
Helsinki University of Technology

Information and Computer Systems in Automation

Espoo 2003 Report 9

MIDDLEWARE SOLUTIONS FOR AUTOMATION APPLICATIONS –

CASE RTPS

Seppo Sierla

Helsinki University of Technology

Information and Computer Systems in Automation

Espoo 2003 Report 9

MIDDLEWARE SOLUTIONS FOR AUTOMATION APPLICATIONS –

CASE RTPS1

Seppo Sierla

Abstract: This thesis has been written as a part of a research project, whose goal is to define the

architecture and communication requirements of next-generation process automation systems. We

focus on defining appropriate communication mechanisms for components that communicate with

each other using Ethernet.

The theoretical part starts by summarizing the communication requirements that have been defined in

the research project (OHJAAVA-2). Two middleware standards, the CORBA Notification Service and

RTPS, are then described and their usefulness for our purposes is evaluated.

The practical part contains a description of a testing environment for evaluating a RTPS

implementation. The test cases are based on communication scenarios that are typically encountered

in process automation systems. The results are then presented and the impact of all relevant factors is

analyzed.

We conclude that the NDDS implementation of RTPS is a very promising middleware solution for

process automation systems. There is no perfect product that satisfies all of our requirements, but

good results can be expected from using RTPS, if the system designers appreciate the strengths and

limitations of the middleware standard.

Keywords: middleware, distributed automation system, DCS, communication requirements, RTPS,

NDDS

Helsinki University of Technology

Department of Automation and Systems Technology

Information and Computer Systems in Automation

1 Republishing of the Master’s Thesis

Distribution:

Helsinki University of Technology

Department of Automation and Systems Technology

Information and Computer Systems in Automation

P.O.Box 5400

FIN-02015 HUT

FINLAND

Tel. +358-9-451 5462

Fax. +358-9-451 5394

ISBN 951-22-6604-0

ISSN 1456-0887

Picaset Oy

Helsinki 2003

 II

Foreword
Forewords are rarely read, although it is customary to write them. The best foreword that I have seen

is in The Karamazov Brothers [Dostoyevski 1988]. The author points out that there are some very

considerate readers who finish a book before forming any opinion about it. He then says that it will be

quite enough for the reader to work his way through the first part of The Karamazov Brothers (> 400

pages.) If this will fail to interest him, there will be no reason to start the second part. For my part, I

will be very satisfied if the reader will scrutinize the first 5 sections of this thesis. He will then be in a

good position to judge whether or not it will be profitable to proceed to the testing sections.

Seppo Sierla

Espoo, 22.5.2003

 III

Contents
Foreword..II
Contents ... III
Terms and Abbreviations ...VI
1 Introduction ... 1

1.1 Background and Starting Point.. 1
1.1.1 The Architecture of a Single Node ... 1
1.1.2 The Publish-Subscribe Model .. 2
1.1.3 The Container and Application Components ... 3
1.1.4 Scheduling .. 3

1.2 Goals... 4
1.2.1 The Goals of OHJAAVA-2 ... 4
1.2.2 The Goals of the Thesis.. 4

1.3 Scope .. 5
1.4 The Structure of the Thesis .. 5
1.5 The Methodology... 6

1.5.1 The Nature of the Task.. 6
1.5.2 The Workflows.. 6
1.5.3 The Timing of the Tasks .. 8

2 Analysis of Communication Requirements... 10
2.1 The Role of Middleware over the Lifecycle ... 10
2.2 The Communication Mechanisms ... 12

2.2.1 Continuous Data Distribution... 12
2.2.2 Event-Driven Data Distribution.. 13
2.2.3 Event Notification and Acknowledgement Services... 13
2.2.4 Other Mechanisms... 14

2.3 The Structure of the Middleware Services .. 14
3 CORBA Notification Service .. 16

3.1 Introduction .. 16
3.2 The Notification Service Architecture... 17
3.3 The Communication Mechanisms ... 18

3.3.1 Continuous data distribution .. 18
3.3.2 Event-Driven Data Distribution.. 18
3.3.3 Event Notification and Acknowledgement Services... 19

4 RTPS .. 20
4.1 Introduction .. 20
4.2 Architecture .. 20

 IV

4.3 The Communication Mechanisms ... 22
4.3.1 Continuous Data Distribution... 22
4.3.2 Event-Driven Data Distribution.. 23
4.3.3 Event Notification and Acknowledgement Services... 24
4.3.4 Request/Reply ... 24

5 The Container Design Pattern .. 25
5.1 Goals... 25
5.2 The Solution.. 25
5.3 Benefits and Constraints .. 28

6 Test Arrangements... 30
6.1 Introduction .. 30
6.2 Goals... 30
6.3 Application Structure .. 31
6.4 Clock Synchronization ... 33
6.5 Structure of the Tests .. 34
6.6 Continuous Data Distribution (TS-1).. 34

6.6.1 Basic flow with one subscription and one publication.. 36
6.6.2 Basic situation with one publication and many subscriptions (TC-1.1) 36
6.6.3 Starting a new subscription when the test is running (TC-1.2) 36
6.6.4 Publication or network failure (TC-1.3)... 37
6.6.5 Publications with different properties (TC-1.5) .. 37

6.7 Event Notification and Acknowledgement Services (TS-2).. 38
6.7.1 Basic flow ... 39
6.7.2 Reliable cyclic data transfer (TC-2.1) .. 40
6.7.3 Several event generators and receivers (TC-2.2) .. 41
6.7.4 Only one subscriber goes down (TC-2.3)... 41
6.7.5 Increasing the burst level (TC-2.4) .. 42
6.7.6 Network goes down (TC-2.5)... 42
6.7.7 Large event messages (TC-2.6).. 43

6.8 Scalability Tests (TS-S) .. 43
6.8.1 Multirate cyclic transfer of measurement data (TC-S.1)... 43
6.8.2 Alarm bursts (TC-S.2) .. 44
6.8.3 Fast rate control (TC-S.3)... 44
6.8.4 Dynamic startup time (TC-S.4).. 45
6.8.5 Increasing the load with large data structures (TC-S.5).. 45

7 Functional Test Results .. 46
7.1 Introduction .. 46

7.1.1 Purpose of this Section.. 46
7.1.2 Evaluating the Performance of the Middleware.. 46
7.1.3 Understanding the Load .. 46

 V

7.1.4 Using Timestamps to measure Latencies .. 47
7.1.5 Bugs ... 47

7.2 Cyclic Transfer of Measurement Data... 47
7.2.1 Nodes and network.. 47
7.2.2 Results of test case 1.1.. 48
7.2.3 Results of test case 1.2.. 50
7.2.4 Results of test case 1.3.. 55
7.2.5 Results of test case 1.5.. 56

7.3 Event Notification and Acknowledgement Services ... 57
7.3.1 Nodes and Network ... 57
7.3.2 Results of test case 2.1.. 58
7.3.3 Results of test case 2.2.. 63
7.3.4 Results of test case 2.3.. 65
7.3.5 Results of test case 2.4.. 70
7.3.6 Results of test case 2.5.. 72
7.3.7 Results of test case 2.6.. 72

8 Scalability Test Results .. 75
8.1 Introduction .. 75
8.2 Scalability Test Arrangements ... 75

8.2.1 Nodes and Network ... 75
8.2.2 The Basic Configuration .. 76

8.3 Test Cases ... 78
8.3.1 Multirate cyclic transfer of measurement data (TC-S.1)... 78
8.3.2 Alarm bursts (TC-S.2) .. 83
8.3.3 Fast rate control (TC-S.3)... 85
8.3.4 Dynamic start-up time (TC-S.4) .. 87
8.3.5 Increasing the load with large data structures (TC-S.5).. 88

8.4 Conclusions ... 91
9 Conclusions .. 92

9.1 General-Purpose Evaluation Criteria .. 92
9.2 The Special Requirements for Process Automation ... 93

9.2.1 The Logical Design of the Application.. 93
9.2.2 QoS Control .. 93
9.2.3 Dynamic Configuration Changes .. 94

10 References... 96

 VI

Terms and Abbreviations
API Application Programming Interface

COM Component Object Model

CORBA Common Object Request Broker Architecture

DDS Data Distribution Service

NDDS Network Data Delivery Service

QoS Quality of Service

RMI Remote Method Invocation

RTI Real Time Innovations

RTT Round-Trip Time

RTPS Real-Time Publish-Subscribe

TC Test Case

TS Test Suite

 1

1 Introduction
The name of this thesis is “Middleware Solutions for Automation Systems – Case RTPS”. The work

has been done for the Laboratory for Information and Computer Systems in Automation at the

Helsinki University of Technology as a part of the “OHJAAVA-2, Modern Distribution Solutions in

Open Control Systems” research project. OHJAAVA-2 belongs to Tekes’ “Intelligent Automation

Systems” technology program [ÄLY]. The other participants in the project were VTT Industrial

Systems (Espoo) [VTT] as a research partner and the companies Metso Automation Networks

(Tampere) [Metso] and Raute Precision (Lahti) [Raute].

1.1 Background and Starting Point

1.1.1 The Architecture of a Single Node

In a master’s thesis done for the preceding OHJAAVA project [OHJAAVA], the component-based

architecture of a single node has been described in detail [Peltola 2002]. In particular, an interface

between application components and the middleware has been defined. This is an appropriate starting

point for this thesis, which focuses on the communication of components that have been distributed

onto several nodes.

The architectural model of a single node will serve as the background of this thesis, and we will

summarize its main elements here [Peltola 2002]. The model is not based on any existing middleware

standard; rather, it has been derived from the requirements of the application (i.e. the automation

system.) Some of the model’s characteristics might have to be adjusted when a real system is

implemented.

 2

Figure 1 The container architecture [Peltola 2002]

Figure 1 shows the four main elements on each node: the middleware services, the container, the

application components and the scheduler.

1.1.2 The Publish-Subscribe Model

The exchange of information is based on the publish-subscribe model, which is described at length in

section 3 of this thesis. In short, all data transmission in based on the following 2 types of interfaces:

The listener subscribes to some data and forwards it to all of the registered recipients. These might be

objects in the same application container, or a proxy in the middleware services if the receivers are in

a different component or on a different node.

Senders receive data from the application component or the middleware and forward it to the

connected listener.

The main reason for using senders and listeners is to decouple communicating application components,

so that technical problems related to distribution are encapsulated and reconfiguration will be easier.

 3

1.1.3 The Container and Application Components

The figure shows how application components use port connectors to join to the sender and listener

interfaces as well as to each other. The reason for this is that the communication of automation

components is typically modeled by connecting their ports. These are design-level concepts and they

might not have any corresponding element in the actual implementation. For example, in the case of

the middleware standards that are described in this thesis, all of the connections are made by calling

the member functions of appropriate objects. It might be useful to define port and port connector

classes.

Whatever technique is used to establish the connections, the division of objects among a container and

application components is conceptually meaningful. The application objects manage the algorithms

and data flows that control the process. Higher-level application components can encapsulate other

components, so that every high-level component is responsible for managing some part of the process.

From these, executable components can be created. The container objects are responsible for

executing these application components using a thread with an appropriate cycle time and priority.

The container also provides communication objects that are used by the application to access the

services of the middleware.

Typically, the middleware will provide class libraries from which the appropriate communication

objects can be created. These libraries might be linked to the application, so the container and

application objects would be running in the context of the same process. The container objects are in

turn responsible for accessing the middleware, which might have its own objects for handling

UDP/TCP traffic. All of these details are encapsulated by the communication objects in the container.

In the sections about RTPS and CORBA, we will elaborate on how well this architecture can be

implemented with existing technologies.

1.1.4 Scheduling

A multithreaded design is a natural way to implement this model, where application components and

middleware entities have been decoupled. This is also a powerful tool for controlling the applications

real-time behavior. The threads can be grouped into the following categories:

- Application level threads transfer data between port connectors and the ports of the

application components. They will also be used to execute whatever algorithms have been

coded into these components. A scheduler is responsible for prioritizing these tasks, so a

thread pool containing threads with different priorities can be used.

- Container level threads are responsible for transmitting data and messages between the

application components and the middleware.

- Middleware level threads route data from senders to listeners. These objects might well be

located on different nodes, so some mechanism such as UDP sockets must be used.

Splitting the threads into 3 categories is conceptually helpful, but it must be remembered that

ultimately all of these threads will compete for the same CPU. The desired real-time behavior can only

 4

be achieved by giving each thread an appropriate priority. For example, if the container and

middleware have too great a priority, the application level threads might not be executed in time.

However, if all application level threads are given a high priority, a critical task might not be able to

execute because the middleware couldn’t supply its input data on time.

In practice, there is no best solution to this and many valid approaches exist. Elaborate prioritization

schemes try to guarantee that all deadlines are met whenever possible, and that the most critical tasks

are given priority. However, these algorithms will be competing for the precious CPU time. To

minimize the middleware’s load on the processor, some designs simply use the first-come first-serve

principle. Finally, it must be remembered that the nature and reliability of the scheduling is ultimately

dependent on the underlying operating system.

1.2 Goals

1.2.1 The Goals of OHJAAVA-2

“The goal of the OHJAAVA-2 project, Modern Distribution Solutions in Open Control Systems, is to

define the technical requirements of a communications layer (middleware) in a distributed control

system. In addition we pursue to gain knowledge about ongoing standardization activities and

commercial and open source product offering in the area.

From the point of view of the requirements discovered in the project, we evaluate the middleware

standards and technologies available and pick some of them to a more elaborate analysis. The most

promising ones will be tested in a test bench built to our and VTT’s lab environments. Potential of the

evaluated technologies for commercial product development will be estimated. “ [OHJAAVA-2]

1.2.2 The Goals of the Thesis

The goals of the thesis are a subset of the goals of the project. One of the first tasks of the project is to

define requirements for the various application-level communication mechanisms that are used by the

components of an automation system. My contribution to this work is very minor. The next task is to

gain knowledge about the technologies that can be used for this purpose and to write technology

description documents for the most promising ones. I am responsible for the RTPS (Real-Time

Publish-Subscribe) document [OHJAAVA-217] and for a significant part of the Real-Time CORBA

document [OHJAAVA-220]. My main responsibility in the project is related to the testing of the most

promising products. The tests are based on a technology-independent test specification, which

describes test arrangements and the test suites [OHJAAVA-216]. The suites in turn are based on the

requirements that are captured in the first part of the project. The NDDS implementation of RTPS

has been selected as the most interesting product that is available for testing, and I am fully

responsible for testing it. The NDDS test specification is derived from the technology independent

specification [OHJAAVA-227]. These specifications have provided the requirements for the tests

components. My task is to design and implement these components and use them to run the specified

tests.

 5

1.3 Scope
The focus of the preceding thesis [Peltola 2002] that was done in the OHJAAVA-project was on a

single node and the various components running on it. This work concentrates on the mechanisms that

the components can use to communicate with each other. In the OHJAAVA-2 project, the necessary

mechanisms and their quality of service (QoS) requirements are analyzed. This results in a logical

description of the design-level mechanisms. These must be mapped onto some concrete mechanisms

that are provided by some existing standard or product. The scope of this thesis is focused on the

following tasks:

- Write descriptions of some of the most promising technologies (RTPS and RT CORBA)

- Define a technology independent test specification, with traceability to the logical

communication requirements

- Implement product specific test specifications and test software

- Run the tests and analyze the results

1.4 The Structure of the Thesis
The thesis consists of a theoretical and a practical part. The theoretical part (sections 2-5) discusses

the communication requirements for modern automation systems and describes 2 existing standards.

The practical part (sections 6-8) has a description for a testing environment that is based on these

requirements and an analysis of the results that were obtained in the tests.

Section 2, (Analysis of Communication Requirements) describes the communication requirements for

modern automation systems and our architectural vision.

Section 3, (CORBA Notification Service) describes one promising middleware solution whose

background is in the IT industry. We describe how well the requirements in section 2 can be satisfied

by the notification service.

Section 4, (RTPS) describes the RTPS standard as an alternative to the more familiar CORBA.

Section 5, (The Container Design Pattern) discusses some of the shortcomings of RTPS and CORBA

and proposes an application level solution to them, which is based on our architectural vision.

Section 6, (Test Arrangements) describes a testing environment which will be used to test RTPS in a

number of communication scenarios that are typically encountered in automation systems. There are 2

test suites for functional tests, which exercise the key communication mechanisms. After these, there

is a scalability test suite, which is used to observe how the performance deteriorates as the number of

communicating entities and the volume of traffic is increased.

 6

Section 7, (Functional Test Results) Presents the results for the functional test suites. The impact of

the various factors that affect the results is analyzed.

Section 8, (Scalability Test Results) presents the results for the scalability test suite. Any differences

to the functional test results are pointed out and the causes are analyzed.

Section 9, (Conclusions) has a discussion about the strengths and weaknesses of RTPS as a general-

purpose middleware. Then, some special requirements for process automation systems are reviewed

and the strengths and limitations of RTPS with respect to these are described.

1.5 The Methodology

1.5.1 The Nature of the Task

The evaluation of middleware solutions is somewhat different from most software engineering tasks.

Typical methodologies are aimed at producing an application that satisfies the requirements of some

user group. Testing projects usually try to verify that an implementation conforms to a specification.

Here we are evaluating the suitability of existing middleware products, given the communication

requirements of process automation systems. Therefore, we do not systematically test whether NDDS

satisfies the RTPS specification, since RTI must have done that much more thoroughly than is

possible within the timetable and goals of OHJAAVA-2. Rather, our task is to design and implement a

test environment, which will exercise the middleware’s capabilities in the same way as a real

automation system would do.

Whatever methodology is chosen, it must be adapted to the circumstances. Before describing the

chosen solution, we point out the following circumstances:

- Much of the work (e.g. all the design, implementation and running of the test components)

was done by one person, so the methodology here should be lightweight.

- The specification, design and result documents are used to communicate the progress of the

work to others.

- The project already has some conventions about documentation. These have in turn been

derived from VTT’s quality system. Each task has a corresponding document, and the project

has guidelines for the structure, content and format of these documents.

1.5.2 The Workflows

Nevertheless, the methodology that is used here has much in common with the usual ones. The work

can be divided among workflows that consist of activities. An iterative approach was used, so that in

each iteration, work was done in one or more tasks (workflows). We now describe each workflow; this

has been written after the results were obtained, when we know all the tasks that were actually carried

 7

out. As we mentioned in the previous section, each task (apart from learning) has a corresponding

document, whose purpose is to

- communicate with other participants

- document the results

- serve as input for other tasks

- document any modifications that were made afterwards

Requirements analysis: The requirements for a middleware standard are based on the logical

communication requirements of a process automation system. Based on the many different scenarios

that we have identified, we describe suitable communication mechanisms for each of them. The

appropriate reliability and QoS requirements are also recorded. This work is done together with other

researchers and industrial contacts.

Technology analysis: The requirements have been defined from the point of view of the application,

but some existing standard and product must be eventually used. The main goals of the analysis task

were to:

- learn the background and intended use of the technology

- describe the available communication mechanisms and QoS properties

- evaluate standardization, interoperability and commercial aspects

Learning to use the technology that is to be tested: Based on the initial results of technology analysis,

NDDS and the TAO implementation of CORBA were selected for practical testing. At this point only

simple demonstrations were built, since the goal here was to become familiar with the possibilities of

the products before planning any tests in detail. At this point it was noticed that clock synchronization

must be dealt with before any accurate measurements can be obtained. We also identified the OS as a

significant cause of unpredictable behavior. Our 100Mbps Ethernet performed reliably, predictably

and efficiently relative to the processing that was done under the Windows and Linux operating

systems. This knowledge was useful later in focusing the tests.

Test specification: Based on the requirements analysis, a general test specification was developed. Its

goal was to define tests for the key communication mechanisms, bearing in mind the QoS

requirements. Technology dependent specifications were derived from this, so that it would be

straightforward to implement the tests. The test specifications can be considered successful, if they

exercise the middleware in realistic situations that cover the most important scenarios that occur in an

automation system.

Designing and implementing the test components: The tests were defined in terms of components that

generate traffic, which corresponds to the traffic in an automation system. The inputs to this phase are

the test specifications, from which the requirements for the test components can be identified. Success

in this phase is not simply achieved by building components with the desired functionality. There are

 8

many ways to achieve this, and they can be quite different in their real-time behavior. These

differences are not always obvious even when good documentation is available, so some

experimentation with the alternatives was necessary.

Running the tests and analyzing the results: Before the final tests could be run, the participating

nodes (2 Windows and 4 Mandrake Linux) had to be prepared and equipped with the test software.

