
The Real-Time
Middleware Experts
The Real-Time
Middleware Experts

DDS: A Next-Generation Approach to
Building Distributed Real-Time Systems

2010 Masterclass

Gerardo Pardo-Castellote, Ph.D.
Co-chair OMG DDS SIG
CTO, Real-Time Innovations
gerardo.pardo@rti.com

http://www.rti.com

mailto:gerardo.pardo@rti.com

Outline

Overview of Technology
– Background
– Applications
– Data-Centric Pub-Sub
– Quality of Service
– Add-on components

Application development cycle

Architecting data-centric systems & modeling the Data

Protocol, Performance & Scalability.

Integrating external and legacy systems.

Future directions and Standards:

© 2009 Real-Time Innovations, Inc. 3

Challenge:
More Data, More Speed, More Sources

TRENDS:
Growing Information Volume
Lowering Decision Latency
Increasing System Availability
Accelerating technology insertion and
deployment

Next-generation systems needs:
Performance
Scalability
Robustness & Availability
Platform Integration & Evolution
Safety-Critical Certification
Security

© 2009 Real-Time Innovations, Inc. 4

Solution: Standards-based Integration
Infrastructure for Real-Time Applications

Data Distribution Service

Streaming
Data Sensors Events

Real-Time
Applications

Enterprise
Applications Actuators

Architecture for the next-generation
systems

Existing technologies are reaching robustness/performance/scalability limits

RTI DDS brings a fundamental new architecture and approach
– Fully decentralized, peer-to-peer, “no bottlenecks” architecture
– Superior Wire Protocol
– Powerful data-centric model
– Built-in Robustness and High-Availability
– Standards-based, multi-platform

Single-lane traffic
No prioritization

Brokers as
choke-points RTI Approach

6

History: DDS the Standards

Data Distribution Service for Real-Time Systems
– API for Data-Centric Publish-Subscribe distributed systems
– Adopted in June 2003
– Revisions: 2004, 2005, 2006
– Spec version 1.2: formal/2007-07-01

Interoperability wire protocol
– Adopted in July 2006
– Revised in July 2007
– Spec version 2.1: formal/2009-01-05

Related specifications
– UML Profile for DDS
– DDS for Light-Weight CCM
– Extensible Topics for DDS(*)

Multiple (7+) Implementations

© 2009 Real-Time Innovations, Inc. 7

Open Architecture

Vendor independent
– API for portability
– Wire protocol for interoperability

Multiple implementations
– 7 of API
– 4 support RTPS (+1 non-DDS)

Heterogeneous
– C, C++, Java, .NET (C#, C++/CLI)
– Linux, Windows, VxWorks, other

embedded & real-time

Loosely coupled

Real-Time
Publish-Subscribe

Wire Protocol (RTPS)

Middleware

DDS API

Cross-vendor portability

Cross-vendor interoperability

© 2009 Real-Time Innovations, Inc. 8

RTI DDS Application Examples

Aegis Weapon System
Lockheed Martin
Radar, weapons, displays,

C2

B-1B Bomber
Boeing
C2, communications,

weapons

Common Link Integration
Processing (CLIP)

Northrop Grumman
Standards-compliant

interface to legacy and
new tactical data links

Air Force, Navy, B-1B and
B-52

ScanEagle UAV
Boeing

Sensors, ground station

Advanced Cockpit Ground
Control Station

Predator and SkyWarrior UAS
General Atomics

Telemetry data, multiple
workstations

RoboScout
Base10

Internal data bus and link to
communications center

© 2009 Real-Time Innovations, Inc. 9

RTI DDS Application Examples

Multi-ship simulator

FORCE Technology

Controls, simulation display

Mobile asset tracking

Wi-Tronix

GPS, operational status
over wireless links

Highway traffic monitoring

City of Tokyo

Roadway sensors, roadside
kiosks, control center

Driver safety

Volkswagen

vision systems, analysis, driver
information systems

Medical imaging

NMR and MRI

Sensors, RF generators, user
interface, control computers

Automated trading

Automated Trading Desk (ATD,
now Citigroup)

Market data feed handlers,
pricing engines, algorithmic

trading applications

© 2009 Real-Time Innovations, Inc. 10

RTI DDS Application Examples

Full-immersion simulation
National Highway Transportation

Safety Authority
Migrated from CORBA, DCOM

for performance

Air-Traffic Management
INDRA.
Deployed in
UK, Germany, Spain
Standards, Performance,

Scalability

Industrial Control
Schneider Electric
VxWorks-based PLCs
communicate via RTI-DDS

Signal Processing
PLATH GMBH

RTI supports modular
programming across

product line

Large Telescopes
European Southern

Observatory
Performance & Scalability

1000 mirrors, 1sec loop

Radar Systems
AWACS upgrade

Evolvability, Mainteinability,
and supportability

© 2008 Real-Time Innovations, Inc.11

Standards Focus

Object Management Group
– Board of Directors member
– Authored DDS and RTPS specs, co-chair SIG

Open Group

Network Centric Operations Industry
Consortium (NCOIC)
– Chair Open Standards and Patterns Working

Group

STAC Benchmark Council

Support and integrate with:
– DDS, RTPS, JMS, SQL, Web Services,

CORBA, UML, HLA, JAUS, Eclipse, IPv6…

Corporate Background

Founded by Stanford
researchers

Focused on real-time
middleware

Solid financials
– 16-year track record of growth

Real-Time Market Leader
– #1 market share in embedded

middleware of all types1

– 70+% worldwide share of DDS
market2

50/50 software and services
1Embedded Market Forecasters
2VDC Analyst Report

12

RTI Supports all Phases of Development

Services
Capabilities

Engagement
Timeline

Description

Workshop 2 days Introduction to RTI products and
capabilities

QuickStart 2+ days In-depth training on RTI DDS API,
QoS policies, and common
architecture patterns

Support On-Demand Web-portal, phone and email
customer lauded support

Architecture Study 3-4 weeks Custom design review, risk analysis
and architecture recommendations

Design Support
Package

4+ weeks Support hardware & software
integration, architecture design,
performance tuning, on-site
debugging, implementation support

Integration &
Development

SOW supported Custom feature, tool and software
development support

Ports As needed RTI tools and software on your
special, purpose built hardware

RTI Global Presence

Benefits of the DDS approach

Simple & Powerful Data-Centric Pub-Sub Model
Reduces Risk and Development/Integration Time
Enhances effective performance by delivering the
right data to the right place with the right QoS
Standards-based: API and Protocol

