech.com.
[18] H. V. Hag, OpenSlice Overview, white paper, 2006.
[19] S. Lankes, A. Jabs, and T. Bemmerl, Integration of a

CAN-based connection-oriented communication model into
Real-Time CORBA, Proc, IEEE International Parallel and
Distributed Processing Symposium, Proc, 11th Annu,
Workshop on Parallel and Distributed Real-Time Systems,
Nice, France, April 2003.

[20] Real-Time Innovations, http://www.rti.com
[21] Thales Netherland, http://www.thales-nederland.nl/
[22] J. H. van 't Hag Data-Centric to the Max - The SPLICE

Architecture Experience, Proceedings of the 23rd
International Conference on Distributed Computing Systems
Workshops (ICDCSW'03), May 19 - 22, 2003.

[23] T. Guesmi, S. Hasnaoui and H. Rezig, “Network
Priority Mapping Using Dynamic RT-CORBA Scheduling
Service”, International Revue On Computers Software,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

200

September Issue, ISSN 1828-6003.
[24] T. Guesmi, S. Hasnaoui and H. Rezig, “Using RT-

CORBA Scheduling Service and Prioritized Network Traffic
to Achieve End-to-End Predictability”, the 2006 International
Conference on Communications In Computing (CIC’06), 26-
29 June 2006, USA.

[25] T. Guesmi, S. Hasnaoui and H. Rezig, “Design and
Implementation of a CAN-based Inter-ORB Protocol Using
RT-CORBA, Data Acquisition from Industrial Systems and
the Underlying Real-Time Control Area Network”, the 2005
International Conference on Parallel and Distributed Process
Techniques and Applications (PDPTA’05), 26-29 June 2005,
USA.

[26] M. A. Mastouri, S. Hasnaoui, “Design of Switch
Architecture According to the MSF Framework Using the
VSI Interface and the CAN-IOP Protocol”, ACIDCA-
ICMI’2005 conference proceedings, p 13.

[27] B. Kao, H. Garcia-Molina, Deadline Assignment in a
Distributed Soft Real-Time System, Proc, 13th Annu,
International Conference on Distributed computing Systems.
1993.

[28] Sun Microsystems Inc., Java TM 2 SDK Standard
Edition Documentation, http://java.sun.com/j2se/1.3/docs.

Tarek Guesmi is an assistant
professor in the Department of
Computer and Communication
Engineering at High Institute of
Computer Sciences and
Communication Technologies
(Sousse University, Tunisia). He
received the Master of Science in
Communication Systems from

National School of Engineering of Tunis in 2002. He is
actually preparing a PhD in Telecommunications. Tarek
published many papers in International Conferences and
Workshops. His research interests include Real-Time and
distributed Systems, Computer Networks, Fault-Tolerant
systems and Communication protocols.
Mr. Guesmi is a member of ACM SIGAPP Group.

Salem Hasnaoui is a professor in the
Department of Computer and
Communication Technologies at the
National School of Engineering of
Tunis. He received the Engineer
diploma degree in electrical and
computer engineering from National
School of Engineering of Tunis. He

obtained a M.Sc. and third cycle doctorate in electrical
engineering, in 1988 and 1993 respectively. The later is
extended to a PhD. degree in telecommunications with a
specialization in networks and real-time systems, in 2000.
Salem is author and co-author of more than 40 refereed
publications, a patent and a book. His current research
interests include real-time systems, sensor networks, QoS

control & networking, adaptive distributed real-time
middleware and protocols that provide performance-
assured services in unpredictable environments.
Prof. Hasnaoui is the responsible of the research group
"Networking and Distributed computing" within the
Communications Systems Laboratory at the National
School of Engineering of Tunis. He served on many
conference committees and journals reviewing processes
and he is the designated inventor of the Patent "CAN Inter-
Orb protocol-CIOP and a Transport Protocol for Data
Distribution Service to be used over CAN, TTP and
FlexRay protocols".

Houria Rezig is a professor in the Department of
Computer and Communication Technologies at the
National School of Engineering of Tunis. She received a
PhD in Telecommunication from National School of
Engineering of Tunis.
Houria is author and co-author of many refereed
publications. Her research interests span distributed
networks, QoS networking and optical communications.
Prof. Rezig is the responsible of the research group
"Optical Networking” within the Communications
Systems Laboratory at the National School of Engineering
of Tunis. She served on many conference program and
organizing committees.