When tests were run, many MB of raw data was created, so this had to be processed and analyzed.

Although some preprocessing was done in the test components, Excel was used for further processing

and visualization.

1.5.3 The Timing of the Tasks

Figure 2 shows how much effort I spent on the different tasks (workflows) during the 5 iterations. We

did not have formal iterations with starting and ending dates, rather we use iterations to refer to

different stages of the project. In each iteration, work was done for some of the tasks, and each task

depends on the work done on several other tasks during the previous iterations. Since the workflows

are dependent on each other, the success of the whole thesis depends on timing the progress of each

workflow properly. For example, test specifications are unlikely to be successful if requirements and

technology analysis have not been carried out in sufficient detail. However, there are also circular

dependencies: experience from implementing and running test components might force us to adjust the

test specifications and to update some technology description documents.

0

1

2

3

4

5

6

1 2 3 4 5

Iteration

W
or

kl
oa

d

Requirements
Analysis
Learning
Specification
Implementation
Running

Figure 2 The workload

 9

On the whole, the chart does not have any surprising information. Analysis and learning are mainly

carried out in the beginning of the project, specification activity is heavy during the middle part and

implementation and running are left to the later stages of the project. However, it is evident that no

waterfall model has been applied, since there is significant overlap in the tasks. This was intentional;

we did not have much experience from similar work, so an iterative approach was required: the

experience from any task could be used by other tasks in subsequent iterations of the same project.

The low effort for the requirements task is justified, since others in the project were responsible for

that. However, the chart indicates one problem in the project: not enough effort was put into

requirements analysis early on. This made it more difficult to carry out the other tasks; the problem is

elaborated in the risks section.

Now that the project is over, we can say that the methodology was well chosen. Each of the 6 tasks

described above were important, and a problem in any of them could have prevented us from reaching

the goals that were set for this thesis.

We finally point out that since the chart is based on my working hours, most of the effort has been

spent on NDDS and some was spent on CORBA. CORBA was chosen for testing only in the 4th

iteration, so there is a significant amount of effort that was spent on analysis, learning and

specification towards the very end of the project. Normally this would be undesirable, since the main

work of these tasks should be done well before the end of the project.

 10

2 Analysis of Communication Requirements
The starting point for our evaluation of middleware solutions is our architectural vision for next

generation automation systems. The architecture and communication requirements are described from

the perspective of the application designer; these requirements have been obtained from discussions

with researchers and Finnish companies in the process automation industry. We will discuss the role of

the middleware platform over the lifecycle of a product, the communication requirements of the

application components and the architecture of the middleware services. We emphasize the

communication requirements and will develop tests for these. The focus of this thesis is on testing, so

these requirements are summarized briefly [Peltola 2003]; more detailed information is available in

[OHJAAVA-212].

2.1 The Role of Middleware over the Lifecycle

The benefits that middleware vendors typically claim for their products usually cover many phases of

the lifecycle. Indeed, in order to reap these benefits, the deliverables of one phase should be the

expected inputs of the next one. Otherwise, if conceptual and structural changes are needed, the

original design principles will be violated and the benefit of quick development cycles will be lost. For

example, it should be possible to implement the design-phase entities and communication links in a

straightforward way (or with automatic code generation). The programmer should not be engaged in

coding workarounds for technical obstacles, and neither should he need to adapt the design according

to the constraints of his tools. It should be possible to define an architecture that can be modified or

extended later without compromising the original design principles or tampering with the

implementation of existing components.

We must distinguish between the lifecycles of automation systems and automation applications. With

the latter we mean the result of a project that solves a client’s problem. This involves the control

algorithms for the instruments in that particular process and the data flows between application

components. The automation system is responsible for executing the application and using the

middleware services to establish the communication paths. Therefore, one version of the automation

system can be used in several deliveries of automation applications. The application components and

large parts of applications are also reused in later projects whenever possible.

We now describe the role of middleware in some key phases of the lifecycle. Only the automation

system directly uses middleware services. However, the demands of the application’s lifecycle place

requirements on the automation system, and it should try to meet these by making good use of the

middleware. The following phases belong to the application, i.e. a client project. We describe the ideal

scenario, where developers do not encounter technical details and complications. This is possible if the

automation system provides appropriate services, and the system will in turn rely on the middleware to

implement these.

 11

Specification: The specification of the application’s functionality should be done in terms of design-

level communication mechanisms. Quality-of-Service (QoS) requirements are also listed. The

assumption here is that the automation system will provide corresponding mechanisms. These in turn

rely on the implementation-level mechanism of the middleware product. Therefore, the specifications

should already use constructs that the automation system provides, and the system should in turn

provide constructs that application designers need.

Design: The design of the application should correspond to the structure of the process that is being

automated [IDA 2001]. The application will then be built from components that correspond to certain

parts of the process. The communication among components should therefore be based on names that

correspond to entities in the process, such as measurements and control signals. Interaction among

components is defined solely by these names using some of the design-level mechanisms. The

automation system can easily provide such services if the underlying middleware supports a similar

naming model.

Implementation: Implementing an application is easy, after it has been designed with the appropriate

tools. The automation system’s components are used to execute the application and establish the

communication paths.

The usefulness of a middleware product is really tested when the time comes to implement a version of

the automation system. Some vendors even provide tools with automatic code generation for this

purpose. The cherished design-level concepts must be implemented in software, e.g. with components

and objects. This should be straightforward if the design has been specified with concepts that the

middleware supports. However, since middleware standards’ have different backgrounds, they also

assume somewhat different ways of modeling the application. If developers use middleware that does

not support their model, the implementers might be forced to ‘break’ their paradigm. This is always

error-prone and will complicate issues in later phases of the lifecycle. If appropriate middleware is

available, it will be easy to build the components and define their interactions and real-time behavior

with the implementation-level communication mechanisms.

Modifications and reconfiguration: It is not uncommon that an application must be modified to satisfy

newly discovered requirements. In the case of process automation applications, a successful vendor

will sell the same components to many customers. However, this requires much tailoring in each case,

and modifying either the interface or implementation of existing components is never easy. A good

automation system will encapsulate all technical details, so application components can be modified or

moved with no or minimal reconfiguration work. Any communication links are based on logical names,

so the application structure is decoupled from technical details. Because of this decoupling, it is

possible to move existing components to different locations without making modifications. Further,

since communications are defined in terms of process-related names, the same components can be

configured for a different process by supplying the appropriate names as parameters. However, the

system components can only support this level of flexibility if the underlying middleware has these

capabilities.

 12

2.2 The Communication Mechanisms

Figure 3 illustrates the most important mechanisms that will give the best support for designing

process automation applications. No existing product satisfies these requirements in full; we will

discuss some of the restrictions in sections 3 and 4. In section 6 there are test suites for exercising

these mechanisms. At the beginning of each suite, we refer to requirements in this section and also

summarize the main QoS requirements from [OHJAAVA-212].

CONTINUOUS DATA DISTRIBUTION
”Wiring” from a named source to a named receiver
- the receiver maintains an up-to-date copy of the data
- any data structure can be used
- actual transmission can be done cyclically or when the value changes
- compare to IEC 61131-3

EVENT-DRIVEN DATA DISTRIBUTION

”Wiring” from a named source to a named receiver
- every sent message is an event, which is processed if necessary
- events can be used to control execution
- the event might carry data for the algorithm that processes the event
- any data structure, only the event (1 bit) or a larger structure
- compare to IEC 61499

EVENT NOTIFICATION AND ACKNOWLEDGEMENT SERVICES
- event receiver subscribes to messages according to some filtering criteria
- one subscription can be used to connect to many event sources
- a local event triggers sending a message to listeners
- every incoming message must be treated as an individual
- the data structure is an event message (source, timestamp, priority, etc.)
- it must be possible to acknowledge the messages at the application level
- compare to OPC Alarms&Events

Figure 3 The key communication mechanisms [OHJAAVA-212]

2.2.1 Continuous Data Distribution

This mechanism is familiar to anyone who has programmed PLCs using function blocks or designed IC

circuits. A connection is made between the output and input ports of two blocks by “wiring” them. The

signal value on both ends of the wire should always be the same. When computer technology is used,

an illusion of wiring is created, by having the producer transmit a fresh data value frequently. The

required frequency depends on the dynamics of the process, and the shortest cycles in modern systems

are usually around 5-10ms. However, in automation systems there are many tasks whose period is

hundreds of ms, several seconds or even minutes.

In the basic case, the wire is connected to one receiver, but the continuous data distribution

mechanism should be able to handle any number of receivers.

This mechanism is typically used for the real-time control of a process. The control algorithms have

been designed to operate with a certain period, so the untimely delivery of data can result in unstable

behavior. Therefore, continuous data distribution places the most stringent requirements on latency

 13

and jitter. However, a slightly (e.g. several ms) longer latency is usually acceptable in order to

minimize the jitter. The delivery should be reliable, but missing a delivery is typically better than

delaying everything with retransmissions.

The actual transmission can be done cyclically or when the value changes significantly. The latter is

preferable if the data structures are large (e.g. 100kB), but this requires guaranteed delivery.

2.2.2 Event-Driven Data Distribution

The event-driven programming paradigm is a powerful approach for developing automation

applications, but it requires suitable communication mechanisms. Data ports are wired as in

continuous data distribution, but the transmitted message is an event instead of some signal value. An

incoming event will trigger the execution of an algorithm that is associated with the input data port.

This algorithm will usually process some input data; this might be carried by the event message, or it

might be wired to other input ports. It is important that all of the input data is coherent, e.g. from the

same sweep of an earlier algorithm. Whichever way the event-driven data distribution mechanism is

implemented, it should guarantee the coherence of the data.

Since the execution of the application is controlled by events, missing even one of them might have

very serious consequences (in the worst case, some critical task will never be executed since it will

wait forever for an event that was lost.) The mechanism should therefore guarantee the delivery of

every event to all receivers. Even so, application designers would do well to give some thought to the

consequences of missing an event, because the network might be down for a long time.

2.2.3 Event Notification and Acknowledgement Services

Although this mechanism is also used to transmit events, its nature is different from event-driven data

distribution. The latter is used to control the normal execution of the application. In the case of event

notifications, we are sending alarm and notification messages to all interested receivers. These events

are generated when the state of a component changes in some significant way. Sometimes, the

messages are only sent to inform an operator, or they might be stored in a history database. An alarm

might force the system to stop its normal operation and embark on a special course of action (such as

open an emergency valve or stop the process safely.) The reliable delivery of messages is again

required, since missing even one alarm can have very serious consequences. We can see that there is a

separate domain of events that are not involved in controlling the application’s normal execution, but

can nevertheless interfere with it. This design approach has proven its usefulness with automation

systems, since they are large and complex entities, which must be prepared to cope with a great

number of potential problems.

Another feature of event notifications is that they must be acknowledged from the application level.

This will become complicated when there are several receivers. Many acknowledgement models exist;

for example, it might be enough for one operator to acknowledge the event, or then a response from

some or all of the receivers might be required.

 14

The designer needs a mechanism for event notifications, because the event-driven data distribution

mechanism is lacking in two ways. First of all, there must be a flexible mechanism for subscribing to a

large number of events from many different components. For example, we might ask for all

temperature related alarms from a certain process area that have priority medium or greater.

Subscribers to the event-driven mechanism will specifically name the desired event. Secondly, if there

is inadequate support for application level acknowledgements, the system developer will have to handle

these by adding much functionality into his design of the automation system.

2.2.4 Other Mechanisms

We have identified a need for 3 other mechanisms, but these are simpler and the requirements related

to them are easier to fulfill. Therefore we have not developed test for them, and will only briefly

describe them here.

Request/reply can be used to obtain some data or to start some service. A typical use of this would be

to read or modify a parameter of a controller. This kind of a mechanism is easier to implement

because of its simplicity and the looser real-time requirements. Reliability is desirable, though. The

name or location of the service might not be known at compile time, so some of the server components

might advertise their interface in some naming or directory service.

The reply might be asynchronous, so a callback routine is invoked when the reply is received.

Remote read/write is a simpler version of request/reply, since no other functionality is performed

beyond writing or reading a parameter. The designers might make the assumption that the operation is

always successful. In the future, an exception handling mechanism should be required, and many

implementations of request/reply (e.g. CORBA) already provide this.

Message-oriented communication decouples senders and receivers. Messages are sent to a mailbox or

channel, so the sender does not need to know anything about the receivers. Receivers will in turn

retrieve the messages from a channel, or they will filter them with some criteria.

2.3 The Structure of the Middleware Services

There are two common middleware architectures: peer-to-peer and centralized. In the centralized

architecture, a server keeps track of all the communication links and routes the data and messages to

the correct receivers. This approach is neither scalable nor efficient, because the server will easily

become a bottleneck and there is no direct communication between the senders and receivers. Fault-

tolerance is also a problem, because a failure of the server will bring down the whole system.

The peer-to-peer solution is based on having middleware services on every node. These maintain up-to-

date information of communicating parties on other nodes and provide direct routing of messages to

the receivers. A failure of one node will only affect communication links with an endpoint on that

node.

 15

The pure centralized solution is considered unacceptable for automation systems. The peer-to-peer

architecture is in many ways ideal, but partially centralized solutions can also be considered.

In either case, an API for using the communication mechanisms must be provided. This will naturally

encapsulate all of the lower level details related to the OS and network stack. Therefore, it is not

important how the mechanisms are implemented. The TCP retransmission mechanism and flow

control can be used, or an implementation could provide its own on top of UDP. Some products will

rely on IP and Ethernet, but there is support for other transports as well.

Some services are also required. It is often necessary to dynamically discover the location and

sometimes even the interface of a service. Support for redundancy is also useful, although there are

many redundancy models, so the middleware might not provide a suitable one. Security issues must be

dealt with somehow. When the process control level is integrated vertically to higher-level

management systems, security risks increase dramatically. A security architecture with all the

necessary mechanisms is required from a product that will be used for vertical integration.

Middleware is usually designed to be used with other common Internet technology. HTTP-based

methods enable some data or functionality to be accessed with web browsers. FTP can be used for file

transfer. Common Internet security techniques can be used, but this will be much easier if the

middleware is designed to work with them.

Most middleware standards aim at accomplishing some tasks as well as possible. Indeed, middleware

that could be used under any circumstances would not perform optimally in all situations. The

architecture of the middleware, along with the available communication mechanisms, will constrain

the scope where the middleware should be applied. For enterprise-wide solutions, a well chosen

mixture of one or more middleware products and other Internet techniques will be necessary.

 16

3 CORBA Notification Service

3.1 Introduction

Some existing technology must be used to implement the communication mechanisms that were

described in section 2. Currently, no product offers enough functionality to fully implement all of the

desired design-level mechanisms. The mechanisms that are available depend on the background of the

technology and its intended user groups. The choice of any middleware product will constrain

application developers significantly, so it is necessary to have a clear understanding of the potential

and limitations of the available alternatives. These constraints must be well understood by the

designers, because otherwise implementers will be forced to break the design.

In this section, we describe CORBA notification service. The technology is easily understood by anyone

with a background in computer-science, since it is based on the RMI (Remote Method Invocation)

mechanism. Being well known and having numerous successful applications in many different fields,

CORBA will serve as an introduction and comparison to RTPS, which is the main focus of this thesis.

We assume that readers are familiar with basic CORBA; good introductory material and tutorials are

available at [OMG]. The main idea behind RMI is that a distributed application consists of objects

that either provide services or use them. The services are described with an interface that is similar to

a class definition, but it is written in IDL and is therefore independent of any programming language.

Servant objects that implement these interfaces are run on some server node, and a globally unique

object reference is assigned to each reference. Clients can use these references to invoke methods on

the servants. This is done just like an ordinary method call using a proxy in the client’s address space.

The call and response are routed to the correct recipient by the ORBs (Object Resource Broker) on

each node.

The IT industry has noticed that this approach is very helpful in a variety of application areas.

However, the basic mechanism is unsuited for process automation for 3 reasons. First of all,

automation applications are modeled by wiring function blocks in order to describe the data flows and

the algorithms that process the data. Switching to a UML based modeling method would require

considerable retraining from the automation engineers. We do not see any inherent limitation why

object modeling could not be used as well as function blocks, but suitable frameworks are needed for

this industry. These can only be developed by engineers with a solid understanding of object modeling

as well as automation systems. The second problem is efficiency. When algorithms are executed

periodically, thousands of inputs and outputs must be read and written every second. Using RMI for

each of these is very time-consuming. Thirdly, RMI will couple clients and servers tightly together,

limiting the flexibility that is desired from middleware.

The notification service specification [OMG 2002] is aimed at solving these problems. It is a good

attempt to implement communication mechanisms such as those described in section 2 with object

 17

technology. It is unlikely that automation engineers can ignore the advances in the IT-field

indefinitely; indeed, many of the most successful inventions, such as higher level programming

languages, have already been adopted. As the demands for vertical integration grow, the benefits of

using object technology at the lower levels of plant automation should be obvious.

3.2 The Notification Service Architecture

With the event service, OMG has used its basic RMI mechanism to build higher-level communication

services. The notification service [OMG 2002] has extended this work and provides QoS support using

the Real-Time CORBA specification.

Figure 4 The Notification Service architecture [OMG 2002]

Figure 4 shows the notification service architecture; the horizontal lines separate the middleware

services from the container objects. The key element is the event channel, which decouples suppliers

and consumers [Peltola 2003]. Suppliers can connect to the channel and provide data to it without

having any knowledge of the location, number or nature of the consumers. The consumers in turn

connect to a channel and can receive all of the messages that have been supplied to the channel. A

Structured event-data type can be used for messages, and much useful information can be stored in its

fields. For example, signal name, id, priority, severity and process area are examples of fields that

could be useful for application designers. Unwanted traffic can be filtered according to the values of

certain fields; filters can be set at many levels in the notification architecture. The event channel

 18

objects also have QoS properties that can be used to prioritize the traffic and use the resources in a

way that is optimal for the application.

The notification architecture is typically centralized, and we pointed out the problems with this in

section 2. However, it is possible to start notification services on several nodes or even on each node.

Clients will still have to resolve the name of the appropriate channel(s) in order to receive the desired

messages, so this solution is not as transparent and easy to reconfigure as we would like. A good

application-level framework could provide an acceptable workaround to these problems.

We will finally evaluate the architecture with respect to the architectural vision described in section

1.1. The event channel and the supplier and consumer proxies belong to the middleware services.

These are run in the notification service’s process, which might be on another node. The supplier and

consumer objects belong to the container and occupy the same address space as the application

objects. The link between the container and the notification service is established by connecting the

supplier and consumer objects to suitable proxies. This can be done when the container has obtained

the proxy references from the channel. A reference to the channel is found using the naming service

when the name of the channel is known. Now the container has a consumer and supplier that

correspond to the listener and sender in section 1.1. These have methods for sending messages or

handling received messages, so a simple interface is available to application objects.

3.3 The Communication Mechanisms

We will now evaluate the suitability of the notification service for implementing the key design-level

mechanisms in section 2 [Peltola 2003].

3.3.1 Continuous data distribution

Conceptually, the event channel can be used for this quite naturally. The suppliers can push data to the

channel at the rate that they produce it. Consumers can receive any subset of this data by setting the

appropriate filters. Therefore, we have a publish-subscribe mechanism that was introduced in 1.1.2

and is explained in more detailed in the section for RTPS. As we said, OMG has used its RMI

mechanism to communicate with the event channel, so distributing large quantities of data in this way

is inefficient. OMG engineers have admitted this and are working on a DDS (Data Distribution

Service) specification, which should be published in the summer of 2003 [Wang 2002]. This is done

together with the developers of RTPS, so DDS should combine the strengths of the Notification

Service and RTPS.

3.3.2 Event-Driven Data Distribution

The Event channel is naturally best suited for transmitting events. The intended receiver can be

indicated by a value in one or more fields of the structured event, and consumers can filter messages

with this value.

 19

The algorithm that processes the event will usually require the latest values of some input signal, and

these values must always be from the same sweep of the algorithm that computed them. One solution

is to include the signals in the structured event, but this will lead to complications, when there are

other consumers that need these signals. When new versions of the automation application are

developed for new clients, the signals that are needed to process the event might be different. The

structured event is flexible enough to support the dynamic addition of fields for the required signals, so

maintenance problems can be avoided by sophisticated coding.

The heavy algorithms in the notification service increase the latencies in event transmission. The

filtering times are especially unpredictable. The OMG is working on a Real-Time Notification Service

specification to solve this problem.