1. Unsurpassed Performance and Scalability
Priority-aware no choke-points architecture

2. Builds higher quality systems and lowers TCO
Built-in high-value capabilities
Handles Availability & other
“hard problems”
Easy to maintain and Evolve
Leverage multicore

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 15

Messaging
& Caching

Event
Processing

Database
Bridge

Persistence
& DurabilityRecording Redundancy

& Failover

SQL

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL

Data-Centric Pub-Sub Model

Source (key) Latitude Longitude Altitude

UAV1 37.4 -122.0 500.0

UAV2 40.7 -74.0 250.0

UAV3 50.2 -0.7 2000.0

Persistence
Service

Recording
Service

Essentially a virtual, decentralized global data space

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 16

Data-Centric Model

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Data Object

“Global Data Space” generalizes Subject-Based Addressing
– Data objects addressed by DomainId, Topic and Key
– Domains provide a level of isolation
– Topic groups homogeneous subjects (same data-type & meaning)
– Key is a generalization of subject

• Key can be any set of fields, not limited to a “x.y.z …” formatted string

example

Data-Centric Model

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Topic

“Global Data Space” generalizes Subject-Based Addressing
– Data objects addressed by DomainId, Topic and Key
– Domains provide a level of isolation
– Topic groups homogeneous subjects (same data-type & meaning)
– Key is a generalization of subject

• Key can be any set of fields, not limited to a “x.y.z …” formatted string

example

Data-Centric Model

Data WriterData Writer

Data WriterData Writer

Data ReaderData Reader

Data Reader

Data Reader
Data Writer

Key (subject)

“Global Data Space” generalizes Subject-Based Addressing
– Data objects addressed by DomainId, Topic and Key
– Domains provide a level of isolation
– Topic groups homogeneous subjects (same data-type & meaning)
– Key is a generalization of subject

• Key can be any set of fields, not limited to a “x.y.z …” formatted string

example

© 2009 Real-Time Innovations, Inc. 20

Demo: Publish-Subscribe
ShapesDemo

Data
Reader
“Alarm”

Domain
Participant

Data
Writer

“Alarm”

Domain
Participant

DDS communications model

Participants scope the global data space (domain)

Topics define the data-objects (collections of subjects)

Writers publish data on Topics

Readers subscribe to data on Topics

QoS Policies are used configure the system

Listeners are used to notify the application of events

Listener
Offered
QoS Listener

Got new
data

Requested
QoS

New
subscriber!

example

© 2009 Real-Time Innovations, Inc. 22

Demo: Real-Time Quality of Service

Content filter

Time-based filter

History

Deadline

ShapesDemo

Analyzer

© 2009 Real-Time Innovations, Inc. 23

Real-Time Quality of Service (QoS)

QoS Policy
DURABILITY

HISTORY

READER DATA LIFECYCLE

WRITER DATA LIFECYCLE

LIFESPAN

ENTITY FACTORY

RESOURCE LIMITS

RELIABILITY

TIME BASED FILTER

DEADLINE

CONTENT FILTERS

Vo
la

til
ity

U
ser Q

oS
D

el
iv

er
y

Presentation
R

edundancy
In

fr
as

tr
uc

tu
re

Transport

QoS Policy

USER DATA

TOPIC DATA

GROUP DATA

PARTITION

PRESENTATION

DESTINATION ORDER

OWNERSHIP

OWNERSHIP STRENGTH

LIVELINESS

LATENCY BUDGET

TRANSPORT PRIORITY

20X Faster than JMS / Broker-based solutions

Throughput with a single publisher

0
5

10
15
20
25
30
35
40
45

2 4 6 9 11 18

CPU load [%]

[1
00

0'
s

sa
m

pl
e/

s]

RTI DDS
JMS

Platform: Linux 2.6 on AMD Athlon, Dual core, 2.2 GHz

0

10,000

20,000

30,000

40,000

50,000

60,000

16 32 64 128 256 512 1024

Message/Data Size (bytes - without batching)
Po

in
t-t

o-
Po

in
t U

pd
at

es
 p

er
 S

ec
on

d

1-1
1-10
1-24

RTI DDS is about 20X faster than JMS

RTI DDS reliable multicast exhibits
near perfect scalability

(2KB messages)

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 24

© 2009 Real-Time Innovations, Inc. 25

DDS Is Scalable

Going from 1 to 888
subscribers of the same
data has only a 10% impact
on throughput

Ultra-low latency and jitter
– Deterministic
– No intermediaries

http://www.rti.com/products/dds/benchmarks-cpp-linux.html

http://www.rti.com/products/dds/benchmarks-cpp-linux.html

Realizing Performance & Scalability

DDS operates peer-to-peer, without brokers

DDS uses RTPS, an Advanced Multi-Session
protocol supporting Reliable Multicast

RTI DDS Approach

RTPS

AMQP

unspecified

Others: Broker-based middleware

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 26

DDS Enables Higher quality, Lower TCO
Systems

Presence
Discovery
Historical Cache
Durable Data
Availability
Redundancy & Failover
Recording
Database Connectivity
Web Accessibility
Transformation
Event Processing
WAN Routing
Security Guard Hooks

Messaging
& Caching

Event
Processing

Database
Bridge

Persistence
& DurabilityRecording Redundancy

& Failover

SQL

Pre-built components address many challenging use-cases

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 27

Outline

Overview of Technology
Application development cycle
– How to begin. Hello world example.
– Defining data in XML and XSD
– Development and Run-time Tools: Ping, Spy, Analyzer, Wireshark,

Excel
– Discovery and Builtin-Topics
– Configuring QoS via XML files

Architecting data-centric systems & modeling the Data
Protocol, Performance & Scalability.
Integrating external and legacy systems.
Future directions and Standards:

Hands-on Example (C++)

Type
Definition

MyType.idl

rtiddsgen

MyType.h

MyTypeSupport.c MyTypePublisher.cpp

MyTypeSubscriber.cpp

MyType.sln

Publisher.exe Subscriber.exe

Three minutes to a running app!!
1. Define your data
2. Create your project
3. Build
4. Run: publisher subscriber

