
1	

Eclipse RCP for ISS Experiments	

NASA uses Eclipse RCP applications 	

for experiments on the 	

International Space Station	

Tamar Cohen	

Intelligent Robotics Group	

NASA Ames Research Center	

2	

Eclipse RCP for ISS Experiments	

In 2012 – 2013, the Intelligent Robotics Group from NASA Ames
Research Center is conducting 2 experiments with the International
Space Station (ISS)	

	

Experiment 1: Simulate an internal inspection of a module of the ISS using
the free-flying SPHERES robot with an Android Smartphone connected to
it. 	

	

Experiment 2: Simulate deployment of a telescope by having an astronaut
on the ISS control the K10 Rover at NASA Ames.	

	

For both of these experiments, the
astronauts will be using a custom
“Workbench” RCP application. These
are all based on Eclipse 3.7.2.	

	

3	

Eclipse RCP for ISS Experiments	

The ISS has a 450 page set of standards for software. This helps
maintain consistency between various software control systems and
helps astronauts with different native languages understand what
various icons mean. 	

	

We also have to deal with unique usability issues, such as the fact that
it is very difficult to click and point with a mouse when you are in
zero g. 	

	

The only operating systems on the ISS computers with a GUI is
currently Windows XP, so that is our target development platform.
Internally we also use Linux and OSX, so we are doing cross-platform
development.	

	

Since we are developing multiple RCP applications we put common
code into shared plugins. (This is one of the reasons we are still on
Eclipse 3.7.2)	

4	

Eclipse RCP for ISS Experiments	

SPHERES are free-flying satellite robots
typically used for orbital experiments.
SPHERES have been on the ISS since 2006,
and were developed at MIT. (They do not
include a Smartphone).	

	

They use a cold-gas CO2 thruster system
that is very similar to what is used on
paintball guns. The entire system is powered
using double-A batteries. A DSP
microprocessor inside coordinates the
mixing of the thrusters for the desired
movement. The microprocessor also
receives signals from five ultrasonic beacons,
so the SPHERES can know where it is.	

Experiment 1: SPHERES	

The SPHERES microprocessor is already fully taxed with normal SPHERES operations;
we needed to add more processing power and a camera. We determined the most
efficient way to do this was to adapt a Smartphone to work with the SPHERES.	

5	

Eclipse RCP for ISS Experiments	

We had to remove the battery
and power it with AA batteries,
put teflon tape over the screen,
and remove the GPS chip, as well
as put it through rigorous
testing. Naturally we use velcro
along with a custom USB cable
to connect it to the SPHERES.	

We upmassed it on the last
shuttle launch.	

	

For the SPHERES experiments,
we first controlled the SPHERES
on the ISS from the SPHERES
Smartphone Workbench RCP
application running on Earth. 	

In the next iteration of this experiment, an astronaut on the ISS will control the
SPHERES using the SPHERES Smartphone Workbench.	

SPHERES

Payload Systems Inc
6	

SPHERES Satellite

+ Z	

- Y	

- X	

Ultrasonic
receivers

CO2 tank

Adjustable
regulator

Pressure
gauge

Thruster

Satellite
body axes

Diameter 8 in (0.2 m)

Mass 7.85 lb (3.56 kg)

Thrust
(single thruster)

<1 oz (0.2 N)

CO2 Capacity 6 oz (170g)

Slide Courtesy MIT and the Space Systems Laboratory

SPHERES

Payload Systems Inc
7	

Structural Elements
•  Satellite is fully functional without shell

Aluminum
frame

CO2 tank

Thruster

Pressure
gauge

Battery pack

Ultrasonic
receiver

Slide Courtesy MIT and the Space Systems Laboratory

8	

Eclipse RCP for ISS Experiments	

When we are commanding and monitoring robots over this long of a distance, we
have a time delay between when commands are sent and when they are received; we
have to design our software to account for this. We also have to support loss of
signal (LOS) times, when the ISS is unable to communicate with Earth. 	

	

We use DDS, a data distribution system, to reliably send data. On computers, we use
RTI’s implementation of DDS, with our own standards, called RAPID, running on top
of that. On the Android we licensed CoreDX DDS libraries.	

	

The SPHERES Smartphone Workbenc (RCP application) talks to the Android
Smartphone, which communicates via USB cable to send commands to the SPHERES,
and report the state back to the SPHERES Smartphone Workbench.	