3.3.3 Event Notification and Acknowledgement Services

There is no support for acknowledgements, but otherwise the notification service is better suited for

this mechanism than the previous two. The flexibility of the channel can only be appreciated when

consumers try to receive events from many suppliers on different nodes. The structured event provides

good filtering possibilities, since an arbitrary number of filterable name-value pairs can be used. The

events and alarms in an automation system can have many fields, so that the value of each field is a

leaf in a tree-like hierarchy. The only shortcoming of the structured event is the lack of support for

multiple hierarchies.

 20

4 RTPS

4.1 Introduction

The distinguishing characteristic of RTPS is that it provides a practical, flexible and efficient publish-

subscribe communication mechanism. Signals, alarms, notifications and events are identified with

unique topic names, such as ‘pressure’ or ‘temp’ in Figure 5. Every time that a producing component

generates a new value for a topic, it publishes an issue for that topic. The RTPS middleware will then

route the issues to all subscribers, who have expressed their interest in the topic.

Publishing has been made as easy as possible. A publication is created with a topic name and an object

with a suitable data type is associated with it. Optional QoS properties can also be specified. A new

issue is sent simply by calling the send method of the publication; this will send the current value in the

associated data object.

At the receiving end a subscription is created for the topic. A listener class must also be defined, since

it will have the routine for processing the received issues.

Figure 5 The publish-subscribe principle [RTI 2002]

4.2 Architecture

RTPS is a protocol specification, so it leaves implementers a certain amount of freedom as far as the

architecture is concerned [Wang 2002]. In these cases we describe NDDS, the only implementation.

 21

RTPS uses a pure peer-to-peer architecture; each node has a manager that keeps track of the topics

that are published and subscribed to on the different nodes. The managers communicate with each

other in order to keep this information up-to-date as publications and subscriptions appear and

disappear. The manager is run in its own process and it communicates its knowledge to all of the

NDDS components that are running on that node. Linked into these is all of the functionality needed

to send and receive issues with UDP [Wang 2002].

RTPS has been designed to coexist with other standard Internet technology [IDA 2001]. Its purpose

is to provide high-level communication mechanisms for real-time traffic. Figure 6 shows the place that

RTPS occupies in the OSI model. HTTP, FTP, SNMP and other protocols can be used for the tasks

that they are well suited for. An API provides access to the communication objects, such as

publications, subscriptions, listeners and QoS property objects.

Figure 6 The IDA architecture [IDA 2001]

The RTPS architecture is similar to our model in section 1.1. The communication objects correspond

to the listener and sender in the container. Above these is the application, which uses these to send and

receive the data using only logical names. The middleware services are provided by the manager as

well as the libraries that are linked into the application. The only difference is in the use of threads.

NDDS has receiver and sender threads that handle the UDP communication (the middleware services

level). However, the receiver thread also executes the listener’s method in the container and can

perform application-level issue processing. The sender thread will send the issues that are given to it at

 22

the container level, as expected. However, in the synchronous mode, the caller of send (a container

thread) will execute the UDP sending routine. These details should be remembered by the designer of

the container, since they can have an effect on real-time behavior.

4.3 The Communication Mechanisms

4.3.1 Continuous Data Distribution

The publish-subscribe mechanism is well suited for continuous data distribution. The use of logical

topic names makes it easy to deliver data to receivers at different physical locations. For example, a

measurement might be needed by the controller, control room and history database, but it is enough to

publish it once without knowing anything about receivers. Subscriptions can be created for each of the

3 client applications. If some new functionality is added later, for example a diagnostics service that

needs the measurement, it is enough to create a new subscription to this topic without modifying any

existing functionality. Moving the components to different nodes will not require any code changes

either.

Publish-subscribe satisfies the real-time requirements for continuous data distribution better than any

other mechanism that we have studied. The design uses UDP to send the issues directly to the

subscribing applications, and the overhead from any RTPS-related processing has been minimized.

Latencies are typically under 1ms with moderate CPU load and a 10-100Mbps Ethernet. No

sophisticated algorithms such as sending issues based on some priority or deadline values are used

here, because they would increase the latencies and CPU load [Wang 2003].

Figure 7 illustates some of the main QoS properties that can be set using the publish-subscribe API

[RTI 2002]. The leftmost line on both timelines indicates the time-point when the last issue was

received.

The upper timeline illustrates the behavior of an ordinary subscription. The minimum separation

property specifies an interval after receiving an issue when new issues will be discarded. This can be

used on a subscription that does not want a measurement value every 100ms, e.g. a history database.

However, a new issue is expected to arrive before the deadline has expired. Otherwise, the application

is notified. This is the only determinism that RTPS guarantees.

The lower timeline shows a subscription for a topic with several redundant publications. Each

publication has a strength topic, so that the subscription can choose issues from the strongest one. The

persistence of an issue indicates how long the data is valid, so during this time period only a new issue

with a greater strength will be delivered to the application. After the persistence of the last issue has

expired, any incoming issue will be accepted, regardless of its strength.

 23

Figure 7 RTPS QoS properties [RTI 2002]

4.3.2 Event-Driven Data Distribution

RTPS also provides a reliable version of publish-subscribe. This uses send and receive queues,

acknowledgements and retransmission to guarantee that every issue is delivered to every subscription

in the same order as they were sent. The mechanism is very similar to how TCP delivers packets, but it

has been implemented on top of UDP and lets the application programmer set many parameters that

control reliability, determinism and memory usage.

Reliable publish-subscribe can be used to implement the event-driven data distribution mechanism.

The ‘wiring’ from an event output port to one or more input blocks can be made conveniently by

defining a topic name for this purpose. The listener for this topic can trigger any algorithms that

process the event.

The only difficulty here is the integrity of the input signals that the algorithm will use. The situation is

similar to CORBA: the event message can be a data structure that also contains the signals, but this

leads to maintenance problems. An application level solution to the integrity problem is suggested in

section 5.

The QoS support for event-driven data distribution is very adequate. On an Ethernet, lost issues are

very rare, so the latencies are similar to ordinary publish-subscribe. By setting the appropriate

publication properties, we can enforce strict reliability, which guarantees that every single event will

be delivered.

 24

4.3.3 Event Notification and Acknowledgement Services

Reliable publish-subscribe can also be used for event notifications. The relevant features here are the

hierarchical structuring of topic names and the filtering of topics. A topic name can consist of several

fields, such as ‘heating/pressure/too_high/sensor3/13-2D’. Subscriptions can be made by specifying

filtering criteria on some or all of the fields. The criteria are based on regular expressions. A pattern

subscription will create subscriptions to all topics that satisfy the filtering criteria. The difference

between this method and CORBA’s structured event is that the latter has a list of filterable name-value

pairs, where filter expressions are based on the value fields. NDDS only has a list of filterable names,

so it is not possible to, for example, filter issues for a topic according to their priority or severity.

Either all of the issues for a topic are delivered or then none are. Otherwise, this mechanism has the

same shortcomings as have been discussed for its CORBA counterpart.

There is no support for application-level (operator) acknowledgements.

4.3.4 Request/Reply

Figure 8 illustrates RTPS’s Client-server mechanism, which is a good implementation for

request/reply. Services are identified with service names that correspond to the topic names of publish

subscribe. It is possible to have several redundant servers with the same service name as illustrated in

the figure. The application programmer specifies a minimum wait, and all responses that are received

during this time from any of the servers are kept by the middleware. After the minimum wait has

expired, the middleware delivers the reply with the greatest strength property to the application. If no

replies were received, the first reply that comes after the minimum wait will be delivered immediately.

If the deadline expires before any replies are received, the application is notified. In the current

version 3.0 of NDDS, request and reply messages may get lost, but the next version will deliver them

reliably [Wang 2002]. It is therefore possible to build a certain level of determinism, reliability and

fault-tolerance into the application.

Figure 8 The Request/Reply implementation

 25

5 The Container Design Pattern

5.1 Goals

The reader might not yet be convinced of the usefulness of the container in our architecture. However,

none of the middleware standards that we have studied satisfy all of the requirements that we have

mentioned above, so an application-level solution is required. The container design pattern aims to

solve the following problems:

1. The integrity of data means that an algorithm will always get all of its inputs from the same

sweep (iteration) of the algorithm that produced them. The only way to guarantee this with

existing middleware is to group all of the signals into one data structure that is always sent as

one message. This approach is unacceptable, because it leads to serious maintenance

problems. This is perhaps the greatest shortcoming in the products that we have evaluated.

2. In our test results, we will have to point out frequently that any middleware has to rely on the

operating system to schedule its threads. Deterministic behavior can therefore only be

achieved if it is possible to control the scheduling. It should therefore be possible to execute

the time-critical tasks (e.g. cyclic tasks with high frequency) with high-priority threads.

3. The IT-community has discovered that developing complex systems is much easier if the

architecture is composed of parts that have well-defined responsibilities and interaction

mechanisms. These parts encapsulate any details about how this functionality is implemented.

We will use the layered approach here, since it is natural to separate the application logic

into its own layer. The execution logic and middleware interactions are handled by the

container layer, which is below the application and above the middleware.

4. Data should not go via the middleware layer needlessly, because this is inefficient.

5.2 The Solution

Figure 9 shows the container and application layers modeled as packages. I am elaborating the design

in [Peltola 2002].

The application is designed using application components that are similar to function blocks. They

read data from their input ports, execute some algorithms on the data and write the results to output

ports. This is done cyclically with some period. All of the components with the same period can be run

in the same thread and can therefore communicate directly with each other. Components with different

cycle times must always communicate using the middleware. However, a component is only concerned

with accessing its input and output ports and should not worry about how the data gets there.

The PortConnector in the container layer is responsible for supplying data to input ports and

transmitting data from output ports. The PortConnector is fed either from an output port of an

 26

application component (using the Read() method), or then it receives data from a Listener object

(using ReadListener). The listener is the interface to the middleware services. The data that has been

most recently read can be written, using Write(), to one or more input ports. If the receiver is not

running in the same executable component, the data is given to the middleware layer using a Sender

object and the WriteSender() method.

The container is also responsible for executing the application components. As we mentioned in

section 1.1.3, application components can form a hierarchy, where a higher level component can

encapsulate other components. Suitable higher level components are selected as executable

components, and these correspond to the ApplicationComponent in the class diagram. They are

assigned to an ExecutionThread with the appropriate period. This thread performs the I/O and

algorithm execution for all of these components at the required frequency.

Application

Container

Sender

Lis tener

PortConnector

Write()
Read()
ReadLis tener()
WriteSender()

0..1
1

0..1
1

0..1
1..*

0..1
1..*

Execution
Thread

period

Run()
1..*1 1..*1

InputPort

1

0..*

1

0..*OutputPort

1

1

1

1

Algorithm

Execute()

ApplicationComp
onent

ReadInputs()
Execute()
WriteOutputs ()

1..*

1

1..*

1

0..*
1

0..*
1

0..*1 0..*10..*

1

0..*

1

Figure 9 Container class diagram

To implement this solution, the necessary objects must be created and their associations must be

established, as shown in Figure 9. Then the programmer must create an operating system thread for

each ExecutionThread object and give it a suitable priority. The application is started, when these

threads are forked into the Run() methods of the appropriate ExecutionThread objects. Run() has an

infinite loop, and Figure 10 shows one iteration of the loop:

 27

 : ExecutionThread : ApplicationComponent : Algorithm : PortConnector

* ReadInputs ()

* Write()

* Execute()
* Execute()

* WriteOutputs ()

* Read()

* ReadLis tener()

* WriteSender()

Figure 10 One Iteration in ExecutionThread::Run()

First, for those PortConnectors that are associated to Listeners, any new data from the middleware is

read into the connectors’ buffers with ReadListener(). Then the buffers’ current values are written

from the port connectors to the input ports. Then, the application components’ ReadInput() is called,

which reads the data from the InputPort objects. Now each component’s Execute() can be called, and

this in turn executes all of the associated algorithms, using the recently obtained input data. The

output ports are then updated. Finally, PortConnector::Read is called, which reads the OutputPort

objects. If the output port was wired to a component in the same execution thread, the appropriate

input port will be updated in the next iteration by PortConnector::Write. Otherwise, the data will be

handed over to the middleware with WriteSender(). The iteration markers (*) indicate that the

operation is performed over a collection of objects. Nested application components will be executed

recursively, until an algorithm of a basic application component is reached.

For components that are running in the same execution thread, it is clear from the sequence diagram

that all inputs will be from the same sweep of an algorithm. For inputs that are received via Listeners,

we need some way to guarantee that all signals from the same application component will be from the

same sweep of the algorithm. This is only possible if the Listener knows what component created each

signal. The solution to this is naming the signals appropriately. With NDDS, we can add a code for the

application component to the topic name, If the notification service is used, a filterable field can be

added for this purpose. Since the application components should correspond to some part of the

 28

process that is being automated, it is appropriate to use the component id in the names of the signals

that they create. Now we can create a Listener for each application component from which we want

data. The filter or pattern subscription mechanism will be used to receive some or all of its signals. If

the signals have a sequence number, it will be very easy for the Listener code to enforce the integrity

requirement. ReadListener() will then return signal values from the most recent iteration for which all

signals have been received up to that point.

5.3 Benefits and Constraints

With respect to our goals, the following benefits have been achieved:

1. Data integrity is enforced with simple coding in the listener classes. The scheme works if the

signals are named as described above, and this naming is consistent with the structure of the

process.

2. If a RTOS is used, deterministic scheduling of the algorithms is achieved by running each

ExecutionThread object in a thread with a suitable priority. Typically, we would use higher

priorities for those threads with shorter cycle times.

3. The container functionality is independent of the application logic, so it can be reused by

application designers when building solutions for different clients. The application design will

not be encumbered by any details relating to the execution of the algorithms or implementing

the connections for the data flows.

4. Components with the same cycle times can be run in the same thread. Therefore, they can

exchange data directly via a port connector, so middleware services are not used needlessly.

For safety and robustness, the design forces all communications among components with

different cycle times to go via the middleware.

The design constrains application developers to apply a certain framework. However, this framework

is based on the function-block standards, so it the natural paradigm. Most application designers will

be content if they do not need to change their thought models to those that dominate the IT industry.

Nevertheless, their applications can communicate using established IT-technology, such as CORBA.

The framework has been developed for cyclic data distribution. If we are to use some of the other

communication mechanisms that we have described, the model can be extended. For example, if an

algorithm generates an alarm or notification message, a Sender object can be used to dispatch this as

well as any cyclic data.

Accommodating event-driven data distribution into the model will require some more thought. In this

case, an input port can also be an event port, that does not receive new data in every iteration.

PortConnectors will have to distinguish between events and cyclic data, so they will write event input

ports only when an event is received. An incoming signal in these will trigger some algorithm, but

 29

these are executed by a thread whose priority is different from the cyclic execution thread. If

necessary, there can be several threads with different priorities for processing events.

Above we have assumed that cyclic processing continues regardless of events. Pure event-driven

processing would mean that every task (even a cyclic one) must be triggered by an event. In this case

our model needs fundamental modifications, since we will not be using ExecutionThread objects for

periodic tasks. However, we feel that this design pattern is well suited for realistic applications.

 30

6 Test Arrangements

6.1 Introduction
The purpose of these tests is to determine if a middleware product satisfies the communication

requirements of a process automation system. We will focus on evaluating the features of the

middleware solution, so no process will be simulated. Consequently, the data that is sent does not need

to contain meaningful process data; we can send information that is useful for testing purposes such as

sequence numbers and timestamps. This assumption reduces the complexity considerably, since there

are less dependencies among the communicating entities. For example, we can just send an alarm

when we want to test a feature without first observing the process state (since there is no process.)

We will be testing functionality, performance, reliability and scalability. In the first phase we will

concentrate on functionality; we will also do simple performance testing that is limited to 2 or 3

nodes. Later, we will test for scalability by running the components on 6 nodes. The plans for the first

phase should be such that the transition to the scalability test phase can be done by increasing the

number of existing components that were created in the first phase. The components should be

configurable, so the number of communicating entities and their properties can be given as

parameters.

The communication scenarios and traffic patterns are similar to what might be encountered in a small

process automation system.

We are testing the NDDS implementation of RTPS.

6.2 Goals
Tests will be planned to evaluate the following features of the middleware product:

- Test the key communication mechanisms, i.e. the mechanisms that are most suited for

implementing the design-level communication mechanisms that we have described in section

2.

- System startup and configuration changes at run-time.

- Name/Directory services. These allow a component to find out at run time what data and

services are available and how they are accessed (a true middleware product will hide the

actual location from the user). In the case of NDDS, this functionality should be handled

automatically by the managers. It will be tested with the pattern subscriptions.

- Scalability (number of nodes, number of communicating components, size of payload,

frequency of transmission)

- Reliability (acknowledgements and retransmission, redundancy)

 31

- Performance (latencies, jitter, throughput, determinism)

6.3 Application Structure
In these tests we will have no real process to control and neither will we simulate any process with

some kind of a model. The purpose is to focus on the features of the middleware product. Tests will be

modelled after the various kinds of communication cases that are found in process automation. A

communication case involves the transfer of data for a specific purpose, such as the continuous

transfer of measurement data or the ordering some kind of a report. The requirements imposed on the

communication mechanism can therefore vary quite a lot among the different communication cases, so

each case will test some set of features of the middleware. (Detailed examples communication cases

will be found at the end of section 6.)

The structure of the testing application is a collection of components that generate or receive the data

that is exchanged in the various communication cases. In this section, we describe some components

that are found in most automation systems, but we are only concerned with their communicational

behaviour.

Figure 11 An example communication case scenario

Figure 11 shows an example scenario where a few of the components in this section are

communicating. Since we want to test the functionality of the middleware, we are interested in the

data that is transferred between the components and not process dynamics. (A unidirectional arrow

would imply a one-way communication mechanism such as publish-subscribe.)

The following is a list of possible component types. Some components such as the database component

are included for completeness; it will not be necessary to implement all of these for our tests.

Signal

generator

Alarm

generator

Control

room

Alarm

receiver

Signal

receiver

 Middleware

 OS

 Middleware

 OS

Application

Network

 32

Cyclic signal generator: A signal such as a measurement is generated and transmitted at a fixed rate.

Some parameters would be the rate and the size and type of the data (ranging from binary signals to

complex data structures). Timestamps and other accompanying information might be included. The

component can also be used to generate several signals, depending on what parameters are given.

Signal generator: A signal is transmitted at unpredictable intervals, whenever the difference between

the current value and previously transmitted value exceeds a certain threshold. Depending on the

structure of the middleware, it can be either the application’s or middleware’s responsibility to detect

the change and transmit the value.

Alarm generator: This sends an alarm with a certain type/name and other accompanying data, such as

severity, priority, the value of some signals, whether or not an acknowledgement is expected, etc. The

same component can be configured to generate many alarms.

File server: When the system is started and even when it is running, files need to be downloaded from

a file server. These might be executable components, configuration files, recipes etc. A request must

specify the correct file name and version number. A large volume of data must be sent over the

network, so this should go at a low priority in order to avoid delaying more time-critical data.

The clients of the file server will usually be system components responsible for running the application

components and retrieving their configuration files.

Signal receiver: This component expects to receive a signal with a certain data type. The receiver

might expect values to arrive at a fixed rate or before some deadline has expired.

Alarm receiver: This component has subscribed to certain alarms (for example all of the alarms from

some machine whose priorities exceed a certain value.) A certain kind of data structure containing the

alarm and the accompanying data is expected. The receiver might send an acknowledgement back to

the source of the alarm.

Database component: This component works in conjunction with alarm and signal receivers to store

great volumes of process data. It also accepts all kinds of requests such as the values of a signal

during some time period or all of the alarms with certain properties.

Process controller: This component manages the parameters for a process controller (consisting of

parts such as PID blocks), which can be read or modified by other components (e.g. the control

room).

Control room: This component handles all kinds of functions that are required from control room

software, such as displaying process signals and alarms, ordering reports and querying and setting

controller parameters. The control room component will make use of the services of many of the

components mentioned above, such as the signal and alarm receivers, so it could be modelled as an

aggregation of these.

 33

6.4 Clock Synchronization
Clock synchronization between two machines is dealt with in software by obtaining an offset that

expresses the difference between the timers on the 2 machines. Figure 12 shows machines A and B. To

start the synchronization procedure, machine A sends a message containing its timer value A1.