Aux:
File Browser
Console
Delete Files
rtiddsspy

compiler

Alternatives beyond IDL and CDR

Type Representation
“Foo” schema
IDL, XSD, …

DDS-API
DataWriter<Foo>Foo.h,

Foo.java

Language
Bindings

Data Representation
10110011…

CDR, TLV,
JSON, XML

Type Representation
“Foo” schema
IDL, XSD, …

Foo.h,
Foo.java

Language
Bindings

DDS-API
DataReader<Foo>

Data Representation
10110011…

CDR, TLV,
JSON, XML

DDS-RTPS
Wire Interoperability

rtiddsgen DDS API

ddsgen

Alternative Type Description Languages

rtiddsgen supports 4 alternative ways to define types:
– All are equivalent
– You can convert between all these formats

IDL
– + Simple, Compact, Similar to C/C++/Java
– + Allows type sharing with CORBA
– - Perceived as “legacy”
– - Limited tool support

XML
– + Good tool support and syntax validation
– + Familiar to a large community. Fashionable
– - More verbose. Custom Syntax

XSD
– + Good tool support
– + Commonly used as a type-description language
– - Cumbersome syntax for certain types. Not human friendly

WSDL
– + Same as XSD and allows type sharing with Web-Services
– - Same as XSD

Exercise:
- Start with an IDL Type

- Convert to XML
- Convert to XSD

- Start with an XML-defined type
- Convert to IDL
- Convert to XSD

rtiddsgen Details

rtiddsgen

[-d <outdir>] [-language <C|C++|Java|C++/CLI|C#>]
[-namespace] [-package <packagePrefix>]
[-example <arch>] [-replace] [-debug]
[-corba

[client header file]] [-optimization <level of optimization>]
[-stringSize

<Unbounded strings size>]
[-sequenceSize

<Unbounded sequences size>]
[-notypecode] [-ppDisable] [-ppPath

<path to the preprocessor>]
[-ppOption

<option>] [-D <name>[=<value>]]
[-U <name>] [-I <directory>] [-noCopyable] [-use42eAlignment]
[-help] [-version] [-convertToIdl

| -convertToXml

| -convertToXsd

|
-convertToWsdl]

[[-inputIdl] <IDLInputFile.idl> | [-inputXml] <XMLInputFile.xml> | [-inputXsd]
<XSDInputFile.xsd> | [-inputWsdl] <WSDLInputFile.wsdl>]

DefinitionFile can be IDL, XSD and XML file

-example generates example pub/sub apps and makefiles for
compilation.

-replace replaces everything that’s generated. Use if the data type
definition has changed. Always use with caution if you’ve made
modifications.

33

IDL vs. XML: IDL Example

struct MemberStruct{
short sData;

}

typedef MemberStructType; //@top-level false

34

IDL vs. XML: XML Example

<?xml version="1.0“
encoding="UTF-8"?>

<types xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../rti_dds_topic_types.xsd">

<struct name="MemberStruct"
topLevel="false">

<member name="sData“ type="short"/>
</struct>

<typedef name="MemberStructType"
type="nonBasic“
nonBasicTypeName="MemberStruct“
topLevel="false"/>

</types>

35

IDL vs. XSD: XSD Example

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:dds="http://www.omg.org/dds" xmlns:tns="http://www.omg.org/IDL-
Mapped/" targetNamespace="http://www.omg.org/IDL-Mapped/">

<xsd:import namespace="http://www.omg.org/dds"
schemaLocation="rti_dds_topic_types_common.xsd"/>

<xsd:complexType name="MemberStruct">
<xsd:sequence>
<xsd:element name="sData" minOccurs="1" maxOccurs="1"

type="xsd:short"/>
</xsd:sequence>

</xsd:complexType>
<!-- @topLevel false -->

<xsd:complexType name="MemberStructType">
<xsd:complexContent>
<xsd:restriction base="tns:MemberStruct">
<xsd:sequence>
<xsd:element name="sData" type="xsd:short" minOccurs="1"

maxOccurs="1"/>
</xsd:sequence>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
<!-- @topLevel false -->

</xsd:schema>

Data Persistence

A standalone service that persists data outside of the
context of a DataWriter

Data
Writer Data

Reader

Persistence
Service

Persistence
Service

Data
Reader

Data
Writer

Permanent
Storage

Permanent
Storage

Can be configured for:

• Redundancy

• Load balancing

• Direct for performance

• Relay/Transactional

• Redundant/ Fault-tolerant

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 36

Global Data Space

Persistence_svc

ShapesDemo

Data Persistence

A standalone service that persists data outside of the
context of a DataWriter

Data
Writer

Global
Data Space

Data
Reader

Persistence
Service

Persistence
Service

Data
Reader

Data
Writer

Permanent
Storage

Permanent
Storage

Can be configured for:

• Redundancy

• Load balancing

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 37

Demo:
1. PersistenceService
2. ShapesDemo
3. Application failure
4. Application re-start
5. Persistence Svc failure
6. Application re-start

Ownership and High Availability

Owner determined per Topic and Key
Only writer with highest strength can publish a Key
Automatic failover when highest strength writer:
– Loses liveliness
– Misses a deadline
– Stops writing the subject

Shared Ownership allows any writer to update any object

Producer / Writer
strength=10

Topic T1

K1 K2
Producer / Writer

strength=5

Producer / Writer
strength=1

K1 Primary

K1 Backup
K2 Primary

K2 Backup

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 38

ShapesDemo

Outline

Overview of Technology
Application development cycle
Architecting data-centric systems & modeling the Data
– Examples: News example, Data Streaming, Commands, Video
– Data Persistence with Examples
– Using DynamicData

Protocol, Performance & Scalability.
Integrating external and legacy systems.
Future directions and Standards:

Components/Mechanics of the GDS

Application Application

Application Application

Protocol

GDS Definition

Cache
Management Cache

Management

Discovery

Listener Listener

Components/Mechanics of the GDS

Application Application

Application Application

Protocol

GDS Definition

Cache
Management Cache

Management

Discovery

Listener Listener

Domain Modeling
& Sys. Design

Config &
Qos

Designing a Data-Centric System

Define/Model the Global Data Space

Configure the Cache Management

Configure Discovery

Configure the Protocol

Configure/Use hooks for
– Fault detection
– Controlled access

Global Data Space / Global State

Identify the number of domains

Domain Information model
– Topics
– Types
– Keys
– Ownership

Domain and Domain Participants

N1 App 1
Pub/Sub
(A,B/C,D)

N2 App 2
Subscribe

(C)

N4 App 4
Pub/Sub
(D/C,E,F)

N4 App 5
Publish

(C)

N3 App 3
Pub/Sub
(E,F/A,C)

N5 App 6
Subscribe

(B,C)

Domain

Single ‘Domain’ System

• Container for
applications that
want to communicate

• Applications can
join or leave a
domain in any order

• New Applications
are “Auto-Discovered”

• An application that
has joined a domain
is also called a
“Domain Participant”

Domain and Domain Participants

Node 1 - App 1
Pub/Sub

Node 2 - App 1
Subscribe

Node 4 - App 1
Pub/Sub

Node 4 - App 2
Publish

Node 3 - App 1
Pub/Sub

Node 5 - App 1
Subscribe

Domain A

Node 5 - App 2
Pub/Sub

Node 6 - App 1
Pub/Sub

Domain B

Domain C
Added Func.