SPHERES Smartphone
Workbench RCP

Application	

	

SPHERES	

USB	

Android	

Smart-	

Phone	

DDS	

ISS	

Ground	

9	

Eclipse RCP for ISS Experiments	

10	

Eclipse RCP for ISS Experiments	

Screenshot of the SPHERES Smartphone Workbench	

11	

Eclipse RCP for ISS Experiments	

Screenshot of the SPHERES Smartphone Workbench: Previewing Plans	

12	

Eclipse RCP for ISS Experiments	

Screenshot of the SPHERES Smartphone Workbench: Running Plans	

13	

Eclipse RCP for ISS Experiments	

Screenshot of the SPHERES Smartphone Workbench: Manual Control	

14	

Eclipse RCP for ISS Experiments	

How to change the layout of an Eclipse RCP application	

public class IssApplicationWorkbenchWindowAdvisor extends WorkbenchWindowAdvisor {!

!@Override!
!public void createWindowContents(Shell shell) {!

! !IWorkbenchWindowConfigurer configurer = getWindowConfigurer();!

! !Menu menu = configurer.createMenuBar();!

! !shell.setMenuBar(menu);!

! !shell.setLayout(new FormLayout());!

! !m_topToolbar = configurer.createCoolBarControl(shell);!

! !m_perspectiveBar = createPerspectiveBarControl(shell);!

! !m_page = configurer.createPageComposite(m_cTabFolder);!

!

! !m_perspectiveRegistry = configurer.getWindow().getWorkbench().getPerspectiveRegistry();!

! !createPerspectiveBarTabs();!

! !!

! !m_rightToolbar = createRightToolbar(shell);!

! !m_statusline = new SimpleStatusLineManager().createControl(shell);!

!

! !// The layout method does the work of connecting the controls together.!

! !layoutNormal();!

!}!

Here we are controlling the layout of the RCP application, and constructing the
tabs (CTabFolder) which will control and respond to perspective switching.	

15	

Eclipse RCP for ISS Experiments	

!protected Control createPerspectiveBarControl(Composite parent){!
! !m_cTabFolder = new CTabFolder(parent, SWT.TOP) {!
! ! !public int getBorderWidth() { return 10; }!
! !};!
! !setTabFolderFont(m_cTabFolder);!
! !m_cTabFolder.setMinimumCharacters(20);!
! !m_cTabFolder.setTabHeight(40);!
! !m_cTabFolder.setSimple(false);!
! !m_cTabFolder.setBorderVisible(true);!
! !m_cTabFolder.setBackground(ColorProvider.INSTANCE.WIDGET_BACKGROUND);!
! !return m_cTabFolder;!
!}!

Do the construction and customization of the CTabFolder	

!protected CTabItem createTabItem(CTabFolder tabFolder, String title, !
! ! ! ! ! Control control, final String id) {!
! !CTabItem tabItem = new CTabItem(tabFolder, SWT.NONE);!
! !tabItem.setText(" " + title + " ");!
! !tabItem.setData(id);!
! !tabItem.setControl(control);!
! !return tabItem;!
!}!

A method to create a tab	

!protected void selectPerspective(String perspectiveID, SelectionEvent e){!
! !IWorkbenchPage page = m_workbenchWindow.getActivePage();!
! !if(page != null) {!
! ! !IPerspectiveDescriptor descriptor = !!
! ! ! !m_perspectiveRegistry.findPerspectiveWithId(perspectiveID);!
! ! !page.setPerspective(descriptor);!
! ! !page.getActivePart().setFocus();!
! !}!
!!

A method to select a perspective	

16	

Eclipse RCP for ISS Experiments	

Set up the tabs based on defined perspectives	

!protected void createPerspectiveBarTabs(){!
! !for (String peID : getPerspectiveExtensionIds()){!
! ! !// automagically read the perspectives contributed by plugin.xml!
! ! !IConfigurationElement[] config = Platform.getExtensionRegistry().!
! ! ! !getConfigurationElementsFor("org.eclipse.ui", "perspectives", peID);!
! ! !for (IConfigurationElement e : config) {!
! ! ! !CTabItem item = createTabItem(m_cTabFolder, !
! ! ! ! !e.getAttribute("name"), m_page, e.getAttribute("id"));!
! ! !}!
! !}!