Machine B receives it and records its own timer value B1. B responds immediately and A receives the

response at time A2. Now A can approximately calculate that time B1 corresponds to the average of

A1 and A2 on A’s timer. The offset between the timers is then (A2+A1)/2 – B1. This value tells us

how much A’s timer is in front of B’s. Since all messages from A include a timestamp, we simply

subtract the offset value from it in order to obtain a timer value that is synchronized with B’s timer.

Figure 12 The synchronization algorithm

A realistic scenario will often have more than 2 nodes, so we choose one of them as the master clock

node, and every other node will have a synchronization client that calculates the offset between its

timer and the master’s timer. Machine B above would therefore be the master node and A would be

any node that hosts a synchronization client. Now all of the nodes can subtract their offset from the

local timestamps, so the resulting timestamps will all be synchronized according to the master timer.

Latencies can then be computed simply as the difference of two timestamps.

If the latencies for the request and response messages are equal, there will be no error. Otherwise, the

round trip times (RTT) can be used to calculate an upper bound for the error. If the synchronization

procedure is repeated thousands of times, we presume that the error for the minimum RTT is close to

0 for our purposes. In the worst case, when the latency for one direction is RTTmin/2 and we have the

most asymmetric scenario, the difference between the timestamp B1 and the average of A1 and A2

(i.e. the error) is (RTT-RTTmin)/2. We can say that errors in the latencies that we report are typically

on the order of 0.1ms and nearly always under 0.2ms. However, under peak load, some errors might

have approached 1ms. Although this is not ideal for a general-purpose evaluation of the middleware,

the accuracy is very satisfactory considering the performance requirements of process automation

systems.

We must also account for clocks drift, which can be several ms over 10s between two of our nodes.

Therefore, taking averages of many values will easily cause our offset to lag behind the real value. We

eventually decided to perform the synchronization procedure 3 times every 200ms and took the offset

A1

A2

B1

 34

with the smallest error (i.e. the smallest RTT). If none of the 3 offsets were satisfactory, we used the

old one, since the value will not become obsolete in 200ms. Therefore, the algorithm (which was run

at real-time priority) performed well unless the CPU was under a peak load for a longer period of

time.

Timestamps were taken using a function that was included in the NDDS libraries; this uses the

queryPerformanceCounter() on Windows and getTimeOfDay() on Linux. Since we take clock drift into

account as explained above, the accuracy of these functions is very adequate for our purposes. (There

are greater sources of error.)

6.5 Structure of the Tests

In the functional testing phase, we want to test the key communication mechanisms that we described

in section 2, so we have to choose the most appropriate communication mechanisms that the product

offers. In section 4, we described the mechanisms of NDDS. Continuous data distribution will be

tested with best-effort publish-subscribe, and the test cases for this are grouped under test suite 1.

Event-driven data distribution and event notification and acknowledgement services should be

implemented with reliable publish-subscribe, so we test this in suite 2. Due to a lack of time, we are

not testing NDDS’s request/reply mechanism. In informal tests we have noticed that it worked as

expected, and the performance requirements for this mechanism are not very high in automation

systems. Finally, we have a scalability test suite, where we use the components from the functional

testing phase. We will configure these differently and run more components on a greater number of

nodes to observe how they interfere with each other.

We will only need to implement some of the components that were described in section 6.3. In the test

cases, we don’t specify any exact values for parameters such as sending rate or packet size. These are

considered to be parameters of the components, and exact values will be given in the test reports. The

test components have been implemented in such a way that output will be written to a file. Any write

operation either to the screen or to a file can take a considerable amount of time, so any output is

stored in memory and written out only after the test has been executed.

6.6 Continuous Data Distribution (TS-1)

Test suite id: 1

Requirements to be tested: We test a communication mechanism suitable for continuous transmission

(wiring) of data. We have tests for multiple consumers and redundant producers. We examine the

effect of starting or shutting down some of these on the run. We observe what happens if consumers do

not get new data by the time they expect it. We also test system startup: will the communication be

established automatically and will any of the initial data transmissions be lost. We also measure the

time it takes to start up the system.

 35

A measurement is generated frequently, either cyclically or when the value changes significantly.

Consumers are interested in the latest value. Low delay is more important than reliability. (Best-effort

delivery.)

However, there are some situations in which reliable in-order delivery of cyclic data is required, so we

will have a separate test for that in suite 2, where a reliable mechanism is tested.

Content: The value that is sent is not important, since process dynamics are not simulated. In these

tests, we send a double timestamp and integer sequence number. In suite 2 we will have a test case

with a larger amount of data in a single message.

In general, most messages only have a few bytes of data, but there might be a need for sending data

structures of up to 200kB.

Communicating parties: There can be one or more subscriptions; the publication should not need to

know how many there are or where they are located. If redundancy is desired, there can be several

publications for the same topic.

Communication mechanism: We use ordinary publish-subscribe.

Performance: The main performance issue is the rate at which the data is transmitted. For the

subscription, we will also specify the deadline (from the arrival of the previous issue). Each

subscription will measure the latency of every issue that was received.

The strictest performance requirements for this mechanism come from process control. Measurement

and control signals have to be transmitted frequently. Cycle times between 5 and 1000ms are common

in process automation systems. Determinism is also important, since jitter will affect the behaviour of

the control algorithms and can decrease the quality of the product. In some cases, it does not matter if

the latencies are even 100ms as long as jitter is kept to a minimum.

There can easily be hundreds of signals that must be transmitted with this mechanism, so the

performance requirements should be met even if the volume of traffic is scaled up.

Apart from process control, the continuous mechanism is needed for such tasks as monitoring and

diagnostics. The performance requirements for these are considerably looser, so it would be useful if

the middleware could prioritize the more critical data.

Reliability: If the subscription does not receive new data before its deadline expires, an error has

occurred. With this communication mechanism we do not attempt to guarantee that every transfer is

successful. Redundant publications for the same topic can be used in the event that the primary

publication fails.

When new values are sent periodically, losing an issue occasionally is acceptable, if the mechanism is

optimized for efficiency. If new values are transmitted only when the signal changes significantly (i.e.

at irregular intervals) delivery should be reliable.

In these tests, we send values periodically.

 36

6.6.1 Basic flow with one subscription and one publication

Purpose: A topic is defined and issues for it are published cyclically. An integer sequence number and

a double timestamp are the values that are sent with each issue. There might be several subscriptions

to this topic, so that same value must be transmitted to all of them. The frequency of transmission can

be given as a parameter to the test.

Method: The publication and subscription are started. The publication sends issues with sequence

numbers 1 to N and shuts down. The subscription should record what issues are received and take the

latencies as the differences of the sender’s and receiver’s timestamps. It will then print a summary of

the received data to a file. This contains the minimum, maximum, average and standard deviation of

the latencies. The smallest and greatest sequence numbers that were received will be recorded. We

expect to receive messages for all sequence numbers in this range, so if this does not happen the

sequence numbers that were missed should be recorded. Each subscription should also write a special

alert if a deadline is missed.

Expected outcome: The output of each subscription might indicate that not all of the issues were

received, since we are using a best effort mechanism. This is acceptable. However, if deadlines were

missed, we have an error situation that should be reported.

Components used: The publication is created with a cyclic signal generator component, which is given

the production rate and N, the number of issues to send, as parameters. The subscription is

implemented with a signal receiver, which is given a deadline as a parameter.

The test cases that follow are variations of this basic flow.

6.6.2 Basic situation with one publication and many subscriptions (TC-1.1)

Test case id: 1.1

This is the basic flow scenario with 3 subscriptions.

6.6.3 Starting a new subscription when the test is running (TC-1.2)

Test-case id: 1.2

Purpose: To check that the middleware notices at run-time the appearance of a new subscription to

some data for which a subscription already exists.

Method: One publication and subscription are started as in the basic flow scenario. After a delay of

length D, a new subscription is started on a different node. The subscription should record the time

when it notified the middleware that it is interested in receiving values as well as the time when it got

the first value.

Expected outcome: Just as in the basic flow, but the second subscription should not have the initial

values. Deadlines should not be missed after the first issue has been received.

 37

Components used: The signal receiver should take a parameter D, which is the delay for which the

component waits before creating the subscription. All signal receivers should record the time when the

subscription was made and the time when the first issue arrived.

6.6.4 Publication or network failure (TC-1.3)

Test-case id: 1.3

Purpose: Sometimes subscriptions might not get fresh data because there is a failure in the

publication or the network connecting the publication and subscription. The middleware should have

functionality that enables the subscription to detect this kind of a failure (i.e. alert when fresh values

are not received soon enough).

Method: One publication and subscription are started. A failure is simulated by having the publication

first send the values 1 - N1-1 and then just wait instead of sending the values N1 - N2 and then send

the final values N2+1 – N.

Expected outcome: As in the basic flow, but instead of having values N1-N2 there should be

appropriate error messages. Values should be received from N2 onwards with no deadlines missed.

Components used: The cyclic signal generator should take parameters N1 and N2 which is the range

of sequence numbers for which no data is sent. If these are both zero, the feature is not used.

6.6.5 Publications with different properties (TC-1.5)

Test-case id: 1.5

Purpose: Having more than one publication for the same measurement means that some of them are

redundant. Different technologies have different concepts for redundancy and provide different

properties for the designer to configure the main and redundant producers. With NDDS, publications

with the same topic can be used to provide redundancy. Each publication has an individual strength

parameter, which is described in section 4.3.1.

Method: We have one publication with strength 2 that publishes issues 1-N, with the exception of

issues N1-N2. The redundant publication with strength 1 publishes values 1-N3. N1<N2<N3<N.

There is one ordinary subscription.

Expected outcome: The two publications might not start at the same time, so we cannot expect the

subscription to get issues with sequence numbers always increasing by one. Rather, we are interested

in whether deadlines were missed and if the highest sequence number that was received was N.

Components used: The signal generator should also have a strength parameter.

 38

6.7 Event Notification and Acknowledgement Services (TS-2)

Test Suite id: 2

Requirements to be tested: Two application-level communication mechanisms are commonly

associated with alarms and events: event-driven data distribution and event notification and

acknowledgement services. We have described these in section 2. Both of these will be implemented

with the reliable publish-subscribe mechanism, so we will only test one of them. We have chosen the

latter, because we want to test NDDS’s ability to handle filter-based subscriptions. No new

functionality would be tested if we would design a suite for event-driven data distribution.

A filter subscription is made by requesting all of the notification messages that satisfy the filtering

criteria. Therefore the name or header of the messages will have to have some filterable fields. We

describe the scheme that is used in these tests in the basic flow.

The event messages are generated in bursts. The interval between bursts is fixed for each event

generator, so the tests are repeatable. Every event message should be transferred reliably and with

reasonably low latency to all interested parties. The middleware should guarantee that all events are

delivered.

A special case of the event transfer is when the events are generated at fixed intervals. This will be

used to test reliable cyclic transfer of data.

With acknowledgement services we do not mean protocol-level acknowledgements, but those that are

generated by a human operator. Since NDDS has no special functionality to handle this, we will not

give acknowledgement services any further consideration here.

Content: The data type is a structure with the following fields: (double) timestamp, (int) sequence

number and (char array) table. The latter is a variable length array that can be used to adjust the size

of the data.

Typical alarm messages might have a number of other data fields attached to them, but their size is

usually under 1kB. Some are only a few bytes.

Communicating parties: There can be any number of subscribers, each with their unique pattern for

subscribing to event topics; the publications should not need to know how many there are or where

they are located.

Communication mechanism: A mechanism that is optimised for reliability rather than very low

latency. Delivery should be guaranteed and in-order. The reliable publish-subscribe mechanism will be

used, since it claims to satisfy these requirements.

Performance: Events are not generated at a steady rate, since we send them in bursts with no delay

between issues in a burst. The momentarily large volume of data is useful for testing the scalability of

the system, but it should not prevent reliable delivery.

 39

It is usually satisfactory that alarm and notification messages are delivered in < 1s. However, in

problem situations there might be great bursts of these, so all of them should be handled reliably in

this time.

The resolution of the timestamps should be around 1ms.

Reliability: There should be some mechanism such as one using acknowledgements and

retransmissions to ensure that all messages reach all subscribers even if the network loses some

packets.

If some data cannot be delivered (perhaps the network is down for a long time) the sender should be

informed.

6.7.1 Basic flow

Purpose: We create an event source that produces several unique events. These should have a name

and some kind of mechanism to organize them into categories. With NDDS, we use the topic name

with fields separated by ‘/’ characters. The name has the following fields:

<process area>/<category>/<type>/<measurement>/<id>

e.g:

“mixing/unexpected/too_large/temp/13-1”

Subscribers should be able to say that they are interested in the events that come from a certain

process area, or they want all temperature related events, or they might want to receive all of the

alarms from some machine. Consider the following subscription pattern:

“mixing/unexpected/*/temp/*”

This will request all unexpected temperature-related events from the mixing process.

We will also create subscribers, so that each subscriber will request some subset of the sources’ events.

Method: The producer is initialised with a file containing the topic names. It will then send bursts of

event messages (issues) at regular intervals for each topic. The messages will have sequence numbers

from 1-N. Consumers will subscribe to a subset of the events and they will check the sequence numbers

of the received messages. The logs will only list summary data for the latencies. If some sequence

number was not received or if it came out of order an error statement will be logged.

If the producer has problems sending its buffers because the old data is not acknowledged soon

enough, some statement will be recorded in the producer’s log. If the buffer is full, the send should

block for one sending period. If no space becomes available in the queue during this time, the problem

should be logged and the same issue sent again. If the producer detects that one subscriber is down, it

should log this as well. The sender may only discard unacknowledged messages after detecting that the

subscriber in question is down. Otherwise it should keep trying to send the same message again and

again.

 40

Expected outcome: The log files of the producer and subscribers should be compared. The subscriber’s

log should contain all messages for those topics that were subscribed to, unless the producer dropped a

subscriber. Some of the first messages might be lost, id the connection between the publisher and

subscriber was not established before sending began. If messages were not received in order, this

should be reported.

Components used: Event generator and event receiver.

The generator should have a property burst level B (an integer >= 1). This should be implemented so

that the component sleeps for a time P (where P is the period of the component) and then sends a

burst of B messages for each event that has been created without sleeping in between. With B=1, we

have a reliable cyclic signal generator.

Unless otherwise mentioned, the sending and receiving buffers should have space for 5 messages. If

the sender’s queue is full, the send() will block for one period P.

The table array in the data type has length 0, if we do not specify some other value.

6.7.2 Reliable cyclic data transfer (TC-2.1)

Test case id: 2.1:

Purpose: To test the mechanism with 1 generator and one receiver component. We use burst level 1,

so this will test the reliable delivery of cyclic data.

Method: A generator is started with 10 publications with different topics. A receiver is started with

such subscription criteria that it will receive all 10 events. The generator will send N event messages

with a period P (B=1) and then it shuts down. The receiver will wait for an end signal and then write

the results to a log file.

Expected outcome: After receiving the first issue, there should be no misses. If the network is loaded,

packet losses can occasionally cause higher latencies. If the sending buffers get full, so that sending a

new message after the required interval is not possible, we have a problem with cyclic delivery. This

can be detected from the log of the generator.

The event generator will read its list of events from a file elist1.txt with the following contents:

mixing/expected/value/temp/1-5

mixing/expected/value/temp/1-3

mixing/expected/value/pressure/1-4

mixing/unexpected/fault/temp/1-3

mixing/unexpected/too_large/temp/1-3

furnace/expected/value/temp/2-5

furnace/expected/value/temp/2-3

furnace/expected/value/pressure/2-4

furnace/unexpected/fault/temp/2-3

 41

furnace/unexpected/too_large/temp/2-3

The receiver will subscribe with the pattern “*/*/*/*/*”.

6.7.3 Several event generators and receivers (TC-2.2)

Test case id: 2.2

Purpose: To test the behaviour of several event generators and receivers.

Method: We start 2 event generators and 3 receivers. Each generator has 10 unique events and each

receiver will subscribe to some subset of the events. A moderate burst level of 3 is used.

One generator uses elist1.txt and the other uses elist2.txt, which has the following contents

cooling/expected/value/temp/3-5

cooling/expected/value/temp/3-3

cooling/expected/value/pressure/3-4

cooling/unexpected/fault/temp/3-3

cooling/unexpected/too_large/temp/3-3

furnace/expected/value/temp/2-8

furnace/expected/value/temp/2-9

furnace/expected/value/pressure/2-14

furnace/unexpected/fault/temp/2-13

furnace/unexpected/too_large/temp/2-13

The first subscriber uses these criteria:

“cooling/*/*/*/*”

The second subscriber:

“*/*/*/pressure/*”

The third subscriber:

“*/*/*/*/3-5”

Expected outcome: The first subscriber should receive the 5 events from the ‘cooling’ process area.

The second should receive one pressure-related event from cooling and mixing and 2 from the furnace.

6.7.4 Only one subscriber goes down (TC-2.3)

Test case id: 2.3

Purpose: To test how well the middleware can detect that a subscriber has gone down. Missing

acknowledgements from such a subscriber should not prevent delivery to other subscribers.

 42

Method: One signal generator with 10 distinct events (from elist1.txt) is started. 2 receivers are

started on different nodes, and both of them should subscribe to all of the events. 10s after one of the

subscribers has been started, we unplug its network connection, and after another 10s we will plug it

back in (we use a wrist watch). The generator parameters N and P should be such that it will continue

sending for some time after this. Burst level 3 is used.

Unplugging the Ethernet cable will usually cause the computer to disconnect its network interface, so

reconnecting the interface might take some time after the cable has been plugged in. Therefore, we

should connect the generator node to one hub/switch and the receiver node that will be unplugged to

another, so that the two hubs are linked by a cable. Pulling out this cable should not cause any

computer to disconnect its network interface. If this can not be done (e.g. due to lack of resources) the

arrangements should be documented.

Expected outcome: After the subscriber computer has been disconnected, the middleware should use

the heartbeat mechanism to detect that a subscription is down. Depending on the parameters to this

mechanism, this will take some time T. During this time the sender’s queue will fill up and after that

new messages cannot be sent. The connected subscriber will not receive data after the send queue is

full. After the time T has passed, the sender’s queue can be emptied and the connected subscriber will

get messages, so that it will not miss any of them. The disconnected subscriber should start getting

messages after it has been plugged back in.

We can measure (with a wrist watch) the time for which the subscriber was disconnected. Since we

know P and B, we can calculate approximately how many messages were sent during this time. The

disconnected subscriber should not have missed much more than these.

6.7.5 Increasing the burst level (TC-2.4)

Test case id: 2.4

Purpose: In the previous tests, B <= 3. Since the send and receive queues have had space for 5

messages, the middleware should have been able to handle the bursts easily. Now we set B >> the

queue size and observe how often the send gets blocked when sending a burst.

Method: Just like test case 2.1, but with a higher burst level B=30.

Expected outcome: The components log enough information that tells how often the sender gets

blocked. The bursts that do not fit in the queue should not prevent the delivery of any messages.

6.7.6 Network goes down (TC-2.5)

Test case id: 2.5

Purpose: As opposed to test case 2.3, we now have only one generator and one receiver. We then

disrupt the network connection between them for some time. The middleware will eventually notice

that there is no subscriber, so it will not expect acknowledgements and all sends will be successful.

(When the sending buffers get full, some data that the subscriber has not received will be lost.) In this

 43

case it is best to have a greater sending buffer, so that temporary network problems will not prevent

receivers from getting the messages when the connection is re-established.

Method: Just like 2.3, but with only one receiver component. The sending buffer should have enough

space to accommodate all of the messages that are generated during the 10s downtime.

Expected outcome: All messages should be received, although the latencies for some will be

approximately equal to the downtime.

6.7.7 Large event messages (TC-2.6)

Test-case id: 2.6

Purpose: To observe how well the middleware handles large event messages (does the performance

suffer and is reliability compromised?)

Method: Just like test case 2.1, but we use burst level 3 and large table lengths, so that the message

size will be close to the 63kB limit permitted by RTPS.

Expected outcome: No messages should be lost, but the latencies might well be longer. The sending

queue might also fill up.

6.8 Scalability Tests (TS-S)

Scalability tests will be run with the same components as the functional tests. However, the number of

nodes and components as well as the number of publications and subscriptions in each component will

be greater.

Test case S.1 describes the basic scalability test configuration. The other ones are variations of this;

each variation tries to simulate some situation that might occur in an automation system.

Even though the volume of traffic has been increased, the same QoS requirements apply as in the

functional tests. Please refer to the requirements listed for test suites 1 and 2.