Multiple Domain System

Using Multiple domains for Scalability, Modularity & Isolation

demo_domain_0 demo_domain_1

Topics & Datatypes, Keys & Subjects

source type symbol Exchange volume bid ask

OPRA IBM NYSE 200000 118.30 118.36
OPRA AAPL NASDAQ 171.20 171.28
RTFP EQ

Exchange type Symbol Order num number limit stop expiration

NYSE BUY IBM 11956 500 120 - DAY

NYSE BUY IBM 11957 1000 124.5 124 DAY

NASDAQ SELL AAPL 11958 400 - 160 DAY

Topic “MarketData”

Topic “OrderEntry”

Key fields Subject Additional fields (payload)

Data-type (name-type-value pairs)

Subject Key fields demo_filters

QoS: Ownership

Data
Writer

Ownership = EXCLUSIVE
“Only highest-strength
data writer can update
each data-instance”

Data
Writer

Data
Writer

Ownership = SHARED
“All data-writers can
each update data-
instance”

Specifies whether more than one DataWriter can
update the same instance of a data-object

Data-
Instance

Data
Writer

Data
Writer

Data
Writer

Data-
Instance

Provides fast, robust, transparent replacement for fail-
over and/or take-over.

After QoS Expires
- Deadline
- Liveliness

QoS: Ownership Strength

OWNERSHIP_STRENGTH
“Integer to specify the
strength of an instance”ORDER

Data
Reader

Subscriber

Domain
Participant

Data
Writer

“LEFT”

Publisher

Strength = 1

Data
Writer

“RIGHT”

Publisher

Strength = 4

“LEFT”

Note: Only applies to Topics with Ownership = Exclusive

Specifies which DataWriter is allowed to update the
values of data-objects

“RIGHT”

S SS

demo_ownership

Configure the Cache Management

Cache State Content
– History
– Lifespan
– Persistence
– Resources

Reader Cache View
– Partitions
– Content-Based Filter
– Time-Based Filter
– Order

Writer
Application

Reader
Application

Data
Writer

Publisher

S1

S3
S2

S4
S5
S6
S7

Keep All

Subscriber

S4
S5
S6
S7

Data
Reader

Keep Last 4

QoS: History – Last x or All

KEEP_LAST: “depth” integer for
the number of samples to keep at
any one time

KEEP_ALL:
Publisher: keep all until delivered
Subscriber: keep each sample until the
application processes that instance

Publisher

Keep Last 2

Data
Writer S6

S7

S7 S6 S5 S4 S3 S2 S1

demo_history

QoS: Lifespan

SubscriberPublisher

Topic

Data
Reader

User can set lifespan duration
Manages samples in
the history queues, attached to each
Sample

Data
Writer

S7

S5
S6

S4
S3
S2
S1

Perm.
Storage
S1 S2

S4 S3 S2 S1

lifespan_pub

lifespan_sub

Content-Based Filtering

Content Filtered
Topic

“Filter Expression ”
Ex. Value > 260

Value = 249Instance 1

Value = 230Instance 2

Value = 275Instance 3

Value = 262Instance 4

Value = 258Instance 5

Value = 261Instance 6

Value = 259Instance 7

The Filter Expression and Expression
Params will determine which instances of the
Topic will be received by the subscriber.

Topic

content_filter_example

QoS: TIME_BASED_FILTER

Domain
Participant

Data
Writer

Topic

Publisher

SS S S S

minimum separation

Data
Reader

Subscriber

Data Samples

“minimum_separation”:
Data Reader does not want to receive data
faster than the min_separation time

SS

Discarded
samples

time_filter_example

Cache Management in Action

Topics
– Square, Circle, Triangle
– Attributes

Data types (schemas)
– Shape (color, x, y, size)

• Color is instance Key
– Key

• Color field used for key

QoS
– History, Partition
– Time-Based Filter
– Content-Based Filter

demo

Configure the Protocol

Discovery

Reliability

Batching

Liveliness

Flow Control

Asynchronous write

Network Configuration
– Enabled Transports +

transport properties
– Multicast addresses
– Transport Priority

OS settings
– Threads
– Memory

Writer
Application

Reader
Application

Tunable Reliability Protocol
Configurable AckNack reply times
to eliminate storms

Fully configurable to bound
latency and overhead

– Heartbeats, delays, buffer sizes

Reliable
•Guaranteed
Ordered Delivery

•“Best effort” also
supported

Performance can be tracked by
senders and recipients

– Configurable high/low watermark,
Buffer full

Flexible handling of slow
recipients

– Dynamically remove slow
receivers

SubscriberPublisher

Data
Reader

Data
Writer

S1

S3
S2

S4
S5
S6
S7

S7

S5
S6

S4
S3
S2
S1

S8 S7 S3 S5 S4 S2 S1

NACK #6
S6

Configure Notifications, Fault Detection &
Management

Listeners

Deadline Qos

Liveliness Qos

Built-in Readers

Notification of matching

Writer
Application

Reader
Application

QoS: Deadline

Topic

Publisher

Data
Writer

Subscriber

Data
Reader

DEADLINE “deadline period”

deadline

Commits
to provide
data each
deadline
period.

Expects data every
deadline period.

S X S S S S S

Listener

Failed to
get data

deadline_example

QoS: Liveliness –
Type and Duration

Data
Writer

Topic

Publisher

lease_duration

Data
Reader

Subscriber

Listener

Liveliness Message

Type: Controls who is responsible for issues of ‘liveliness packets’
AUTOMATIC = Infrastructure Managed
MANUAL = Application Managed

Failed to
renew
lease

LP LP LP S

Topic

liveliness_example

kill_apps

Exercise: How could “chat rooms” be
implemented?