!
!!
! !// have the tabs listen for selection and change perspective!
! !final CTabFolder tabFolder = m_cTabFolder;!
! !m_cTabFolder.addSelectionListener(new SelectionListener() {!
! ! !public void widgetSelected(SelectionEvent e) {!
! ! ! !CTabItem tabItem = tabFolder.getSelection();!
! ! ! !String perspectiveID = (String)tabItem.getData();!
! ! ! !selectPerspective(perspectiveID, e);!
! ! ! !tabItem.getControl().setFocus();!
! ! !}!
! !});!
! !!
! !// have the tabs autochange if the perspective changes!
! !m_workbenchWindow.addPerspectiveListener(new PerspectiveAdapter() {!
! ! !public void perspectiveActivated(IWorkbenchPage page,
! ! ! ! ! !IPerspectiveDescriptor perspectiveDescriptor) {!
! ! ! !CTabItem foundTab = getTabForPerspective(perspectiveDescriptor.getId());!
! ! ! !if (foundTab != null){m_cTabFolder.setSelection(foundTab);}!
! ! !}!
! !});!
! !!
! !m_cTabFolder.setSelection(0);!
! !populateTopRightButtons(m_cTabFolder); // this is how we contribute Stop SPHERES button!
! !m_cTabFolder.pack();!
!}!

17	

Eclipse RCP for ISS Experiments	

Recording of the SPHERES experiment	

18	

Eclipse RCP for ISS Experiments	

Surface Telerobotics will examine how astronauts in the ISS can remotely
operate a surface robot (K10 Rover) across short time delays. We will be
simulating an astronaut teleoperating a rover on the lunar farside to deploy a
low radio frequency telescope. 	

The telescope is comprised of three arms made of Kapton polyimide film,
which will rolled out behind the rover.	

Experiment 2: Surface Telerobotics	

19	

Eclipse RCP for ISS Experiments	

The K10 Rover has been used extensively for robotic and geologic
field research. Our K10 rovers have been to numerous field sites on
Earth including the Haughton Crater on Devon Island, Canada; Black
Point Lava Flow, Arizona; and many sites in California. 	

K10 has four-wheel drive, all wheel steering and a passive averaging
suspension. The K10 rover’s navigational sensors include a GPS
System, a digital compass, stereo hazard cameras, and an inertial
measurement unit. K10 rovers run Rover Software, which supports
autonomous navigation and obstacle avoidance.	

Surface Telerobotics
Workbench RCP

Application	

K10
Rover 	

DDS	

Ground	

ISS	

20	

Eclipse RCP for ISS Experiments	

The K10 rover can be configured with different scientific instruments. For
this experiment instruments include a custom panoramic camera (GigaPan), a
rear-facing inspection camera to observe telescope deployment, a Velodyne
to examine surface texture and to assess terrain hazards, and of course the
film deployer. 	

We control K10 rover operations with “route plans” – a sequence of tasks
that include stations, segments and tasks to do along the way. Rover
software does its best to achieve the goals of the route plan, though if there
is an obstacle along the way it may not succeed.	

We initially developed VERVE
(discussed at EclipseCon 2011) to
allow rover engineers to visualize
rover status in 3D within an Eclipse
RCP application; the Surface
Telerobotics Workbench includes some
of the VERVE technology and plugins,
and extends it to comply with the ISS
standards.	

	

	

21	

Eclipse RCP for ISS Experiments	

Plan running	

22	

Eclipse RCP for ISS Experiments	

Rover running a plan; panorama coming in	

23	

Eclipse RCP for ISS Experiments	

Manually moving the rover forward and inspecting the film	

24	

Eclipse RCP for ISS Experiments	

public class CommandButton extends Composite {!
!
public CommandButton(Composite parent, int style) {!
!

!super(parent, SWT.NONE);!
!GridLayout gl = new GridLayout(1, false);!
!gl.marginHeight = gl.marginWidth = gl.horizontalSpacing = gl.verticalSpacing = 0;!
!setLayout(gl);!
!m_gridData = new GridData(SWT.FILL, SWT.CENTER, true, false);!
!m_gridData.widthHint = m_gridData.minimumWidth = m_width;!
!m_gridData.heightHint = m_gridData.minimumHeight = m_height;!
!setLayoutData(m_gridData);!
!setSize(m_width, m_height);!

!
!m_buttonLabel = new Canvas(this, SWT.NONE);!
!m_buttonLabel.setSize(m_width, m_height);!
!m_buttonLabel.setLayoutData(m_gridData);!
!m_buttonLabel.addPaintListener(new PaintListener() {!
! !public void paintControl(PaintEvent e) { draw(e.gc); }!
!});!
! !!
! !!

How to fake buttons	

ISS standards require us to create unique rounded “command” buttons, so it is
clear which buttons send important commands. These buttons draw images to
a graphics context, and then render text over them.	

Enabled	

 Pressed	

 Disabled	

25	

Eclipse RCP for ISS Experiments	

m_buttonLabel.addListener(SWT.MouseDown, new Listener() {!
!