6.8.1 Multirate cyclic transfer of measurement data (TC-S.1)

Test-case id: S.1

Purpose: In functional tests, we examined the behaviour of transferring data with a fixed period.

Although we moved to short periods, the volume of traffic and number of participating nodes was

small. Here we will have three nodes that publish many topics with different periods. We want to see

how much the performance deteriorates compared to the functional tests. Ideally, the middleware

should prioritise the topics with shorter periods, but RTPS does not support this. When the load

becomes heavy, the performance should degrade gracefully. It is acceptable if some measurements are

missed and latencies increase. If this happens during a peak load, the production process will still

 44

continue with some temporary drop in quality. However, if the system behaves wildly or crashes, we

will get serious problems with product quality and the chance for safety problems is greatly increased.

We also want to see how long it takes for the system to start up.

Method: We start the following components on the nodes A-F.

Node A: Signal generator publishes 100 topics ‘temp1’ to ‘temp100’ with a period of 100ms.

Node B: Signal generator publishes 100 topics ‘pressure1’ to ‘pressure100’ with a period of 50ms.

Signal receiver subscribes to all the temp topics with a deadline of 200ms.

Node C: Signal generator publishes 100 topics ‘current1’ to ‘current100’ with a period of 20ms.

Signal receiver subscribes to all the pressure topics with a deadline of 100ms.

Node D: Signal receiver subscribes to all the temp, pressure and current topics with a deadline of

200ms.

Node E: Signal receiver subscribes to all the current topics with deadline 40.

Node F: Signal receiver subscribes to all the pressure and current topics with a deadline of 100ms.

Expected outcome: If the nodes have decent hardware, it should be possible to handle all of the data.

However, the data flows are not even, but at 20, 50 and 100ms intervals 100 signal values are

transmitted. These must be processed individually, and processing the data takes a longer time than

generating it. For this reason, some of the latencies will be longer than in the functional tests. The

greater volume of traffic on the network will also increase the probability of collisions and lost data.

6.8.2 Alarm bursts (TC-S.2)

Test-case id: S.2

Purpose: We generate bursts of alarms as in the functional tests in communication case 2. The

purpose here is twofold:

- to observe the effect of the other real-time traffic on transmitting the alarms, and

- to observe the effect of a burst of alarms on the cyclic transfer of measurement data.

6.8.3 Fast rate control (TC-S.3)

Test-case id: S.3

Purpose: There might be some control loop or other process that needs to communicate faster than

the 20ms cycle in S.1. In the functional tests we have observed that it certainly is possible to go below

20ms, but we had a light system load. Here we have the same arrangements as in S.1, but we also

include a signal that is transmitted at a clearly faster rate.

 45

6.8.4 Dynamic startup time (TC-S.4)

Test-case id: S.4

Purpose: Consider the situation where an operator in the control room opens a screen that displays

various measurement data. We want to know how long it will take to establish the data flow from the

sources to the control room application, i.e. how long will it take for us to get the first data for each

signal.

Method: It is realistic to start up the other components and then at run-time subscribe to the data that

the control room needs. We modify S.1, so that node D would be the control room workstation. It will

have a delay of 10s, so that it will start up when the application is running. From this point, we will

measure how long it takes to get the first data for each of the signals.

6.8.5 Increasing the load with large data structures (TC-S.5)

Test-case id: S.5

Purpose: The event generator has a variable length array field which can be used to create large

packets (tens or hundreds of kB). We will send a few of these and observe the effect that this has on

the transmission of the signal values.

Method: We will add the following components to the configuration in S.1:

An event generator is added onto Node B and an event receiver on Node D. With some period, these

will send large data packets from B to D.

 46

7 Functional Test Results

7.1 Introduction

7.1.1 Purpose of this Section

In this section, we describe the exact test arrangements and parameters used to run the tests. We do

not include all of the results, since the log files for this test suite alone have a total of over 100000

lines. Here we show summary data as well as any information that was unexpected or otherwise

interesting.

7.1.2 Evaluating the Performance of the Middleware

After presenting the results for the various test cases, we would like to make some conclusions about

how well the middleware performed. Unfortunately, it is not possible to answer this simply with some

number, as we can do in measuring the top speed of a car or its fuel consumption over 100km. The

reason for this is that the test application, middleware, operating system, network and computer

hardware are all involved in the tests, and it is not possible to observe the effect of any one of these

alone. Our goal in testing is to gain insight into the behaviour of each of these 5 vital elements of any

distributed system. Then we can make some conclusions about each of them individually, and we can

identify issues that should be taken into consideration by application developers. Only then will it be

possible to use the middleware to its best advantage and to satisfactorily deal with any possible

limitations.

In order to gain this kind of insight, we have prepared a variety of scenarios. By comparing the results

of different tests, and remembering any differences in the test arrangements, we can suggest an

explanation as to why changing one thing in the arrangements produced different results. For

example, we can have a generator and receiver component on one node and another identical receiver

on another node. By comparing the logs of the 2 receivers, we can observe how much the network

contributed to latency and jitter.

7.1.3 Understanding the Load

Finally, in order to accurately evaluate performance, we need an understanding of the total load on

the system. We use a switched Ethernet and run no other applications, so there is no significant

amount of background traffic. However, it should be remembered that each node synchronizes its

clock by sending and receiving 3 UDP packets (containing a double timestamp) every 200ms. Also,

the application does some processing in taking timestamps and storing results in main memory. Very

roughly, we have observed a 20-30% performance improvement when we stripped all of this away.

 47

7.1.4 Using Timestamps to measure Latencies

We take the sending timestamp just at the last point before the data is given to the middleware on a

per-issue basis (and not before calling the publisher send.) We take the receiving timestamp as soon as

the issue processing routine is invoked.

7.1.5 Bugs

In general, the NDDS middleware kept its promises of providing a convenient and portable data

distribution service for an application with components running on different platforms. We only

discovered 2 bugs in these tests, and neither of them will cause significant problems to a developer

who is aware of them.

Section 7.2.3.4 describes some spurious deadline alerts that were received by subscriptions on

Windows nodes even though the deadline had not yet expired. I also provide a suggestion on how to

filter out these alerts. RTI suspected that this might have been caused by the various tasks being

scheduled in such a way that they interfere with each other [Kindel 2002].

Section 7.3.4.2 describes a bug in the API for reliable publishing. This was known to RTI, and the

desired behaviour can be achieved by using other parts of the API [Wang 2002].

7.2 Cyclic Transfer of Measurement Data

7.2.1 Nodes and network

We refer to each node by the last part of its IP address. The following nodes are used:

Node 45 (667MHz, 256MB RAM, Windows XP)

Node 72 (400MHz, 128MB RAM, Mandrake 8.2 Linux)

Node 199 (2GHz, 512MB RAM, Windows XP)

Nodes 45 and 72 are connected to the same switching router using 100Mbps Ethernet. However, there

was another 100Mbps switch between node 72 and switching router. 199 is connected to another

switching router at 100Mbps and these routers (which belong to the backbone) operate at 1Gbps.

Time synchronization components run at real-time priority. Test components on Windows use high

priority. Components on Linux use default (0) priority. After some experiments, the test components

were given these priorities to prevent problems with system instability and interfering with the clock

synchronization. In our experience, raising the test component priorities does not significantly improve

performance (mean latencies or jitter) when there are no other user apps and the UI is not used.

 48

7.2.2 Results of test case 1.1

7.2.2.1 Parameters

We have one signal generator on node 199 and receivers on nodes 199, 45 and 72.

Generator publishes 10000 issues for topic ‘temp1’ with period 20ms. (Total time is 200s.)

All receivers have deadline of 40ms.

All components have 0 initial delay.

Receiver’s log files have names L1_1_IP.txt, where IP is 199, 45 or 72.

7.2.2.2 Minimum, maximum and mean latencies

Figure 13 shows the minimum maximum and mean latencies for the receivers on each node:

Minimum, maximum and mean
latencies

0,000
2,000
4,000
6,000
8,000

45 72 199

Node

La
te

nc
y

(m
s)

min
max
mean

Figure 13 Min, max and mean

We notice that when the sample size is 10000, a maximum of several ms is possible. The maximums

don’t correlate with the speed of the processor or the network connection, since the receiver on 199 is

on the fastest machine and the data does not pass over the network. However, 199 is the only node

which has both a signal generator and receiver, so these two could have competed for processor

resources. Being of equal priority, the generator could have prevented the receiver from getting the

CPU immediately after an issue arrived.

The other values are better understood from the next chart.

 49

7.2.2.3 Minimum, mean and standard deviation

Figure 14 shows the minimum, mean and stdev curves. The data points on the latter are computed by

adding the standard deviation to the mean. What this means depends on the statistical distribution of

the data. In any case, the distribution of values around the mean is not symmetric, since latencies are

>0ms. If we have a normal distribution, 67% of the values are within one standard deviation from the

mean. Looking at the logs, we observe that at least 90% of the points are within one standard

deviation. These two charts and the logs indicate that there are a few latencies that are much larger

than the typical values. We can only explain this by the action of the scheduler: one of the numerous

operating system threads is scheduled in such a way that the subscription is not notified immediately

when the data arrives. The behaviour of the scheduler and all of the system and user processes follows

some intricate and complicated patterns that can hardly be modelled and predicted accurately (at least

since these are not RTOSes.) However, these results support our belief that latencies cannot be

accurately modelled by the same statistical tools as most phenomena.

We conclude that the application should be designed with ‘firm’ deadlines (i.e. the deadline should be

met nearly always, but a failure to do so occasionally will not cause serious damage.) If this is not

acceptable, a RTOS which provides guarantees about its scheduling is required.

Minimum, mean and stdev

0,000
0,100
0,200
0,300
0,400
0,500

45 72 199

Node

La
te

nc
y

(m
s)

min
mean
stdev

Figure 14 Min, mean and stdev

7.2.2.4 Other observations

The following table shows how long it took after getting the start signal to get the first issue. (All test

components wait for the start signal and then create the publications and subscriptions.) It looks like

all components got this done at the same time. The publisher sent the first 29 issues although no

subscription was ready, and this is the expected behaviour, since we didn’t use a subscription wait.

 50

Node Delay in getting 1st issue Sequence number of 1st issue

45 607,6 30

72 559,7 30

199 601,5 30

No deadlines were missed on any node after the first issue was received.

7.2.3 Results of test case 1.2

7.2.3.1 Parameters

We have one signal generator on node 72 and receivers on nodes 45 and 72.

Generator publishes 10000 issues for topic ‘temp1’ with period Pms. (Total time is 200s.)

The test is repeated for values P=20, 10, 5, 3, 2, 1

All receivers have deadline of 2*Pms.

Receiver on 72 has 0 initial delay.

Receiver on node 45 has P seconds delay.

Receiver’s log files have names L1_2_IP_P.txt, where IP is 45 or 72.

7.2.3.2 Latency statistics

We first compare the results for the receivers on the 2 nodes in Figure 15. We can see that mean

values are very similar. On one hand, we could expect lower latencies on node 72, since the receiver

and publisher are on the same node. On the other hand, node 72 hosts 2 test components that must

share the CPU, and the hardware on that node is slower. From the results, we can conclude that these

effects cancel each other, resulting in similar mean performance.

 51

Comparison of the 2 receivers

0,000
1,000
2,000
3,000
4,000

1 2 3 5 10 20

Sending period (ms)

La
te

nc
y

(m
s)

max45
mean45
max72
mean72

Figure 15

We can also speculate why node 72 (running Linux) has greater maximum latencies. The test

component on Windows (node 45) does have somewhat higher priority, but looking at test case 1.1, so

does the subscription on node 199, and yet it has the greatest maximum. The explanation that fits

with the results of test cases 1.1 and 1.2 is that a machine running publishing and receiving

components has greater contention for the CPU, which results in poorer response for some component.

Figure 16 gives a detailed look at the results for the subscription on the Windows node. The minimum

value gives a good idea of the best case performance with ideal scheduling. The standard deviation

curves show that the jitter is very satisfactory for process automation applications. i.e. a control loop

usually works well even with longer latencies as long as new data arrives at a steady rate. The jitter is

much under 1ms, and typical control loops operate at a much longer period, so this is unlikely to cause

unstable behaviour in the control algorithm.

 52

Receiver on node 45

0,000
0,200
0,400
0,600
0,800

1 2 3 5 10 20

Sending period (ms)

La
te

nc
y

(m
s)

min
mean
stdev+
stdev-

Figure 16

The corresponding results for node 72 in Figure 17 are very similar. We can conclude that the

network only adds a small delay, but it is not a primary cause of jitter. These results support our view

that to get good performance, it is important to focus on the nodes themselves. This involves the

hardware, the OS (in particular the scheduler) and keeping the CPU load and number of interrupts to

a minimum. (An OS that handles interrupts well is recommended; the ordinary Windows and Linux

that we use here are not very good in this respect.) As far as application design is concerned, all

unnecessary issue processing should be avoided. For example, transmitting issues also to uninterested

parties with multicast does not give additional load to the network, but the receiver threads on the

receiving nodes must process a great number of interrupts. These results warn us that performance

might deteriorate rapidly because of this.

 53

Receiver on node 72

0,000

0,200

0,400

0,600

1 2 3 5 10 20

Sending period (ms)

La
te

nc
y

(m
s)

min
mean
stdev+
stdev-

Figure 17

Finally, we note that there are no clear trends to be seen when the sending period is decreased. The

performance did not deteriorate as the period was lowered down to 1ms. However, with only one topic

even this does not cause serious CPU load, so we have to perform some scalability tests to get a better

understanding of the performance with short cycle times.

7.2.3.3 Other observations

The following table lists the delays in getting the first issues, measured from the point where we made

the API call to create the subscription. We also have the sequence number of the first issue, and we

can confirm that this number multiplied by the sending period is close to the delay in getting the first

issue. (The Linux that ran the publisher had 1ms timer resolution, so the period was in practice nearly

1ms greater than reported here.) This looks like the publication is ready to send very quickly, but it

takes some time for the subscription to be noticed and a data flow to be established. The subscription

on node 45 appeared at run time, and the initial delays for it are lower. We presume that much setup

work had already been done when the publication and subscription were running on node 72. From the

values in the fourth column, we conclude that the communication between managers on different nodes

is rapid.

 54

 Subscription on 72 Subscription on 45

period(ms) 1st delay(ms) 1st seq# 1st delay(ms) 1st seq#

1 320 146 92 541

2 310 100 326 766

3 598 151 4 752

5 18 3 6 835

10 82 8 84 919

20 426 21 261 966

From the figures in this report, we see no indication that dynamically adding a subscription would

cause peak latencies. Also, the logs do not show any latency peaks at the point where the new

subscription appeared.

7.2.3.4 Deadlines

The Linux node missed one deadline in the test with period 2ms and deadline 4ms. The alert came

4.8ms after receiving the issue with sequence number 116. In the test with a period of 1ms and

deadline 2ms, 6 deadlines were missed. The alerts came between 1.9 and 4.9ms after getting a fresh

issue. No other deadlines were missed on Linux.

On Windows, we only missed one deadline in the tests with sending periods 1ms and 2ms. However,

there were a large number of spurious deadline messages. These came before the actual deadline had

occurred. Here is a small excerpt from the log for the case with a 4ms deadline, which illustrates

typical results for all of the receivers on Windows for the tests with periods 1-10ms (no problems were

observed when the sending period was 20ms.)

Deadline missed 1.714743ms after receiving issue with seq# 777

Deadline missed 1.858895ms after receiving issue with seq# 807

Deadline missed 2.014781ms after receiving issue with seq# 837

Deadline missed 2.160609ms after receiving issue with seq# 867

Deadline missed 2.445562ms after receiving issue with seq# 897

Deadline missed 2.496685ms after receiving issue with seq# 927

Deadline missed 2.647542ms after receiving issue with seq# 957

Deadline missed 2.840304ms after receiving issue with seq# 987

An application might behave erratically, if it gets deadline messages prematurely. Fortunately, it is

quite straightforward for the application programmer to filter out the extra deadline alerts in

OnIssueReceived(). (This is the routine for handling incoming issues and deadline alerts.) I would do

this as follows:

 55

The Listener class is given a private member latestFreshData. Whenever a fresh issue is received, the

value of latestFreshData is set to the current time. Whenever there is a deadline alert, we compare the

difference between the current time and latestFreshData. If this is less than the deadline property of

the subscription, we can ignore the alert by returning from OnIssueReceived() immediately.

(Timestamps are taken with an accurate function.)

7.2.4 Results of test case 1.3

7.2.4.1 Parameters

We have one signal generator on node 72 and a receiver on node 45.

Generator publishes 10000 issues for topic ‘temp1’ with period 20ms. (Total time is 200s.)

We use values N1 = 2000 N2 = 4000 (i.e. issues in this range are not sent.)

Receiver has deadline of 40ms and 0 initial delay.

Receiver’s log file has name L1_3.txt

7.2.4.2 Results

Here are some interesting parts from the log:

First issue received 379.962152ms after starting up the component
...
Seq#: 1997, Latency: 0.228332ms
Seq#: 1998, Latency: 0.254062ms
Seq#: 1999, Latency: 0.197872ms
Seq# 2000 missed.
...
Seq# 4000 missed.
Seq#: 4001, Latency: 0.357722ms
Seq#: 4002, Latency: 0.348140ms
Seq#: 4003, Latency: 0.236585ms
Seq#: 4004, Latency: 0.214851ms
Seq#: 4005, Latency: 0.213340ms
Seq#: 4006, Latency: 0.206225ms
...

Sequence number of first received issue: 20.
In ms: Min: 0.130976, Max: 0.553934, Mean: 0.257598 Stdev: 0.044771
Deadline missed 124.457124ms after receiving issue with seq# 1999
Deadline missed 254.537866ms after receiving issue with seq# 1999
Deadline missed 384.839865ms after receiving issue with seq# 1999
Deadline missed 514.921445ms after receiving issue with seq# 1999

 56

Deadline missed 615.161811ms after receiving issue with seq# 1999
Deadline missed 745.433639ms after receiving issue with seq# 1999
Deadline missed 875.511448ms after receiving issue with seq# 1999
...
We see that only the issues 2000-4000 are missed. Having the publication stop sending for some time

(2000*20ms = 40s) did not cause any confusion when sending was resumed. The best-effort mode did

not lose any issues, nor were the latencies conspicuously high at this point.

After sending the 1999th issue, the subscription will naturally miss a number of deadlines; I have

copied here the first few alerts from the log. The receiver’s deadline is 40ms, and we get alerts around

every 100ms. The RTPS specification says that a deadline notification should come within 2 deadline

periods.

7.2.5 Results of test case 1.5

7.2.5.1 Parameters

We have signal generators on nodes 72 and 199 and a receiver on node 45.

Generator on 199 has strength 2. It publishes 10000 issues for topic ‘temp1’ with period 20ms. (Total

time is 200s.) We use values N1 = 2000 N2 = 4000.

Generator on 72 has strength 1 and it publishes 8000 issues for ‘temp1’ with period 20ms.

Receiver has deadline of 40ms.

All components have 0 initial delay.

Receiver’s log file has name L1_5.txt

7.2.5.2 Results

The log has over 10000 lines, so here are the interesting parts:

First issue received 401.100586ms after starting up the component.
...
Seq#: 1997, Latency: 0.163941ms
Seq#: 1998, Latency: 0.187682ms
Seq#: 1999, Latency: 0.159181ms
Seq# 2000 missed.
...
Seq# 2619 missed.
Seq#: 2620, Latency: 0.173555ms
Seq#: 2621, Latency: 0.215700ms
Seq#: 2622, Latency: 0.214459ms
Seq#: 2623, Latency: 0.211578ms
Seq#: 2624, Latency: 0.192424ms
...

 57

Seq#: 3810, Latency: 0.201212ms
Seq#: 3811, Latency: 0.199563ms
Seq#: 3812, Latency: 0.216544ms
Seq# 3813 missed.
...
Seq# 4000 missed.
Seq#: 4001, Latency: 0.190609ms
Seq#: 4002, Latency: 0.178032ms
Seq#: 4003, Latency: 0.162662ms
Seq#: 4004, Latency: 0.154275ms
Seq#: 4005, Latency: 0.146727ms
...
Sequence number of first received issue: 20.
In ms: Min: 0.114760, Max: 0.450669, Mean: 0.167832 Stdev: 0.027816

No other issues were missed than indicated above. Deadline behavior was as in test case 1.3 (deadlines

were only missed after issue 1999).