Different Topics for each Chat room?

Map to Partitions?

Add field to the message and use content-
filtered Topics?

Same as before and also make room part
of the Key?

Others?

Discuss pros and cons of each approach

Exercise: How could we implement Ground
control stations that monitor UAVs

Different Topics for each UAV?
– Or use Keys?

Different Domains for each Ground Station?
– Or Partitions?

How to control multiple UAVs from the same ground
station?
How to switch the ground station that controls the UAV?
How to do failover between ground stations?
How to direct a message to one or all UAVs?
How to detect loss of connection to an UAV?

Discuss pros and cons of each approach

Outline

Overview of Technology
Application development cycle
Architecting data-centric systems & modeling the Data

Protocol, Performance & Scalability.
– Details on Reliable Protocol
– Latency and Throughput
– Using RTI’s LatencyTest and Perftest
– Batching
– Asynchronous writes & FlowController
– Maximizing latency and Throughput

Integrating external and legacy systems.
Future directions and Standards:

Performance & Scalability

Throughput with a single publisher

0
5

10
15
20
25
30
35
40
45

2 4 6 9 11 18

CPU load [%]

[1
00

0'
s

sa
m

pl
e/

s]

RTI DDS
JMS

Platform: Linux 2.6 on AMD Athlon, Dual core, 2.2 GHz

0

10,000

20,000

30,000

40,000

50,000

60,000

16 32 64 128 256 512 1024

Message/Data Size (bytes - without batching)
Po

in
t-t

o-
Po

in
t U

pd
at

es
 p

er
 S

ec
on

d

1-1
1-10
1-24

RTI DDS is about 20X faster than JMS

RTI DDS reliable multicast exhibits
near perfect scalability

(2KB messages)

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 63

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 64

Extremely low latency and jitter

Reliable, ordered delivery over
Gigabit Ethernet between 2.4 GHz Core 2 Quad

processors running 32-bit Red Hat Enterprise Linux 5.0

Orders of magnitude more scalable than
broker-based solutions

Going from 1 to 888
subscribers of the same
data has only a 10% impact
on throughput

New topics can be added to a
system without impacting the
latency and throughput on
other topics

Throughput with 8 topics is 8x
the throughput with 1 topic

http://www.rti.com/products/dds/benchmarks-cpp-linux.html
© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 65

http://www.rti.com/products/dds/benchmarks-cpp-linux.html

Realizing Performance & Scalability

RTI operates peer-to-peer, without brokers

RTI uses RTPS, an Advanced Multi-Session
protocol supporting Reliable Multicast

RTI Approach

RTPS

AMQP

unspecified

Others: Broker-based middleware

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 66

Advanced Scalability & Performance
Techniques

Latency and Priority Aware message batching

Content-Aware multi-channel reliable multicast

Enhanced Reliable Protocol
– Selective ACKs (SACKs) for Confirmed Reliability
– NACK-only Reliable Protocol for Massive Scalability

Smart caching integrated with the message protocol

Content-Filtering at the source

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 67

Message Batching

write()

sender receiver

write()

sender

Send queue Receive queue

Send queue Receive queue

Without batching each
message is separately
sent. For small messages
protocol headers might be
bigger than payload

With batching messages
are held a little and
combined into larger
batches maximizing
throughout and minimizing
CPU

receiver

Transparent:

Receiver still
sees individual
messages

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 68

Reliability with Batching

Reliability must work even when messages are
batched

ACK or NACK of individual samples would negate
some of the benefits of batching…

=> Protocol must be batch aware so that it can
ACK/NACK complete batches!

B3

B2

B1

B3

B2

B1

ACK(B3), NACK(B2)

Repair B2

B3

B2

B1

write()
sender

receiver

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 69

Batching is hard but it pays!

RTI DDS 4.3b perftest results

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000

Sample size (bytes)

Th
ro

ug
hp

ut
 (M

bp
s) Linux Baseline

Linux 10Kb Batch

Intel Core2Duo Single-CPU Dual-Core 2.4GHz, 4MB cache
32-bit CentOS 5 (RHEL 5), 2GB memory, Intel E1000 NIC

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 70

Company Confidential

Classic (TCP Style) Reliable Protocol
No packet loss situation

01

02
03

04

01
02
03
04, HB

01
02

03
04ACK 1-4

05

06
07

08

05
06
07
08, HB

05
06

07
08ACK 1-8

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 71

ShapesDemo

Classic (TCP Style) Reliable Protocol
with some packet loss

01

02
03

04

01
02
03
04, HB

01
02

X
ACK 1-2, NACK 3

05

06
07

08

05

06
07
08, HB

06

07
08

ACK 1-8

03
04
05

X
X

Packets 04 and 05 are received but the
protocol drops them because a prior
packet 03 is missing.
This wastes valuable bandwidth

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 72

RTI DDS Reliability (Reader Cache + SACK)
improves performance when packet loss occurs

01

02
03

04

01
02
03
04, HB

01
02

X
04ACK 1-2, SACK 3

05

06
07

08

05

06
07
08, HB

05
06

07
08ACK 1-8

03

Packets 04 and 05 are received and
cached waiting for the repair of 03.

No bandwidth is wasted.

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 73

RTI DDS NACK-only reliability
eliminates ACK traffic if there no packet loss

01

02
03

04

01
02
03
04, HB

01
02

03
04

05

06
07

08

05
06
07
08, HB

05
06

07
08

No ACK traffic under normal
operating conditions

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 74

RTI DDS NACK-only reliability
greatly reduces traffic even with packet loss

01
02

03
04

01
02
03
04, HB

01

02
X

04NACK 3
05
06

07
08

05
06
07
08, HB

05

06
07

08

03

Negative Acknowledgments sent
only when some message is lost

This approach is far more scalable
when there are many subscribers

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 75

Asynchronous Publishing & Flow COntroller

synchronous send path:

asynchronous send path:

User Thread write() Data Queue

Flow
Controller

Flow Publishing Thread Net I/O Wire Data Out

Return To User
1. rapid write() return

2. network traffic shaping

3. coalesce data samples

Qos Policies

DDS_PublishModeQosPolicy
– kind

• DDS_SYNCHRONOUS_PUBLISH_MODE_QOS
• DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS

– flow controller name

DDS_AsynchronousPublisherQosPolicy
– disable_asynchronous_write <FALSE>
– thread
– disable_asynchronous_batch <FALSE>
– asynchronous_batch_thread

Participant

AP in Participant’s World

Publisher A

Publishing Thread A

Publisher B

Publishing Thread B

Publisher C

Publishing Thread C

Publisher D

Publishing Thread D

Flow Controller Token Distribution

basic token bucket
– steady-state traffic

• tokens_added_per_period
• token_period

– max burst control
• max_tokens

– Additional controls
• tokens_leaked_per_period
• all values can be DDS_LENGTH_UNLIMITED

– piggyback discount (Token Exchange Rate)
• bytes_per_token

scheduling policy
– round-robin (RR)
– earliest-deadline-first (EDF)

• deadline = time of write + DDS_DataWriterQos::latency_budget

Using Asynchronous Publishing
DataWriter-side:

DDS_FlowControllerProperty_t property;

property.sched_policy = DDS_EDF_FLOW_CONTROLLER_SCHED_POLICY;

property.token_bucket.max_tokens = A; //[0, DDS_LENGTH_UNLIMITED]

property.token_bucket.tokens_added_per_period = B; //[0, DDS_LENGTH_UNLIMITED]

property.token_bucket.tokens_leaked_per_period = C; //[0, DDS_LENGTH_UNLIMITED]

property.token_bucket.bytes_per_token = D; //[1024, DDS_LENGTH_UNLIMITED]

property.token_bucket.period = E; //[0, DDS_DURATION_INFINITE]

...

DDSFlowController *controller =

participant->create_flowcontroller("superflow", property);

...

writer_qos.publish_mode.kind = DDS_ASYNCHRONOUS_PUBLISH_MODE_QOS;

writer_qos.publish_mode.flow_controller_name = "superflow";

//

// Set up History queue size to hold deferred issues!!!!!.

writer_qos.history.kind = DDS_KEEP_LAST_HISTORY_QOS;

writer_qos.history.depth = z; // <<<<<<<<<<<<<!!!!!!!!!!!!!!<<<<<

...

writer->write(data_sample, ...);

... // Optional wait for pipe to empty

writer->wait_for_asynchronous_publishing(timeout);

... // Optional On-Demand trigger

controller->trigger_flow();

... // Optional Modify controller properties

controller->set_property();

No changes on DataReader-side!!

Flow Controller Design Challenge

Requirements;
– Large 1 mbyte issue.
– Transmit over period of 10 seconds
– Low priority transmission
– Transport buffer size set to 32K

CONTROLLER:

property.sched_policy = ??;

property.token_bucket.max_tokens = ??

property.token_bucket.tokens_added_per_period = ??

property.token_bucket.tokens_leaked_per_period = ??;

property.token_bucket.bytes_per_token = ??;

property.token_bucket.period = ??

Flow Controller Design Challenge

Requirements;
– Large 1 mbyte issue.
– Transmit over period of 10 seconds
– Low priority transmission
– Transport buffer size set to 32K
– Cannot loose any issues

CONTROLLER:

property.sched_policy = DDS_RR_FLOW_CONTROLLER_POLICY;

property.token_bucket.max_tokens = 1

property.token_bucket.tokens_added_per_period = 1

property.token_bucket.tokens_leaked_per_period = unlimited;

property.token_bucket.bytes_per_token = 32k;

property.token_bucket.period = 200ms

Extra Credit Discussion:
What about reliable protocol properties?

Outline

Overview of Technology
Application development cycle
Architecting data-centric systems & modeling the Data
Protocol, Performance & Scalability.
Integrating external and legacy systems.
– Routing Service
– Systems of Systems
– Cross Domain Solutions
– Accessing Data over a WAN
– Database Connectivity
– Access over the Web

Future directions and Standards:

Real-Time Recording Service

Applications:
– Future analysis and

debugging
– Post-mortem
– Compliance checking
– Replay for testing and

simulation purposes

Record high-rate data
arriving in real-time

Non-intrusive – multicast
reception

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 84

Demo:
1. Start RecordingService
2. Start ShapesDemo
3. See output files
4. Convert to: HTML XML
5. View Data: HTML XML

sqlite stop_all

Relational Actions

Relational Database Integration

Topic T1

I1 I2 I3
I1
I2
I3

Table T1

Publish-Subscribe Action
Write()
Read() & Take()
Dispose()
Wait() & Listener

UPDATE [2,3] & INSERT
SELECT
DELETE

Event driven – The fastest way to observe database changes!
© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 85

RTI
Real-Time
Connect

1. start mysql2. start RTC

ShapesDemo

sql_gui

stop_all

sql_shell

http://localhost/phpmyadmin/index.php?db=rti_rtc

COTS tools: Excel – Interacting with your data

Display live RTI DDS Data in Excel
Perform real-time computations and charts
Publish RTI DDS data from Excel

blank saved demoShapesDemo

RTI Routing Service

Selective, real-time data forwarding and transformation
Can Change Topic Name and Topic Schema
– Allows for custom transformations via “plugin”
– Can filter/guard data

QoS managed, can cache last-known
value for data
Dynamically configured
Location independent deployment

DDS Router

GUARDXFORM

Topic A Topic B

ShapesDemo_0

start

ShapesDemo_1

stop_all

Global Scalability: LAN to WAN…
…without sacrificing Performance and Security

DDS
Route

r

DDSDDS
RouteRoute

rr
Site ASite A

Site BSite B

Site CSite C

Site DSite D

WAN /
Internet

TCP/TLS/SS
L

WAN /
Internet

TCP/TLS/SS
L

DDS
Route

r

DDSDDS
RouteRoute

rr

DDS
Route

r

DDSDDS
RouteRoute

rr

DDS
Route

r

DDSDDS
RouteRoute

rr
Topics:
Site Status
Alarms
Health Logs
Sensor Data
Proc Sensor
Data

Topics:
Site Status
Result Data

Topics:
Site Status
Proc Sensor
Data
Result Data
Alarms

Topics:
Site Status
Sensor Data

© 2009 Real-Time Innovations, Inc. COMPANY CONFIDENTIAL 88

89

Web Accessibility

Direct access to real-time data from Web-Based Applications

Tactical
Real-Time

Data

Web
Enabled

DDS

Web
Enabled

DDS

Web
Enabled

DDS

GUARD

Recorded
Data

DDS
Recording

Service

Recorded
Data Files

Recorded
Track Files

1. start replay
& router

2. start

view maps

simulated
tracks

stop_all

Outline

Overview of Technology

Application development cycle

Architecting data-centric systems & modeling the Data

Protocol, Performance & Scalability.