!public void handleEvent(Event event) {!
! !if (isEnabled()){!
! ! !m_pressed = true;!
! ! !m_currentImage = m_pressedBgImage;!
! ! !m_buttonLabel.redraw();!
! ! !m_buttonLabel.update();!
! !}!
!}});!
! !!
!m_buttonLabel.addListener(SWT.MouseUp, new Listener() {!
! !public void handleEvent(Event event) {!
! ! !m_pressed = false;!
! ! !if (isEnabled()){!
! ! ! !m_currentImage = m_bgImage;!
! ! ! !for (SelectionListener listener : m_selectionListeners){!
! ! ! ! !listener.widgetSelected(new SelectionEvent(event));!
! ! ! !}!
! ! !} else {!
! ! ! !m_currentImage = m_disabledBgImage;!
! ! !}!
! ! !if(m_buttonLabel != null && !m_buttonLabel.isDisposed()) {!
! ! ! !m_buttonLabel.redraw();!
! ! ! !m_buttonLabel.update();!
! ! !}!
! !}!
!});!

!

Add listeners to the button and set its text	

public void setText(String text){!
!m_textString = text;!
!draw(new GC(m_buttonLabel));!

!
!!

26	

Eclipse RCP for ISS Experiments	

!protected void draw(GC gc) {!
!

! !int imagey = Math.max(0, (m_buttonLabel.getSize().y - m_height) / 2);!
! !gc.drawImage(m_currentImage, 0, imagey);!

!
! !Color fg = isEnabled()?ColorProvider.INSTANCE.black:ColorProvider.INSTANCE.darkGray;!
! !gc.setForeground(fg);!
! !Point size = gc.textExtent(m_textString); ! ! !!
! !int x = Math.max(0, (m_width - size.x) / 2);!
! !int y = Math.max(0, (m_buttonLabel.getSize().y - size.y) / 2);!
! !if (m_pressed){!
! ! !x +=3;!
! ! !y +=3;!
! !}!
! !gc.drawText(m_textString, x, y, true);!
! !gc.dispose();!
!}!

!

Draw the button	

We could have gotten fancy with buttons made of multiple images which would
stretch depending on the length of the text, but we didn’t. 	

27	

Eclipse RCP for ISS Experiments	

Including log4j log messages in the UI	

The ISS standards require an error acknowledgement bar in a consistent place in
the upper left. When important errors or alerts come in, there is an “Ack” button
to the right that includes the number of unacknowledged messages.	

Users can then pop up the “log” view which shows the time, ack state and
description of messages that came in.	

We use Apache’s log4j
framework to log messages,
and OSGi’s LogListener to
read the messages in and
display them in ourLogView. 	

28	

Eclipse RCP for ISS Experiments	

How we get log4j messages into our Log View ���
In our code, we just call logger.error(“message”)	

public class IssLogView extends ViewPart implements LogListener {!
!
public IssLogView() {!

! !setReader(IssLogService.getInstance().getLogReader());!
! !m_comparator = new LogViewComparator(); // this lets us sort the way we want!

!
! !// add the logger appender to the Apache Log4j framework!
! !Logger.getRootLogger().addAppender(new IssLoggerAppender());!
! !Logger.getLogger(IssLoggerAppender.class.getName()).setAdditivity(false);!
!}!

!
protected class IssLoggerAppender extends AppenderSkeleton {!

!protected void append(LoggingEvent event) {!
! !if (event.getLevel().isGreaterOrEqual(MIN_LEVEL)){!
! ! String status = getEventLevelString(event.getLevel()) + ! ! !
! ! ! ! event.getRenderedMessage() ;!
! ! String ds = LogViewUtils.convertToCorrectDateFormat(event.getTimeStamp());!
!!
! ! // convert this log message from the file to our IssLogEntry class,!
! ! // and contribute it to the view to display in the table.!
! ! processEntry(event.getLevel().toInt(), ds + " " + status);!
! ! asyncRefresh(true);!
! !}!
!}!

}!
!

// simple class to hold log entries!
public class IssLogEntry {!

!!
!protected String m_time;!
!protected Level m_level;!
!protected String m_description;!
!protected boolean m_ack;!

29	

Eclipse RCP for ISS Experiments	

Intelligent Robotics Group 	

at NASA Ames Research Center 	

•  K10 Rover among others	

•  SPHERES	

•  xGDS Ground Data Systems	

•  VERVE 3D within Eclipse	

•  Contributed the moon to Google Earth	

•  Mars-o-vision (mars.planetary.org)	

•  GigaPan robotic camera	

•  GeoCam disaster response	

•  Ames Stereo Pipeline	

•  Vision Workbench	

•  Tensegrity research	

… and more!	

http://irg.arc.nasa.gov	