When the primary publication stops sending at issue 2000, it is not until issue 2620 than we start

getting data from the secondary publication (that has been running all the time.) After that we never

miss any deadlines. Curiously, issues 3813 – 4000 are missed. This can be explained by the fact that

the secondary publication happened to have a ca. 5% longer period in practice (due to the 1ms timer

resolution.) This means that in the time that the primary publication’s loop had gone through 4000

iterations, the secondary one had only done 3812. The steady flow of fresh data was not interrupted at

this point, which is confirmed by the fact that we got no deadline notifications after any issue other

than 1999. The middleware has behaved according to its specification, and this is no problem for

cyclic transfer of measurement data. If there is some application where it is important to get issues

with consecutive sequence numbers, the reliable publish-subscribe mode should be used. Having

redundant publications with slightly different cycle times must be taken into consideration.

7.3 Event Notification and Acknowledgement Services

7.3.1 Nodes and Network

We refer to each node by the last part of its IP address. The following nodes are used:

Node 45 (667MHz, 256MB RAM, Windows XP)

Node 72 (400MHz, 128MB RAM, Mandrake 8.2 Linux)

Node 92 (533MHz, 64MB RAM, Mandrake 8.2 Linux)

 58

Nodes 92 and 72 are connected to the same 100Mbps switch. This switch and node 45 are connected

to another switch using 100Mbps Ethernet.

Time synchronization components run at real-time priority. Test components on Windows use high

priority. The environment for running components on Linux is slightly different from the previous

section, since we have solved some problems. The test components are run at a priority of -10 and the

code optimization switch –O2 has been used at compile time for better performance.

In our experience, raising the test component priorities does not significantly improve performance

(mean latencies or jitter) when there are no other user apps and the UI is not used. Comparing these

results to those in the previous test suite will show that there are no major performance differences.

This can be explained by the fact that performance will depend mainly on how well the OS schedules

processes and handles interrupts. Since we have no other user applications running, there will not be

much difference in this behaviour.

7.3.2 Results of test case 2.1

7.3.2.1 Parameters

We have one event generator on node 72 and receivers on nodes 45 and 72.

Generator publishes 10000 issues for topics in elist1.txt (see OHJAAVA-227) with period 20ms.

(Total time is 200s.)

Burst level 1 is used, so we test reliable cyclic transfer.

As stated in OHJAAVA-227, send and receive queue lengths are 5 and table array size (in the data

type) is 0, unless otherwise mentioned.

Subscription pattern is */*/*/*/*, so all topics should have been subscribed to.

Receiver’s log files have names L2_1_IP.txt, where IP is 45 or 72.

Publisher’s log file is PL2_1.txt

7.3.2.2 Mean, min, max and stdev

Figure 18 shows the statistics for the first, fifth and tenth topics in elist.txt.

The topics are labelled with the number 1, 5 or 10 and W or L, depending on whether the receiver was

on the Windows or the Linux node.

 59

Min, max. mean and stdev

0
20
40
60
80

1st W 5th W 10th
W

1st L 5th L 10th
L

Topic and Node

La
te

nc
y

(m
s)

Mean
Stdev
Min
Max

Figure 18

The most important observation that can be made from the chart above is that there were some

surprisingly long maximum latencies on the Linux node. Looking at the log, we can see that the

maximum occurs at issue number 4752 for each topic. The following excerpt is for the first topic, but

all topics exhibited similar behaviour. If network or clock synchronization problems would be the

cause of this, we could expect similar results on Windows. We can conclude that the event receiver on

Linux was not scheduled promptly at this point. This is not because there was not enough processor

capacity, because this test ran for several minutes, publishing at the same rate, and otherwise it

performed decently. We also see that although these components were now run at high priority (minus

10), this does not guarantee good scheduling at all times. Since the NDDS middleware operates in

best effort mode, it is hard to believe that it would be responsible for such anomalous behaviour. We

again make the conclusion that a RTOS with appropriate scheduling is required, if the application has

hard deadlines.

Seq#: 4752, Latency: 66.787004ms
Seq#: 4753, Latency: 47.472954ms
Seq#: 4754, Latency: 40.187001ms
Seq#: 4755, Latency: 20.841956ms
Seq#: 4756, Latency: 3.614068ms
Seq#: 4757, Latency: 0.448942ms
Seq#: 4758, Latency: 3.880978ms
Seq#: 4759, Latency: 0.482082ms

 60

We now plot the data without the maximums in Figure 19 in order to get a better look at the other

statistics:

Mean, stdev and min

0
1
2
3

1st W 5th W 10th
W

1st L 5th L 10th L

Node and Topic

La
te

nc
y

(m
s)

Mean
Stdev
Min

Figure 19

It is clear that the problem explained above has affected the mean and standard deviation values for

the subscriptions on the Linux node. Only the minimums are unaffected by this, and they are better for

the Linux receiver (since the receiver and generator were on the same node.) It is interesting to

observe that the latencies increase quite linearly as the topic number increases. We will offer an

explanation in the next subsection.

7.3.2.3 Latency distribution

Figure 20 has a histogram for the first topic on the Windows receiver. (On the horizontal axis we have

a range of latencies and the column height is the number of issues whose latency was in that range.)

Since the mean for these was 0.66ms and standard deviation 0.1ms, there is nothing surprising in the

histogram. The distribution is fairly regular. What cannot be seen from the chart is that the last

category (>=0.85ms) has a size of 24 and that 13 issues had a latency of over 3ms.

 61

First topic on Windows

0
1000
2000
3000
4000
5000
6000

0.55-
0.60

0.60-
0.65

0.65-
0.70

0.70-
0.75

0.75-
0.80

0.80-
0.85

0.85-
4.00

Latency range (ms)

Figure 20

The latency distribution in Figure 21 has been derived from the latencies of all 10000 issues, after

they were sorted in ascending order. The first column has the mean of the 1000 smallest latencies, the

second has the mean for the next 1000 and the last has the mean for the 1000 longest latencies. We

have displayed values for the 1st, 5th and 10th topics on the Windows receiver.

We see that the distribution is very even. Even the column that shows the mean of the final 10% is

less than 0.3ms greater than the mean. This illustrates an observation that is also made by reading

through the logs: there are a few rare latencies that are much greater than the mean. Since these are

scattered around the logs, and the processor load is very much constant during the tests, we attribute

these peaks to undeterministic scheduling.

 62

Latency distribution on Windows

0
0.5

1
1.5

2
2.5

1 2 3 4 5 6 7 8 9 10

Thousands of issues

La
te

nc
y

(m
s)

1st Topic
5th Topic
10th Topic

Figure 21

We can clearly see a pattern that we pointed out in the previous chart: the latencies increase linearly

as the topic number increases. We can explain this by observing that the middleware sends issues for

the topics in the order that they were read in from the topic name file. (I.e. when the publisher’s send

method is invoked, it first send an issue for the publication for topic one, then for topic 2 and so on.)

We have also observed that in practice issues nearly always also arrive in this order. Since issues for

all topics (10 in this case) are sent by one publisher send operation, it is not possible to process them

at once at the sending and receiving ends. The ones that are sent later have to wait. By measuring the

publisher’s total send delay, and remembering that sending was done synchronously in the calling

thread, we can conclude that the bottleneck is the NDDS receiver thread. This thread is responsible for

passing the incoming issues from UDP to the application and executing the OnIssueReceived() routine

in the application that processes the data. In order to confirm this explanation, we tried adding some

extra processing into the OnIssueReceived() routine and observed that the latencies for the later topics

again increased linearly.

7.3.2.4 Other observations

The publishers log was empty (i.e. the publisher did not experience difficulties in sending at this rate.)

The delay in getting the first issue (after staring up the components) was between 2027 and 2031ms

for all the topics on the Linux receiver. The Windows receiver recorded values between 2003 and

2006ms.

 63

7.3.3 Results of test case 2.2

7.3.3.1 Parameters

We have event generators on nodes 72 and 92 and receivers on nodes 92, 45 and 72.

Burst level 3 is used.

Generator on 72 publishes 10000 bursts (each containing 3 issues) for topics in elist1.txt with period

20ms. (Total time is 200s.)

Generator on 92 publishes 2000 bursts for topics in elist2.txt with period 100ms. (Total time is

200s.)

The first subscriber on 45 uses this pattern:

“cooling/*/*/*/*”

The second subscriber on 72:

“*/*/*/pressure/*”

The third subscriber on 92:

“*/*/*/*/3-5”

Receiver’s log files have names L2_2_IP.txt, where IP is 92 or 72.

Publisher’s log file is PL2_2_IP.txt

7.3.3.2 Understanding the effect of bursts

In all previous tests we have sent one issue for each topic at regular intervals. Now we are sending 3

issues for each topic without pausing in between. The following charts show statistics based on

dividing the sequence number by the burst size and taking the remainder (modulo division). If the

modulo is 0, the issue was the first in a burst, if the modulo is one, the issue was the second of a burst

and if the modulo is 2, we have an issue that was sent last in a burst.

Figure 22 shows the latencies for the first topic on the Windows receiver. (This is the 6th topic sent by

the generator.) Presenting the data in this way reveals a very linear pattern: the later issues in a burst

have to wait before the first ones are processed. From the slope of the curve we notice that the delay

for processing each new issue was around 0.5ms in this case.

 64

First Topic on Windows

0
0.5

1
1.5

2

1 2 3

Sequence number in burst

La
te

nc
y

(m
s)

Mean
Stdev-
Stdev+

Figure 22

Figure 23 shows the same data for the last topic on the Windows receiver; the results do not challenge

any conclusions that were made before. The only difference is that the latencies are systematically

higher, as is to be expected for topics whose issues are sent last.

10th Topic on Windows

0

1

2

3

1 2 3
Sequence number in burst

La
te

nc
y

(m
s)

Mean
Stdev-
Stdev+

Figure 23

 65

For the receivers on the Linux nodes, we observed similar results, but with a few exceptions. These can

be illustrated by observing the log of the receiver on 72. Remember that it subscribed to all pressure

related events, and that some of them were generated on the same node (72) and some on the node

92.

The following excerpt is from the log for cooling/expected/value/pressure/3-4, a topic

published by a generator on node 92:

Seq#: 10, Latency: 0.815034ms
Seq#: 11, Latency: 0.633955ms
Seq#: 12, Latency: 0.658035ms
Seq#: 13, Latency: 0.824928ms
Seq#: 14, Latency: 0.611901ms
Seq#: 15, Latency: 1.331925ms
Seq#: 16, Latency: 0.648975ms
Seq#: 17, Latency: 0.632882ms
Seq#: 18, Latency: 0.676870ms
Seq#: 19, Latency: 0.904083ms
Seq#: 20, Latency: 0.644088ms
Seq#: 21, Latency: 0.664115ms
We see that the issues that were first in a burst (sequence numbers 10, 13, 16, 19) exhibit a latency

that is greater than that for the second issue in the burst. The third issue has again a larger issue than

the second. This behaviour is consistent throughout the log.

We believe that this is caused by having a receiver and generator component on the same node (on

both 72 and 92), since we have not observed this otherwise. Whatever intricate pattern the scheduler

uses to run the components and handle the interrupts will affect the latencies.

7.3.4 Results of test case 2.3

7.3.4.1 Parameters

We have an event generator on node 72 and receivers on nodes 45 and 72.

Burst level 3 is used.

Generator publishes 5000 bursts (each containing 3 issues) for topics in elist1.txt with period 20ms.

(Total time is 100s.)

Both subscribers use this pattern:

“*/*/*/*/*”

Receiver’s log files have names L2_3_IP.txt, where IP is 45 or 72.

Publisher’s log file is PL2_3.txt

 66

7.3.4.2 Difficulties

In this test case, we had a situation where issues were lost, so the reliability mechanism should have

handled the necessary retransmissions. In the code, we check the return value of the publisher object’s

Send() method. If this is false, the issue could not be sent, because the send queue was full. Therefore,

the application will keep retrying with the same issue, in order to achieve successful delivery.

However, the logs for this test showed that issues were lost even by the local subscription, although the

publisher had never returned false. I asked RTI for an explanation, and they admitted that there is a

known bug in the publisher [Wang 2002]. The Send() will always return true.

If this problem is known to the developers, it is possible to use other parts of the API to control

reliable delivery. Namely, a publication listener should be registered. This receives events when the

queue gets full as well as when the number of issues exceeds a certain level. These can be used to

control the behaviour of the publications.

While this bug can be dealt with if it is known, coding a workaround at this point would require

redesigning the event generator, starting from its architecture. At this point in the project there is

simply no time for this. The schedule for the testing effort was already compressed when, halfway

through the project, we were required to make Linux the main testing environment.

As far as the results here are concerned, we can say that the bug has not affected any other tests than

those where the cable was pulled out. (This can be seen from the logs: there were no dropped issues.)

This is because the queue size was long enough for the reliable delivery to do its job without running

out of queue space. However, this test and test case 2.5 will not perform as expected. Nevertheless, in

the next section we have the results for this test. We believe that they do increase our insight of what

is happening, even though we could not confirm the expected outcome.

7.3.4.3 Effect of pulling out the cable

The main difference to the previous test case is that the cable was pulled out. The effect of this is not

obvious from statistics and charts, so we will show relevant parts of the logs. These excerpts are from

the first topic in the log from node 45; the results for the other topics were similar.

Statistics for topic 'mixing/expected/value/temp/1-5':
First issue received 1991.709982ms after starting up the component.
Seq#: 1, Latency: 3.842345ms
Seq#: 2, Latency: 4.870260ms
Seq#: 3, Latency: 4.746700ms
Seq#: 4, Latency: 3.683004ms
Seq#: 5, Latency: 4.469649ms
Seq# 6 missed.
Seq# 7 missed.
Seq# 8 missed.
Seq# 9 missed.

 67

Seq# 10 missed.
Seq# 11 missed.
Seq# 12 missed.
Seq# 13 missed.
Seq# 14 missed.
Seq# 15 missed.
Seq# 16 missed.
Seq#: 17, Latency: 4.180390ms
Seq#: 18, Latency: 4.308903ms
Seq#: 19, Latency: 2.081569ms
Seq#: 20, Latency: 3.299750ms
Seq#: 21, Latency: 8.863063ms
Seq#: 22, Latency: 0.729161ms
…

Seq#: 943, Latency: 0.803651ms
Seq#: 944, Latency: 2.178448ms
Seq#: 945, Latency: 3.398734ms
Seq# 946 missed.
…

Seq# 2235 missed.
Seq#: 2236, Latency: -1046875188495.188100ms
Seq#: 2237, Latency: -1046875188493.828700ms
Seq#: 2238, Latency: -1046875188492.561400ms
Seq#: 2239, Latency: -1046875188502.334100ms
Seq#: 2240, Latency: -1046875188500.988800ms
Seq#: 2241, Latency: -1046875188499.764500ms
Seq#: 2242, Latency: -1046875188502.303500ms
Seq#: 2243, Latency: -1046875188501.043000ms
Seq#: 2244, Latency: -1046875188499.859300ms
Seq#: 2245, Latency: 0.795510ms
Seq#: 2246, Latency: 2.074873ms
Seq#: 2247, Latency: 3.267846ms

The following lines are from the log on 72 for the same topic:

Seq#: 946, Latency: 1.453042ms
Seq#: 947, Latency: 3.772020ms
Seq#: 948, Latency: 6.101012ms
Seq#: 949, Latency: 43.009996ms

 68

Seq#: 950, Latency: 52.541018ms
Seq# 951 missed.
...
Seq# 961 missed.
Seq#: 962, Latency: 4.223943ms
Seq#: 963, Latency: 3.785968ms
Seq#: 964, Latency: 5.051017ms
Seq#: 965, Latency: 6.280065ms
Seq#: 966, Latency: 7.546067ms
Seq#: 967, Latency: 1.468062ms
Seq#: 968, Latency: 3.823042ms
...
Seq#: 1181, Latency: 3.816009ms
Seq#: 1182, Latency: 6.189942ms
Seq#: 1183, Latency: 44.186950ms
Seq#: 1184, Latency: 47.713041ms
Seq#: 1185, Latency: 53.623915ms
Seq#: 1186, Latency: 37.333965ms
Seq#: 1187, Latency: 39.551020ms
Seq# 1188 missed.
Seq#: 1189, Latency: 22.589922ms
Seq#: 1190, Latency: 26.756048ms
Seq#: 1191, Latency: 34.646988ms
Seq#: 1192, Latency: 26.845098ms
Seq#: 1193, Latency: 30.179024ms
Seq#: 1194, Latency: 43.353081ms
Seq#: 1195, Latency: 27.096987ms
Seq#: 1196, Latency: 29.036045ms
Seq#: 1197, Latency: 27.978063ms
...
Seq#: 2233, Latency: 1.487970ms
Seq#: 2234, Latency: 3.826022ms
Seq#: 2235, Latency: 6.171942ms
Seq#: 2236, Latency: 13.749957ms
Seq#: 2237, Latency: 16.118050ms
Seq#: 2238, Latency: 18.463969ms
Seq#: 2239, Latency: 6.226063ms
Seq#: 2240, Latency: 8.553028ms
Seq#: 2241, Latency: 11.216998ms

 69

Seq#: 2242, Latency: -1046875188487.042480ms
Seq#: 2243, Latency: -1046875188484.765381ms
Seq#: 2244, Latency: -1046875188478.174438ms
Seq#: 2245, Latency: 8.507967ms
Seq#: 2246, Latency: 10.813951ms
Seq#: 2247, Latency: 13.261080ms
Seq#: 2248, Latency: 2.462029ms
Seq#: 2249, Latency: 7.305026ms
Seq#: 2250, Latency: 9.616971ms
Seq#: 2251, Latency: 2.388954ms
...
Missed seq#: 6.
Missed seq#: 7.
Missed seq#: 8.
Missed seq#: 9.
Missed seq#: 10.
Missed seq#: 11.
Missed seq#: 12.
Missed seq#: 13.
Missed seq#: 14.
Missed seq#: 15.
Missed seq#: 16.
Missed seq#: 951.
Missed seq#: 952.
Missed seq#: 953.
Missed seq#: 954.
Missed seq#: 955.
Missed seq#: 956.
Missed seq#: 957.
Missed seq#: 958.
Missed seq#: 959.
Missed seq#: 960.
Missed seq#: 961.
Missed seq#: 1188.
Missed seq#: 1248.
Missed seq#: 1305.
Missed seq#: 1359.
Missed seq#: 1530.
Missed seq#: 1584.

 70

Missed seq#: 1752.
Missed seq#: 1803.
Missed seq#: 1860.
Missed seq#: 1917.
Missed seq#: 1971.
Missed seq#: 2022.
Missed seq#: 2079.
Missed seq#: 2187.

We see some strange behaviour in both logs. The receiver on 45 has missed issues 946-2235, because

the network connection was broken at this time. However, both receivers also missed issues 6-16,

which shouldn’t happen with the reliable mode. Also, during the time the network was down, the

receiver on 72 missed a few issues. This was accompanied by some rather long latencies, e.g. issue

1188 is missed at a time when latencies between 20 and 50ms are common.

We now understand that the sender’s queue overflowed and that old issues were discarded, because the

Send() return value provided misleading information to the application. High latencies on node 72

were observed when the network was down. This can be caused by the high priority synchronization

algorithm bombarding its UDP socket in a futile attempt to contact the clock server.

The negative latencies after issue 2236 are caused by the clock synchronization algorithm, which took

nearly a second to recuperate after its connection to the master clock was restored.

7.3.5 Results of test case 2.4

7.3.5.1 Parameters

We have one event generator on node 72 and a receiver on node 45.

Generator publishes 1000 issues for topics in elist1.txt (see OHJAAVA-227) with period 100ms.

(Total time is 100s.)

Burst level 30 is used.

As mentioned before, send and receive queue lengths are 5.

Subscription pattern is mixing/*/*/*/*, so the first 5 topics should have been subscribed to.

Receiver’s log files have names L2_4.txt.

Publisher’s log file is PL2_4.txt

7.3.5.2 Analyzing the behaviour of a burst

We suspect that that a similar pattern with latencies will occur with each burst, so we have calculated

statistics based on the sequence numbers of issues within a burst (For the first topic in elist1, this data

has been plotted Figure 24; Figure 25 has the corresponding results for the 5th topic.).

 71

Latencies for first topic

0
1
2
3
4
5

1 5 9 13 17 21 25 29
Sequence number in burst

La
te

nc
y

(m
s)

Stdev-
Stdev+
Mean

Figure 24

At first we observe the same behaviour as when sending with a burst rate of 3: the latencies of

subsequent issues in a burst increase almost linearly. We explained this with the issues being processed

by the receiver more slowly than they could arrive, so some of them had to wait in the receive queue.