Integrating external and legacy systems.

Future directions and Standards:
– Extensible Topics for DDS
– Web Enabled DDS
– Standard C++ PSM for DDS

Q&A

Extensible Dynamic Types Submission

class Ov erv iew

TypeModel::Type

TypeRepresentation::
TypeRepresentation

DataRepresentation::
DataRepresentation

LanguageBinding::
DataLanguageBinding

Data

LanguageBinding::
TypeLanguageBinding

1 1

*

+type

1

*

+type
1 1

Example: Current mechanisms

Type
Definition

Language
Binding

Data
Representation

IDL:
Foo.idl

struct Foo {
string<> name;
long ssn;

}; IDL to Language Mapping:
Foo.h
Foo.cpp
FooTypeSupport.cpp

struct Foo {
char *name;
int ssn;

};

Foo f = {“hello”, 2”};

IDL to CDR:

00000006
68656C6C
6F000000
00000002

Type-Definition – Language Representation – Serialized
encapsulation ... Each offers options

Type Representation
“Foo” schema
IDL, XSD, …

DDS-API
DataWriter<Foo>Foo.h,

Foo.java

Language
Bindings

Data Representation
10110011…

CDR, TLV,
JSON, XML

Type Representation
“Foo” schema
IDL, XSD, …

Foo.h,
Foo.java

Language
Bindings

DDS-API
DataReader<Foo>

Data Representation
10110011…

CDR, TLV,
JSON, XML

DDS-RTPS
Wire Interoperability

ddsgen DDS API

ddsgen

94

Web-Enabled Data-Centric Global Data Space

Stateless access of data via
application appropriate
technologies and protocols

Not a bridge, broker, or
message router

HTTP
Web DDS

RTPS

Global Data
Space

AppApp

App

App

App

Global Data Space

95

Web Enabled DDS

HTTP
DDS

HTTP RTPS

Web Web
Web Enabled DDS

DDS
RTPS

<<conceptually>>

Global Data Space

AppApp Std. Web
protocols

A service that exposes DDS Global Data over Web Protocols:
Applications can interact with DDS directly over the Web

No need for bridges or special bindings for scripting languages

The Real-Time
Middleware Experts
The Real-Time
Middleware Experts

Day 2: Exercises

Gerardo Pardo-Castellote, Ph.D.
Co-chair OMG DDS SIG
CTO, Real-Time Innovations
gerardo.pardo@rti.com

http://www.rti.com

mailto:gerardo.pardo@rti.com

Preparations

Install RTI DDS:
– Windows

• Unzip: RTI_Masterclass2GO.zip
– into directory C:\RTI

• Execute: install_actions.bat
– Linux

• Boot your computer from the USB

Test you can do the following
– rtiddsgen -help

Install VisualStudio from the ISO’s

Copy the VS2008 and WindowsSDK ISO’s

Install DaemonTools

Mount the ISOs as virtual drives

Proceed with the installation
– 1st the VS2008
– 2nd the Platform SDK

Test the installation by creating a “hello world”
project compiling and running it

Exercise #0 - Hello World

Define you data type:

Create a directory “HelloWorld”

Create a file called hello.idl and open it in
VisualStudio

Add the following contents:

const long MSG_LEN=256;
struct HelloMsg {

string<MSG_LEN> user; //@key
string<MSG_LEN> msg;

};

Run rtiddsgen (for C++)

rtiddsgen hello.idl -language C++ -example i86Win32VS2005 \
-replace -ppDisable

rtiddsgen hello.idl -language Java -example i86Win32jdk \
-replace -ppDisable

Look at the directory you should see:
– hello-vs2005.sln
– And Several other files…

Open the Solution File (type hello-vs2005.sln on the console)
– Look at HelloMsgPublisher.cxx
– Look at HelloMsgSubscriber.cxx

Build the Solution

Run rtiddsgen (for Java)

rtiddsgen hello.idl -language Java -example i86Win32jdk \
-replace -ppDisable

Look at the directory you should see:
– makefile_hello_i86Win32jdk
– And Several other files…

• Look at HelloMsgPublisher.java
• Look at HelloMsgSubscriber.java

You can use the makefile to build and the Java programs:
– gmake –f makefile_hello_i86Win32jdk

Execute the program

C++:
– On one window run:

• objs\i86Win32VS2005\HelloMsgPublisher.exe
– On another window run:

• objs\i86Win32VS2005\HelloMsgSubscriber.exe

Java
– On one window run:

• gmake –f makefile_hello_i86Win32jdk HelloMsgPublisher
– On another window run:

• gmake –f makefile_hello_i86Win32jdk HelloMsgSubscriber

You should see the subscribers getting an empty string…

Modify the program to produce something

C++: Open HelloMsgPublisher.cxx in VisualStudio
Java: Open HelloMsgPublisher.java in your preferred tool

Look for the comment:
/* Modify the data to be sent here */

Add the line:
strcpy_s(instance->msg, MSG_LEN,

"Hello this is gerardo");

Use your own name instead of “gerardo”

Kill the Publisher, Rebuild the publisher and run it again

Playing with rtiddsspy

Run rtiddsspy while the other applications are
running

Start and stop applications. What do you see in
rtiddsspy

Exercise #1 – Shapes Publisher

Create a new directory Shapes

In the Directory create a file called ShapeType.idl

Edit the file to have the following content:

const long COLOR_LEN=64;
struct ShapeType {

string<COLOR_LEN>color; //@key
long x;
long y;
long shapesize;

};

Run:

rtiddsgen ShapeType.idl -language C++ -example
i86Win32VS2005 –replace -ppNotRun

Exercise #2 – Using keys

Create a new directory Chat

In the Directory create a file called chat.idl

Edit the file to have the following content:

const long NAME_LEN=64;
const long MSG_LEN=256;
struct ChatMsg {

string<NAME_LEN>name; //@key
long age;
string<MSG_LEN> chatRoom;
string<MSG_LEN> msg;

};

Run:

rtiddsgen chat.idl -language C++ -example i86Win32VS2005 –
replace -ppNotRun

Edit the chat_publisher.cxx

Go to the line with comment: /* Main loop */
– Add the line:
strcpy_s(instance->name,