Now, looking at the results, it is important to remember that the length of the sending and receiving

queues was 5. When the sender’s queue fills up, the send will block for 100ms or until there is space in

the queue. The receive queue also gets full at around the same time, since it has the same size. This

explains the peaks in the 2 charts at the 5th and 6th issues sent, because that is the point where the

traffic jams. It is just like driving in a traffic jam: at one point the traffic comes to a halt and then it

gradually starts moving again. The exact pattern depends on the inner workings of the scheduler and

interrupt handler. (Remember that the sending timestamp is taken just before the issue is actually sent

off. This explains why the latencies of issues later in the burst are sometimes lower than the previous

ones.)

At this point we point out that the publisher’s log was again empty, i.e. sends were always successful.

This is unsurprising, since the send would have blocked for 100ms before returning an error.

Now compare the charts for the first and last topics. As we have observed before, the latencies for the

first topics are systematically smaller, since their issues are sent first. In this test case we observe the

same behaviour until the queues fill up. After that this effect is not so pronounced, since the scheduling

is different. This is perfectly acceptable: the middleware makes no promises about treating one topic

in a publication any differently than another. We have just made observations about the order in which

jobs are processed in practice.

 72

Latencies for fifth topic

0

1
2

3
4

5

1 4 7 10 13 16 19 22 25 28

Sequence number in burst

La
te

nc
y

(m
s)

Stdev-
Mean
Stdev+

Figure 25

7.3.6 Results of test case 2.5

This test is omitted for reasons explained in section 7.3.4.2.

7.3.7 Results of test case 2.6

7.3.7.1 Parameters

We have one event generator on node 72 and a receiver on node 45.

Generator publishes 1000 issues for topics in elist1.txt with periods 100, 50 and 20ms.

Burst level 3 is used.

Subscription pattern is mixing/*/*/*/1-5, so only the first topic is subscribed to.

Table size is 62000, so the payload in one issue is slightly over 62kB.

Receiver’s log files have names L2_6_X.txt.

Publisher’s log file is PL2_6_X.txt

Where X is 20, 50 or 100, depending on the publisher period.

7.3.7.2 Statistics

Figure 26 displays the main statistics for each of the tests (where the sending periods were 20, 50 and

100ms).

 73

Statistics for 62kB issues

0
20
40
60
80

100
120
140

Min Mean Max Stdev

La
te

nc
y(

m
s)

20
50
100

Figure 26

On the average, sending an issue took slightly over 22ms. We observed very little variation among the

issues that were sent in one burst. This can be seen from Figure 27, where the issues are grouped

according to their sequence number in the burst. (This is from the test that had a 100ms period; the

others behaved similarly.) This is a clear difference to the previous results, where the latencies

increased considerably within a burst. We suppose that sending the large issues takes so long that the

receiver can handle them as they come (so the receiver is no longer a clear bottleneck).

Sending a burst every 100ms

0

10

20

30

40

1 2 3
Sequence number within a burst

La
te

nc
y

(m
s)

Max
Mean
Stdev-
Stdev+

Figure 27

 74

Since sending one issue takes close to 20ms, the whole burst should take nearly 60ms. When the

sending period goes below this, the sender will just be sending new bursts one after the other without

respite, since it cannot maintain the desired period. The total send times for 1000 issues at 20, 50 and

100ms were 50.4, 51.8 and 101 seconds, although the theoretically correct values would have been

20, 50 and 100 seconds, respectively. This indicates that the minimal sending period is around 50ms.

A burst has size 3*62kB = 186kB, and 20 of these per second makes 3720kB per second. Since we

are using 100Mbps Ethernet, it is clear that we did not run out of network bandwidth. The limiting

factor was the interrupt handling and issue processing.

The total send times also explain why the minimum, maximum and standard deviation values were

much lower with a period of 100ms: at that rate, the publisher was not running in a busy loop, so

there was no fierce contention over the CPU.

7.3.7.3 Latency distribution

The latency distribution in Figure 28 has been obtained by sorting the latencies and taking the

averages in groups of 300 (for the test with the 50ms period.) This supports the previous conclusions

that the issues were sent and received at around the same rate, i.e. there was a steady flow of them

from publication to subscription with no major bottlenecks.

Latency distribution for 50ms period

0
5

10
15
20
25
30

1-3
00

30
1-6

00

60
1-9

00

90
1-1

200

12
01

-150
0

15
01

-180
0

18
01

-210
0

21
01

-240
0

24
01

-270
0

27
01

-300
0

La
te

nc
y

(m
s)

Figure 28

 75

8 Scalability Test Results

8.1 Introduction
In this section, we describe the exact test arrangements and parameters used to run the scalability

tests. We do not include all of the results, since the log files for this test suite alone have a total of

over 100000 lines. Here we show summary data as well as any information that was unexpected or

otherwise interesting.

We use the same components as in the functional tests. The difference is that the number of

participating nodes and components as well as the volume of data is much greater. In the basic test

scenario we generate traffic that is somewhat typical for a process automation system. In later test

cases, we add a few components to observe how the behaviour is affected by components with special

communication requirements. We will be observing behaviour that is in many ways similar to what has

been reported in the functional test results. We will not repeat all of those conclusions here; rather, we

will focus on any new insight that is gained from scaling up the tests.

8.2 Scalability Test Arrangements

8.2.1 Nodes and Network

All of our IP addresses start with 130.233.152, so we will refer to nodes by the last part of their IP

address. The following nodes have been used:

45: (667MHz, 256MB RAM, Windows XP)

72: (400MHz, 128MB RAM, Mandrake 8.2 Linux)

199: (2GHz, 512MB RAM, Windows XP)

89: (533MHz, 128MB RAM, Mandrake 8.2 Linux)

127: (350MHz, 128MB RAM, Mandrake 8.2 Linux)

92: (533MHz, 64MB RAM, Mandrake 8.2 Linux)

72, 89, 92 and 127 are all connected to the same 100Mbps switch. This switch and 45 are connected

to a switching router with 100Mbps Ethernet. 199 is connected to another switching router at

100Mbps Ethernet. The switching routers belong to the backbone, which operates at 1Gbps.

 76

8.2.2 The Basic Configuration

8.2.2.1 Purpose

Here we describe the basic scalability test configuration. The test cases are variations of this; each

variation tries to simulate some situation that might occur in an automation system.

In functional tests, we examined the behaviour of transferring data with a fixed period. Although we

moved to short periods, the volume of traffic and number of participating nodes was small. Here we

will have three nodes that publish 100 topics each with different periods. We want to see how much

the performance deteriorates compared to the functional tests. Ideally, the middleware should

prioritize the topics with shorter periods, but NDDS does not support this. RTPS is based on a best-

effort principle, which just tries to minimize the latency caused by any middleware processing.

We also want to see how long it takes for the system to start up (i.e. when do subscriptions start

getting issues.)

8.2.2.2 Acceptable performance degradation

When the load becomes heavy, the performance should degrade gracefully. It is acceptable if some

measurements are missed and latencies increase. If such a thing happens during a peak load, the

production process will still continue with some temporary drop in quality. (The damage caused by lost

or late data is very process dependent; for the sake of safety, it is considered desirable that a process

will remain stable even if it does not get new control signals for some time.) However, if the system

behaves wildly or crashes, we will get serious problems with product quality and the likelihood for

safety problems is greatly increased.

8.2.2.3 Setup and configuration

Node 92: Signal generator publishes 100 topics ‘current1’ to ‘current100’ with a period of 100ms.

Signal receiver subscribes to all the temp topics with deadline 50.

Node 72: Signal generator publishes 100 topics ‘pressure1’ to ‘pressure100’ with a period of 50ms.

Node 199: Signal generator publishes 100 topics ‘temp1’ to ‘temp100’ with a period of 20ms. Signal

receiver subscribes to all the pressure and temp topics with deadline 100.

Node 127: Signal receiver subscribes to all the temp, pressure and current topics with deadline 200.

Node 45: Signal receiver subscribes to all the temp topics with deadline 40.

Node 89: Signal receiver subscribes to all the current and pressure topics with deadline 200.

 77

Figure 29 The basic scalability test configuration

Figure 29 shows the basic configuration. Next to each publishing node, we have the name of the topics

that are published as well as the sending period. E.g. node 199 publishes topics temp1, temp2, …,

temp100, so it will send a total of 100 issues (1 for each topic) every 20ms). An arrow from node A

to node B indicates that B subscribes to all of the topics that B publishes. For example, 89 subscribes

to 200 topics, (all the pressure and current topics).

Each signal generator will publish 1000 issues for each topic

Clock synchronization components were run at real-time priority on Windows and -15 on Linux (0 is

default and -20 highest.) Other test components were run at high priority on Windows and -10 on

Linux.

92

72

199

127

89

45

Pressure 50ms

Temp 20ms

Current

100ms

 78

8.3 Test Cases

8.3.1 Multirate cyclic transfer of measurement data (TC-S.1)

8.3.1.1 Setup

Test-case id: S.1

Purpose: Here we test the performance and reliability of data transmission under a typical load (data

is transmitted cyclically and at several different frequencies.) In this test case we do not generate any

peaks or other problem situations.

Method: Exactly as described in 8.2.2.3.

8.3.1.2 Approach

In this test we had 300 topics, and 1000 issues were published for each topic. Each topic was

subscribed to by at least one subscription. Therefore, we cannot present the data in much detail –

detailed analysis has been carried out for the functional tests. Here we will display summary data and

try to understand what kind of performance and reliability can be expected from a system which is

under a realistic load.

8.3.1.3 Comparison of 2 signal receivers

In this section, we compare the statistics for all of the topics that were subscribed to by the receivers

on nodes 127 and 199.

For each topic that was subscribed to, the signal receivers have recorded the minimum, maximum and

mean latencies as well as the standard deviations. Remember that the following topics were published:

‘temp1’ to ‘temp100’ with period 20ms on node 199

‘pressure1’ to ‘pressure100’ with period 50ms on node 72

‘current1’ to current100’ with period 100ms on node 92

Before looking at the results, it must be remembered that normal operation of NDDS is based on a

first-come first-serve principle. [Wang 2002] The design goal has been to minimize the overhead

caused by middleware processing, which means that any certain topics are not prioritized over others.

Therefore, we will observe better latencies for those topics whose issues happened to be processed

first. The order in which topics are processed is left unspecified, although we will make some practical

observations about this. However, since we have grouped all the topics that an application publishes

under a single publisher, we can never count on any particular topic being serviced before others.

Therefore, in order to gain a comprehensive understanding of what kind of performance can be

expected, we will need to look at all of the topics being published. This will give us an idea of the

average, best and worst case performance.

 79

Figure 30 illustrates the statistics for all of the topics that were subscribed to on node 199.

Receivers on node 199

0
2
4
6
8

10
12

1 24 47 70 93 116 139 162 185
Topics

La
te

nc
y

(m
s)

Min
Mean
Max
Stdev

Figure 30

There were 200 subscriptions; one for every pressure and temp topic. For each topic, we have plotted

the mean, minimum and maximum latencies as well as the standard deviations. (The plot should

therefore be discrete, but with 200 topics the individual points could not be properly distinguished. We

are using a continuous plot for the sake of clarity.) From the logs we can see that all of the pressure

topics come first, followed by the temp topics (so that value 47 on the horizontal axis corresponds to

topic ‘pressure47’ and 139 to the topic ‘temp39’.)

Notice the very linear increase in latencies for the topics that were grouped under one publisher. We

have observed and analysed this behaviour in test suite 2. Briefly, this is because the issues are sent in

the order that the topics were added to the publisher, and the receiver’s processing capacity is the

bottleneck. Incoming issues will have to wait for the receiver thread to process the previous ones, and

this wait time increases linearly as new issues arrive (the increase is linear when issues arrive at a

constant rate and the processing time for one issue is constant.)

We can see that the temp topics (the last 100 on the chart) have been received more quickly than the

pressure topics. This is because the publisher component for the temperature data was on the same

node.

Now consider a Figure 31, which shows statistics for all of the 300 topics that were received on the

node 127. First we have the 100 pressure topics on the left, then the 100 current topics and finally the

100 temp topics (e.g 253 corresponds to the topic ‘temp53’).

 80

Receivers on node 127

0
10
20
30
40
50
60

1 37 73 109 145 181 217 253 289
Topics

La
te

nc
y

(m
s)

Min
Mean
Max
Stdev

Figure 31

We can make the following observations:

- The curves are not always linear. Here we have an exception to the general behaviour, where

topics are processed in the order that they were added to the publisher. However, from the

previous chart we inferred that issues for the ‘temp’ and ‘pressure’ topics were sent in order,

so they should also be received in order on every node. A closer examination of the receivers

on 127 reveals that the nonlinear behaviour only applies to the ‘current’ topics, so there is no

contradiction.

- The latencies on 127 (running Linux) are roughly twice as long as those on 199 (running

Windows XP). However, 199 has 4 times more RAM and processor speed than 127. 127 has

300 subscriptions where 199 has only 200, but 199 also has a publisher component with the

shortest period (20ms). Taking all of these factors into consideration, it is difficult to

evaluate the performance of the operating systems.

- From the statistics on node 127 and 199 we see that there is a very strong relationship

between the mean and maximum values (i.e. the shapes of the curves are very similar). This

could be taken into consideration when setting limits on a system’s average and worst case

performance.

- The minimum latencies for 1000 issues should give a good idea of the best case performance.

We see that the average and best case results are very close to each other. The worst case

latencies were much higher, and we suspect bad scheduling and/or the execution of some

kernel tasks to be the cause of this. Switching to a RTOS should clearly improve the worst

case performance. The average performance is likely to improve when an OS with good

interrupt handling capabilities is chosen. Here we are receiving thousands of issues every

 81

second, and each incoming issue causes an interrupt. Windows and standard Linux have a bad

reputation for handling interrupts in such quantities.

- Looking through the other logs, we see that the worst latencies were incurred by the

subscriptions to the ‘temp’ topics on 127. The highest mean is nearly 11ms and worst

standard deviation over 3ms. For most control algorithms, a latency of 11ms would be

acceptable as long as new signals arrive at a fixed rate. The jitter of 3ms would probably not

cause unstable behaviour from the part of a typical algorithm.

8.3.1.4 Comparison of the receivers of the pressure topics

The nodes 89, 127 and 199 had subscriptions to all of the pressure topics. In Figure 32, we have

plotted the mean latencies for each topic. (e.g. at 56 we have the mean latency for the topic

‘pressure56’, which was nearly 4ms on node 199).

Since issues are processed as they arrive, we would expect that the curves for all of the receivers have

the same shape. Indeed, they are all linear. The slope of the curve depends on how slowly issues are

processed. Slow processing means that issues arriving later have to wait longer, so the increase in

latency (the slope) is greater.

Node 199 has the fastest processor while the CPU on 127 is slowest. We observe that the curve for

127 is steepest and the curve for 199 is flattest, as was to be expected. Node 199 has a vastly superior

processor, so we might have expected an even greater contrast. However, the publisher component on

199 must have taken its share of the processing resources.

Mean latencies for pressure topics

0

2

4

6

8

1 12 23 34 45 56 67 78 89 100
Topic number

La
te

nc
y

(m
s)

127
199
89

Figure 32

 82

8.3.1.5 Comparison of Windows and Linux

The Windows node 45 and Linux node 92 both had signal receivers that only subscribed to the topics

‘temp1’ to ‘temp100’. Figure 33 shows a comparison of the latencies:

Receivers on nodes 45 and 92

0
10
20
30
40
50
60

1 13 25 37 49 61 73 85 97
Topics temp1 to temp100

La
te

nc
y

(m
s)

Mean92
Max92
Mean45
Max45

Figure 33

Although the Windows node had a 25% faster CPU and the Linux node had the extra task of

publishing 100 issues for the current topics every 100ms, we see that the mean values are better on

Linux. We conclude that Linux handles interrupts more promptly and with less operating system

overhead. Issue processing is also more efficient, since the curve for the Windows machine has a

steeper slope. However, in this and many other charts we can see that the Linux nodes often get a

much higher maximum value. The main cause for high maximum values is the scheduler. Although

these basically run the prioritized round robin algorithm, their behaviour is made unpredictable by

modifications such as anti-starvation and priority boosting mechanisms.

8.3.1.6 Start-up times

The start-up times are measured by taking the difference of 2 timestamps: one stamp is taken before

the subscriptions are created and the other when a subscription gets its first issue. Figure 34 shows the

start-up times for all of the 100 pressure topics on the three nodes that subscribed to them.

 83

Startup times for pressure topics

0

1000

2000

3000

4000

1 12 23 34 45 56 67 78 89 100
Topic number

D
el

ay
 (m

s)

127
199
89

Figure 34

It looks like the NDDS managers on the different nodes communicate information about new topics to

managers on other nodes in batches (in this case, one batch had information for around 30 topics and

new batches came at intervals of roughly one second.) Although the curves are not linear, the worst

case start-up times seem to be proportional to the number of topics.

From the other logs, we see that the average case behaviour is similar to what is indicated by these

curves. However, the worst start-up time was 7.3s for topic ‘current100’ on node89.

8.3.2 Alarm bursts (TC-S.2)

8.3.2.1 Setup

Test-case id: S.2

Purpose: We generate bursts of alarms as in the functional tests in communication case 2. The

purpose here is twofold:

- to observe the effect of the other real-time traffic on transmitting the alarms, and

- to observe the effect of a burst of alarms on the cyclic transfer of measurement data.

Method: The following components are added to the basic setup:

Burst level 3 is used.

Generator on 72 publishes 7000 bursts (each containing 3 issues) for topics in elist1.txt with period

20ms.

Receiver on 45 subscribes to topics with pattern */*/*/*/*.

 84

Queue lengths are 5 and table size is 0. All publication’s have sendMaxWait = 20s (i.e. how long to

block the send call if the send queue is full. This should prevent sends from failing. The reasons for

this approach are explained in section 7.3.4.2 of [Sierla 2003 B].)

Receiver’s log is named LS2_Event.txt.

8.3.2.2 Effect of Load on Event Transmission

This test case is similar to 2.2. The differences are that the system is under a greater load from all of

the cyclic data transfer. Also, the subscription pattern in this case matches all 10 published events,

while the receiver on 45 for test case 2.2 subscribed to only half of these.

Since we sent bursts of 3, we again show statistics for the sequence number modulo burst size (i.e. the

modulo remainder for the first issue of a burst is 1 and the modulo for the last issue in a burst is 3.)

Figure 35 shows the mean and standard deviations for the first topic received in the functional test

case 2.2. The corresponding statistics for the first topic received in this scalability test (MeanS and

StdevS) are also plotted. The means are nearly the same. This should be so, since the CPU load is far

from 100% -- problems arise when issues are sent by the signal and event generators on node 72 at

nearly the same time (Or when the signal and event receivers on node 45 both get issues – one of them

has to wait.) The existence of other components that compete for the same resources explains why the

standard deviations in the scalability test were so much worse than in the functional tests.

Effect of Load on Event Transmission

0
1
2
3
4

1 2 3

Sequence number in burst

La
te

nc
y

(m
s)

MeanS
StdevS
Stdev
Mean

Figure 35

8.3.2.3 Effect of Event Bursts on Cyclic Data Transmission

In the previous section we looked at how the cyclic data transmission in the background affected the

transmission of a burst of events. Here we observe the effect of event bursts on cyclic data

 85

transmission. Figure 36 shows the mean and standard deviation for all topics in the signal receiver on

node 45. (Remember that the event receiver was on that same node.) In test case S.1 we had the same

signal receiver on node 45 with no events, so we have also plotted the values for that as well (MeanS.1

and StdevS.1).

Effect of Event Bursts on Cyclic Data

0
2
4
6
8

10
12

1 14 27 40 53 66 79 92Topic number

La
te

nc
y

(m
s)

Mean
Stdev
MeanS.1
StdevS.1

Figure 36

Again, we see little difference in the mean values, as this is presumably because the CPU load was not

near 100%. However, the curves are less regular in this test case, which is probably because the event

and signal components sometimes had to compete for the CPU. We can say that a few event bursts (3

events for 10 topics every 20ms) do not significantly impair the cyclic data distribution.

8.3.3 Fast rate control (TC-S.3)

8.3.3.1 Setup

Test-case id: S.3

Purpose: There might be some control loop or other process that needs to communicate faster than

the 20ms cycle in S.1. In the functional tests we have observed that it certainly is possible to go below

20ms, but we had a light system load. Here we have the same arrangements as in S.1, but we also

include a signal that is transmitted at a clearly faster rate.