NAME_LEN, "Gerardo Pardo");

(Use your own name)

Go to the line with comment:
– /* Modify the data to be sent here */
– Add the lines:
instance->age = count;
strcpy_s(instance->msg,

NAME_LEN, “Como va todo?");
(Use your age and personalized message)

Rebuild and execute

Exercise #3 Use Qos

Set RELIABILITY

Set HISTORY to KEEP_LAST or KEEP_ALL
– Test different depths

Use Partitions
– Create several Partitions:

• E.g. by ChatRoomName
– Publish in your ChatRoom
– Subscribe to one or more ChatRooms

Exercise #4 Use content filters

Edit the chat_subscriber.cxx

Add the lines:
DDSContentFilteredTopic *cftopic;

DDS_StringSeq filter_params;

filter_params.maximum(0);

cfTopic = participant->

create_contentfilteredtopic(

"Selected Chats", topic,

"age > 4", filter_params);

Look of the call to create_datareader
– Replace “topic” with “cfTopic” in the paramater list.

Exercise #5 Use Exclusive Ownership
Set up in pairs edit the chat_publisher.cxx and use the same “name” for both
of you
Re-run the publisher application you will see mixed messages.

Edit the chat_publisher.cxx
Before creating the data writer add the lines

publisher->get_default_datawriter_qos(dwq);
dwq.ownership.kind = DDS_EXCLUSIVE_OWNERSHIP_QOS;
dwq.ownership_strength.value = 10;

Replace DDS_DATAWRITER_QOS_DEFAULT with dwq In the
create_datawriter() call

Edit the chat_subscriber.cxx
Before creating the data reader add the lines
DDS_DataReaderQos drq;
subscriber->get_default_datareader_qos(drq);
drq.ownership = DDS_EXCLUSIVE_OWNERSHIP_QOS;

Replace DDS_DATAWRITER_QOS_DEFAULT with drq in the
create_datareader() call

Summary

Reduces software lifecycle
costs
– Loose coupling
– Replaces need for custom

middleware in
high-performance,
real-time applications

Reduces risk
– Standards-compliant API

and wire protocol
– Multiple implementations
– Widely adopted

Most widely proven and
mature implementation
Highest performance
Industry-leading expertise
and services capability
Free trial, research and
IR&D licenses
Comprehensive VxWorks
support

	DDS: A Next-Generation Approach to Building Distributed Real-Time Systems
	Outline
	Challenge: �More Data, More Speed, More Sources
	Solution: Standards-based Integration Infrastructure for Real-Time Applications
	Architecture for the next-generation systems
	History:		DDS the Standards
	Open Architecture
	RTI DDS Application Examples
	RTI DDS Application Examples
	RTI DDS Application Examples
	Standards Focus
	Corporate Background
	RTI Supports all Phases of Development
	RTI Global Presence
	Benefits of the DDS approach
	Data-Centric Pub-Sub Model
	Data-Centric Model
	Data-Centric Model
	Data-Centric Model
	Demo: Publish-Subscribe
	DDS communications model
	Demo: Real-Time Quality of Service
	Real-Time Quality of Service (QoS)
	20X Faster than JMS / Broker-based solutions
	DDS Is Scalable
	Realizing Performance & Scalability
	DDS Enables Higher quality, Lower TCO Systems
	Outline
	Hands-on Example (C++)
	Alternatives beyond IDL and CDR
	Alternative Type Description Languages
	rtiddsgen Details
	IDL vs. XML: IDL Example
	IDL vs. XML: XML Example
	IDL vs. XSD: XSD Example
	Data Persistence
	Data Persistence
	Ownership and High Availability
	Outline
	Components/Mechanics of the GDS
	Components/Mechanics of the GDS
	Designing a Data-Centric System
	Global Data Space / Global State
	Domain and Domain Participants
	Domain and Domain Participants
	Topics & Datatypes, Keys & Subjects
	QoS: Ownership
	QoS: Ownership Strength
	Configure the Cache Management
	QoS: History – Last x or All
	QoS: Lifespan
	Content-Based Filtering
	QoS: TIME_BASED_FILTER
	Cache Management in Action
	Configure the Protocol
	Tunable Reliability Protocol
	Configure Notifications, Fault Detection & Management
	QoS: Deadline
	QoS: Liveliness – �Type and Duration
	Exercise: How could “chat rooms” be implemented?
	Exercise: How could we implement Ground control stations that monitor UAVs
	Outline
	Performance & Scalability
	Extremely low latency and jitter
	Orders of magnitude more scalable than broker-based solutions
	Realizing Performance & Scalability
	Advanced Scalability & Performance Techniques
	Message Batching
	Reliability with Batching
	Batching is hard but it pays!
	Classic (TCP Style) Reliable Protocol�No packet loss situation
	Classic (TCP Style) Reliable Protocol�with some packet loss
	RTI DDS Reliability (Reader Cache + SACK)�improves performance when packet loss occurs
	RTI DDS NACK-only reliability�eliminates ACK traffic if there no packet loss
	RTI DDS NACK-only reliability�greatly reduces traffic even with packet loss
	Asynchronous Publishing & Flow COntroller
	Qos Policies
	AP in Participant’s World
	Flow Controller Token Distribution
	Using Asynchronous Publishing
	Flow Controller Design Challenge
	Flow Controller Design Challenge
	Outline
	Real-Time Recording Service
	Relational Database Integration
	COTS tools: Excel – Interacting with your data
	RTI Routing Service
	Global Scalability: LAN to WAN…�…without sacrificing Performance and Security
	Web Accessibility
	Outline
	Extensible Dynamic Types Submission
	Example: Current mechanisms
	Type-Definition – Language Representation – Serialized encapsulation ... Each offers options
	Web-Enabled Data-Centric Global Data Space
	Web Enabled DDS
	Day 2: Exercises
	Preparations
	Install VisualStudio from the ISO’s
	Exercise #0 - Hello World
	Run rtiddsgen (for C++)
	Run rtiddsgen (for Java)
	Execute the program
	Modify the program to produce something
	Playing with rtiddsspy
	Exercise #1 – Shapes Publisher
	Exercise #2 – Using keys
	Edit the chat_publisher.cxx
	Exercise #3 Use Qos
	Exercise #4 Use content filters
	Exercise #5 Use Exclusive Ownership
	Summary