Method: We add the following components to the basic setup:

A second signal generator on node 72 publishes topic ‘level1’ at a rate of 3ms. 25000 issues are sent.

A second signal receiver on 45 subscribes to this topic with a deadline 6ms. Its log file is LS3_fast.txt.

 86

8.3.3.2 Results for the fast rate publication

Looking at these results, it must be remembered that the total send time for ‘temp’ topics was 20s, for

‘pressure’ topics 50s and for ‘current’ topics 100s. Since the node that published ‘level1’ had a

resolution of 1ms, the sending period was close to 4ms and the total send time was close to 100s.

Sending 5000 issues every 4ms takes around 20s, and the latencies for later issues of ‘level1’ drop

significantly after this, as can be seen from Figure 37. This is the time when the subscriptions to the

100 ‘temp’ topics get their last issues. It is clear that the volume of incoming data affects the latency

and jitter. This correlation is further illustrated by the beginning of the graph – notice that it takes

around 8 seconds before we reach the worst case performance. Looking at the logs for the receivers on

node 45, we see that around one third of the subscriptions got their first issue in less than 3 seconds

after the component was started. For the rest, there was a delay of 6-8 seconds. In 6 seconds 1500

issues and in 8 seconds 2000 issues of ‘level1’ were sent. At this point there is a very obvious increase

in the latencies for the ‘temp’ topics.

The quick flow of ‘level1’ issues does seem to slow down the start-up of some ‘temp’ subscriptions. In

the basic case (S.1) the worst start-up time was 2.1 seconds, and in this case it was 8.1s.

Latencies for topic 'level1'

0
1
2
3
4
5
6
7

1 3366 6731 10096 13461 16826 20191 23556
Sequence number

La
te

nc
y

(m
s)

Figure 37

After the ‘temp’ publications shut down, we observe steady behaviour with ‘level1’. After 50s, the

‘pressure’ publications (on the same node that published ‘level1’) shut down, but we see nothing

remarkable at this point. This might be because the sending end is not the bottleneck, as we have seen

before. However, the sender only takes the timestamp right before the packet is sent off, so we would

not see the effect of congestion on the sending node.

 87

8.3.3.3 The effect on the other subscriptions on node 45

In all scalability tests, we have subscriptions to topics ‘temp1’ to ‘temp100’ on node 45. We want to

see if the fast rate transfer of issues for ‘level1’ will interfere with the ‘temp’ topics. Figure 38 shows

the mean and standard deviation for each of the 100 topics in both the basic configuration (S.1) and

in this case (curves labelled S.3). The different shape of the mean curve is only caused by issues for

the 100 topics being sent in a different order. We conclude that there was no significant performance

drop.

'temp' subcriptions on node 45

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91

Topic number

La
te

nc
y

(m
s)

MeanS.3
StdevS.3
Mean
Stdev

Figure 38

8.3.4 Dynamic start-up time (TC-S.4)

8.3.4.1 Setup

Test-case id: S.4

Purpose: Consider the situation where an operator in the control room opens a screen that displays

various measurement data. We want to know how long it will take to establish the data flow from the

sources to the control room application, i.e. how long will it take for us to get the first data for each

signal.

Method: The signal receiver on 127 will have a delay of 10s. Otherwise, we have the same

arrangements as in the basic situation.

8.3.4.2 Start-up times on node 127

Figure 39 shows the start-up times for all of the 300 topics that were subscribed to by the receiver on

node 127. We again observe the same behaviour as in the basic case: subscriptions are started up in

 88

groups of around 30. However, new groups are started more quickly in the case of S.4, where the

subscriptions appeared at run time and the publications were already running. From the shape of the

curve we are tempted to conclude that the start-up times for dynamically appearing subscriptions are

also more predictable, but we would have to run more tests to be sure.

Startup times for all topics on 127

0
1000
2000
3000
4000
5000
6000

1 37 73 109 145 181 217 253 289
Topic number

St
ar

tu
p

tim
e

(s
)

S.4
S.1

Figure 39

In this case it took 3 seconds to get data for all of the 300 subscriptions. This time can be decreased

by grouping more data points under a single topic. Also, the CPU on 127 had only 350 MHz, so on a

typical high-end control room workstation we could expect much better results. In this light it seems

feasible to implement control room software that creates subscriptions to the necessary topics when a

screen is changed. However, this is not the intended way of using NDDS [Wang 2002]. It is also clear

that creating and destroying large numbers subscriptions and communicating the new status to the

manager on the publishing node will consume resources.

8.3.5 Increasing the load with large data structures (TC-S.5)

8.3.5.1 Setup

Test-case id: S.5

Purpose: The event generator has a variable length array field which can be used to create packets of

size 62kB. We will send these at a rate that is as great as the middleware can manage when there is

no other load. The purpose of this test is to see that the performance of the middleware degrades

gracefully.

Method: We will add the following components to the configuration in S.1:

 89

An event generator is added onto Node 72; it sends a burst of 3 issues for each topic in elist1 every

50ms. A total of 1000 bursts are sent.

Queue lengths are 5 and table size is 62000. All publication’s have sendMaxWait = 20s

Receiver on 45 subscribes to topics with pattern mixing/*/*/*/1-5.

The generator had a wait of over 10s, since there were not subscriptions to all topics in elist1. For

convenience, we had a similar delay in starting up the pressure publisher component on node 72.

Receiver’s log is named LS5_Event.txt.

8.3.5.2 The Latencies for the large data structures

The purpose of this test case is to observe the behaviour that results when the CPU is overloaded.

From the results in test case 2.6, we concluded that parameterising the event generator in this way

will consume all processing resources, i.e. new issues queue up and are sent as fast as possible. The

queue never gets empty.

In this section, we look at how the reliable publish-subscribe mechanism handled the bursts of large

issues. In test case 2.6, we only had this topic, while in S.5 we have all of the usual cyclic data

transmission going on in the background.

Bursts of large data structures

0
5

10
15
20
25
30

1 2 3
Number in burst

La
te

nc
y(

m
s) MeanS.5

StdevS.5
Mean2.6
Stdev2.6

Figure 40

The reliable mechanism was able to transmit all of the issues despite the load. From Figure 40, we see

that the mean latencies were slightly higher and jitter was clearly higher in the scalability test. Neither

was it possible to maintain the 50ms sending period, since sending one burst took more than that. The

performance degradation is therefore graceful, as it is caused by the load exceeding the processing

capacity. There was no unexpected behaviour, and all issues were received in-order.

 90

In this light, it is not necessary to invest in hardware and network resources in such a way that even

the worst case situation will not strain the processing capabilities. When the rare worst-case peak load

is experienced, there will just be a slight degradation in QoS, which in most processes will only result

in a small and temporary drop in quality. Often, the cost of this is much less than having to invest in

resources for handling the worst case.

8.3.5.3 The effect on the other topics

Now we look at how the transmission of large events affected the cyclic transmission of data. The

node that published the events also published the ‘pressure’ topics. Figure 41 shows statistics for these

topics when the event generator was running at the same time (S.5) and in the basic case with no

events (S.1). We show the statistics for the signal receiver on node 89.

'pressure' subscriptions on node 89

0
5

10
15
20
25
30

1 14 27 40 53 66 79 92
Topic number

La
te

nc
y(

m
s)

MeanS.5
MaxS.5
StdevS.5
MeanS.1
MaxS.1
StdevS.1

Figure 41

This graph must be viewed with caution. The sender took timestamps just before the data was actually

sent, so the data might have had to wait a while before this because the event generator was running.

Otherwise, there would presumably be a greater difference between the results of S.1 and S.5. Also,

neither RTPS nor NDDS specify the order in which issues for the different topics are processed. This

means that some subscriptions will get better service than others, and the behaviour might be different

if the test is repeated. This could explain the peak in the MaxS.1 curve.

Having said this, the graph shows quite a clear pattern of moderate performance degradation under

the peak load in S.5. However, even though issues for the pressure topics were sent in the best-effort

mode, none of them were lost.

 91

8.4 Conclusions
The suitability of a middleware product for an automation application cannot be expressed with any

simple figure. Many different scenarios must be considered, since application components have diverse

communication needs with varying performance and reliability requirements. A realistic system has to

handle massive volumes of data, so the effect of scaling up the system on each of these scenarios needs

to be known. For this reason, we have tested the middleware in a number of different circumstances

that are relevant to process automation systems. After reading these results, we believe that the reader

will have a fairly accurate idea of what kind of performance can be expected.

Finally, we again point out that there is much that RTPS leaves unspecified. Especially, the order in

which publications and subscriptions are serviced usually cannot be reliably predicted at compile time.

The programmer has limited control over the order in which things are done, as NDDS typically

operates with the first-come first-serve principle. (It is possible to, for example, individually send

issues for all publications synchronously in a certain order. However, using the middleware in

unintended ways is unlikely to yield satisfactory results.) In the scalability tests, we noticed how the

results for some topics were much better than others, although the application programmer had not

prioritized any of them. This is why presenting a more limited amount of results would be misleading,

since we would not know if we are looking at best, average or worst case behaviour.

 92

9 Conclusions

9.1 General-Purpose Evaluation Criteria
In this section, we will review the main goals for middleware products and evaluate NDDS from this

perspective. These goals are:

- encapsulation of OS and network levels

- control of real-time behaviour

- dynamic reconfiguration

In section 9.2 we will discuss some of the special requirements for process automation.

The middleware is above the operating system and network layers, so the programmer does not need

to have any detailed knowledge of these levels. Therefore, the application is portable and can be easily

reconfigured, since it depends only on the middleware’s API. In our experience, NDDS lived up to

these expectations. Scaling up the system by adding new nodes and components or moving components

onto different nodes could be done without even recompiling any code. Porting components from

Windows to Linux was also straightforward. First, we ran the nddsgen utility that generates C++ code

from our data type definitions that we used to develop the Windows components. Then the source code

we wrote for the Windows components could be recompiled on Linux without making any changes to

the NDDS API calls.

Unfortunately, we are still inclined to believe that high quality real-time applications cannot be built

without having some knowledge of the inner workings of the operating system and the network.

Although it was possible to develop the application without fixing any components to physical

resources, achieving the optimal real-time behavior is another thing. For example, with a group of

slow Linux machines with very limited memory, we sometimes observed long delays (ca. 15s) before

the subscriptions started receiving issues. The issues that were sent before this were lost. Presumably,

NDDS was sending metatraffic in order to establish the communication links [Wang 2002]. With

some systems, designers must have an accurate idea of how long it takes before these links are

established, so it would then be necessary to understand what is happening and where the bottlenecks

are. This insight cannot be gained only by debugging the application code, but an Ethernet packet

sniffer would be useful. RTI also sells a product for monitoring the RTPS traffic on the network

[Wang 2002].

RTPS does give the programmer control over a number of QoS properties, which can be used to

influence the real-time behaviour. However, in our analysis of the test results, we had to mention

frequently that the outcome will always ultimately depend on how the operating system schedules the

various threads of the application and middleware. Since we did not use a RTOS, we noticed that it is

not possible to guarantee a satisfactory upper bound for latencies, because even a high priority thread

 93

might be kept waiting sometimes. When a high level of determinism is required, a suitable RTOS must

be used [Kindel 2002], but the programmer should also understand the scheduling algorithm as well

as the responsibilities and interactions of the threads in the application and middleware.

The preceding discussion is a good introduction for another powerful capability of middleware

products: the dynamic reconfiguration of a system while it is running. This naturally requires that the

system can be reconfigured statically, but it is equally important that the middleware will discover any

configuration changes and update communication paths in a timely manner. In our tests, we never

noticed that NDDS would have failed in this, and the response times were very satisfactory for most

applications. However, in the next section we will describe a scenario encountered in process

automation systems that places heavy requirements on the speed of dynamic reconfiguration.

9.2 The Special Requirements for Process Automation

9.2.1 The Logical Design of the Application

The process automation industry has some unique requirements for the logical design of the

application that the middleware must support. Much of this has already been discussed in the sections

about communication mechanisms. In general, we and our industrial contacts feel that RTPS is a very

promising standard. The benefits have already been described at length throughout this thesis, so in

the conclusion we will focus on potential difficulties.

1. Event-driven data distribution requires that the integrity of a group of signals must be

guaranteed (i.e. they are from the same iteration of the algorithm that produced them). Yet

it is not possible to group them into a single data structure, because this will lead to

maintenance problems. It might not even be desirable to try to provide this functionality in

middleware, since other design goals might be compromised. An application-level solution

that utilizes appropriate subscription mechanisms and reliable delivery could be the most

natural approach. In chapter 5, we proposed the container design pattern for this purpose.

2. The event subscription mechanisms could be more versatile, and we have discussed this in the

section for the event notification and acknowledgement services (4.3.3).

3. Notifications must be acknowledged at the application level. There are many

acknowledgement models that should be supported, such as one, some or all of the receivers

of an alarm or notification must send an acknowledgement. No middleware standard that we

have studied supports this, and it might well be the natural solution to build this functionality

into system components that manage alarms.

9.2.2 QoS Control

There is a great volume of traffic in an automation system, but there are significant variations in the

requirements for latency and determinism. Ultimately, achieving good performance is neither a matter

of minimizing latencies or maximizing throughput but of making sure that the right data arrives at the

 94

right destination at the right time. It should therefore be possible to prioritize the time-critical data.

This does not only mean that the middleware should process the data in the right order, but the work

must also be done by a thread with a suitable priority.

We have already said that the NDDS implementation tries to minimize any overhead caused by the

middleware, so there are very limited ways for prioritizing any issues over others. The advantage of

this is that publish-subscribe is a very efficient mechanism for data distribution tasks. The

disadvantage is that time-critical data might be needlessly delayed by issues that could wait a whole

second. For example, subscriptions in diagnostics and monitoring components or a history database

could be kept waiting so that the signals for the real-time control of the process can be delivered

before their deadline expires. Finally, with NDDS it is possible to adjust the relative priorities of the

threads involved, but it is not possible to prioritize certain topics over any others in this way.

The designers of the CORBA Notification Service have taken a different approach, and so their

standard has different advantages and disadvantages [OMG 2002]. There are sophisticated algorithms

for processing event messages. A message can, for example, have a priority and a deadline. The

application programmer could request that messages are sent with a first-come first-serve principle, or

that the highest priority messages are sent first. If the processing capacity is exceeded, the deadlines

can be used to determine which messages should be discarded. Real-time CORBA also gives a fine

level of control for specifying the priorities of the threads that are used to carry out the services. These

mechanisms provide very interesting possibilities for achieving the desired level of determinism for

time-critical data. The major disadvantage of this approach is that the heavy mechanism is rather

inefficient for distributing great quantities of data.

RTI is working together with the OMG to produce a DDS (Data Distribution Service) standard, and

the specification should be published in the summer of 2003 [Wang 2002]. A publish-subscribe

mechanism will be used to provide efficient data distribution services. Many of the Notification

Service’s strengths that we have described throughout this thesis will also be found in DDS.

9.2.3 Dynamic Configuration Changes

We mentioned in section 9.1 that NDDS’s ability to handle configuration changes at run-time was very

acceptable. We now describe one important scenario that places heavy requirements on the speed of

dynamic reconfiguration.

In process automation, control room software typically needs nearly every topic at some point, so it

will have hundreds or thousands of subscriptions. It is considered essential that data is not transmitted

unnecessarily, to conserve bandwidth and processor resources on the subscribing node. There should be

some better way of turning off the subscriptions when they are not needed (when the operator opens a

different screen) than destroying it. Having control topics that are used to notify publishers when to

send is troublesome when there are thousands of publications and subscriptions, so some support from

the middleware would be useful.

 95

It seems that creating subscriptions whenever the application needs them and destroying them some

time after they have not been needed would be the most practical solution. It is desirable that the first

issue would arrive within one second of creating the subscription. If the number of topics is limited by

grouping related signals into data structures, this requirement might be met if powerful workstations

are used in the control room.

 96

10 References
1. [Dostoyevski 1988] Dostoyevski F.: Karamazovin veljekset, Karisto 1988

2. [IDA 2001] IDA: White Paper. 18.4.2001

3. [Metso] Metso Automation, http://www.metsoautomation.com 17.4.2003

4. [NTP] NTP, http://www.ntp.org 28.5.2003

5. [OHJAAVA] OHJAAVA, The Application of Java and Internet technologies in a Component

Based Control System, http://www.vtt.fi/tuo/projektit/ohjaava/ 5.5.2003

6. [OHJAAVA-2] OHJAAVA-2, Modern Distribution Solutions in Open Control Systems,

http://www.automationit.hut.fi/tutkimus/documents/Ohjaava/eohjaava-2.htm 5.5.2003

7. [OHJAAVA-212] Tommila T.: OHJAAVA-212, Automaation uudet hajautusratkaisut ja

hajautuksen vaatimukset, OHJAAVA-project’s technical document, unpublished, 31.3.2003

8. [OHJAAVA-216] Sierla S.: OHJAAVA-216, Evaluation of Communication Middleware – A

General Test Specification, OHJAAVA-project’s technical document, unpublished, 27.2.2003

9. [OHJAAVA-217] Sierla S.: OHJAAVA-217 Analysis of Middleware Solutions -- RTPS.

OHJAAVA-project’s technical document, unpublished, 10.2.2003

10. [OHJAAVA-220] Sierla S., Peltola J.: OHJAAVA-220 Analysis of Middleware Solutions –

RT CORBA, OHJAAVA-project’s technical document, unpublished, 12.2.2003

11. [OHJAAVA-227] Sierla S.: OHJAAVA-227, Evaluation of Communication Middleware –

The NDDS Test Specification, OHJAAVA-project’s technical document, unpublished,

20.2.2003

12. [OMG] Object Management Group, www.omg.org, 15.5.2003

13. [OMG 2002] OMG: The Notification Service

http://www.omg.org/cgi-bin/doc?formal/2002-08-04, 21.10.2002

14. [Peltola 2002] Peltola J.: Distributed control systems — execution environment of a

component based automation application, Report 6, Laboratory of Information and Computer

Systems in Automation, Helsinki University of Technology, 2002

15. [Peltola 2003] Peltola J.: Automaatiojärjestelmien hajautusta palvelevat arkkitehtuurit,

ÄLY-foorumi, Seinäjoki, 15.5.2003

16. [Raute] Raute Precision, http://www.rauteprecision.fi 17.4.2003

17. [RTI 2002] RTI: NDDS User’s Manual Version 3.0. 330 pages, February 2002

18. [VTT] Valtion tieteellinen tutkimuskeskus, http://www.vtt.fi 17.4.2003

19. [ÄLY] Älykkäät automaatiojärjestelmät, Teknologiaohjelma, Tekes, 2001-2004,

http://akseli.tekes.fi/Resource.phx/tivi/aly2000/en/index.htx 17.4.2003

Interviews and conversations:

1. [Kindel 2002] Robert Kindel, RTI, 9.2002 – 5.2003

2. [Wang 2002] Howard Wang, RTI, 9.2002 – 5.2003

HELSINKI UNIVERSITY OF TECHNOLOGY

INFORMATION AND COMPUTER SYSTEMS IN AUTOMATION

Report 1 Koskinen, K., Aarnio, P. (eds.),

 Internet-, Intranet- and Multimedia Applications in Automation. June 1998.

Report 2 Koskinen, K., Aarnio, P. (eds.),

 PC-based Automation Systems and Applications. June 1999.

Report 3 Mattila M.,

 Prosessilaitteen etätukijärjestelmä – ohjelmistoarkkitehtuuri ja ohjelmistotekniset ratkaisut. March 2000.

Report 4 Strömman M.,

 Ohjelmoitavan logiikan ohjelmointi ohjelmistotuotantoprosessina. March 2002.

Report 5 Aarnio P.,

 Simulation of a hybrid locomotion robot vehicle. June 2002.

Report 6 Peltola J.,

 Uudet automaatiojärjestelmät - komponenttipohjaisen automaatiosovelluksen suoritusympäristö. September 2002.

Report 7 Fortu T.,

 Enterprise Resource Planning – Integration with Automation Systems. September 2002.

Report 8 Mattila M.,

 Condition Monitoring of an X-ray Analyzer. February 2003.

Report 9 Sierla S.,

 Middleware Solutions for Automation Applications – Case RTPS. June 2003.

ISBN 951-22-6604-0

ISSN 1456-0887

Picaset Oy, Helsinki 2003

