
©2006 Real-Time Innovations. All Rights Reserved 1 0406

A Comparison and Mapping of

Data Distribution Service and High-Level Architecture

Rajive Joshi, Ph.D.

Gerardo-Pardo Castellote, Ph.D.

Real-Time Innovations, Inc.

3975 Freedom Circle, Santa Clara, CA 95054

+1-408-200-4700, info@rti.com

ABSTRACT: The OMG Data-Distribution Service (DDS) is an emerging specification for publish-subscribe data-

distribution systems. The purpose of the specification is to provide a common application-level interface that clearly

defines the data-distribution service. The specification describes the service using UML, thus providing a platform-

independent model that can then be mapped into a variety of concrete platforms and programming languages.

DDS attempts to unify the common practice of several existing implementations enumerating and providing formal

definitions for the QoS (Quality of Service) settings that can be used to configure the service.

In this paper we provide a comparative overview of the data distribution service with respect to high-level architecture.

We describe the equivalent terminology and concepts, and highlight the key similarities and differences in the areas of

declaration management, object management, data distribution management, ownership management, federation

management, and time management.

We explore the architectural mapping between HLA and DDS. We develop an outline for translating from one model

to the other, and examine the needed supporting transformations and assumptions. We conclude with remarks and

observations on building applications that can utilize both HLA and DDS technologies.

1 Introduction

Data Distribution Service (DDS) is a newly adopted

specification from the Object Management Group (OMG),

an approximately 800 member consortium, to create vendor

independent software standards. DDS is aimed at a diverse

community of users requiring data-centric publish-

subscribe communications. These include applications in

aerospace and defense, distributed simulation, industrial

automation, distributed control, robotics, telecom, and

networked consumer electronics.

The goal of DDS (see [1], [2]) is to facilitate the efficient

distribution of data in a distributed system. DDS is similar

to HLA in some regards: it has a publish-subscribe

communication architecture, supports object modeling and

the notion disseminating updates to object instances,

provides support for content based subscriptions which

may be likened to DDM regions, and standardizes on the

API specification for portability. It differs from HLA in

some regards: in its support for object modeling, and

ownership management. DDS addresses some new aspects

not addressed by HLA, such as: a rich set Quality of

Service (QoS) policies, a strongly typed data model, and

support for state propagation including coherent and

ordered data distribution; while leaving out some other

aspects addressed by HLA, such as: time management and

federation management.

DDS targets real-time systems; the API and Quality of

Service (QoS) are chosen to balance predictable behavior

and implementation efficiency/performance. The DDS

specification describes two levels of interfaces:

• A lower Data-Centric Publish-Subscribe (DCPS) level

that is targeted towards the efficient delivery of the

proper information to the proper recipients

• An optional higher Data-Local Reconstruction Layer

(DLRL) level, which allows for a simpler integration

into the application layer.

The DDS specification [2] is developed under the OMG

MDA process [3], and describes the service using Unified

Modeling language (UML) and Interface Definition

©2006 Real-Time Innovations. All Rights Reserved 2 0406

Language (IDL). The specification provides a platform-

independent model (PIM) that can then be mapped into a

variety of concrete platform specific models (PSMs) and

programming languages.

DDS draws upon common practice in existing publish-

subscribe architectures including HLA ([5], [6]) OMG

event notification service [7], Java Messaging Service

(JMS) [8], and experience with Real-Time Innovations’

(RTI’s) RTI Data Distribution Service (formerly NDDS)

product [8]. DDS departs from previous approaches in two

primary aspects: (1) enumerating and providing formal

definitions for the QoS (Quality of Service) settings that

can be used to configure the service, and (2) the tight

binding of a “topic” to a data-type, thus making it more

than just a “routing” label. The coupling of “topic” with a

data-type, along-with the additional QoS settings enables

implementation optimizations such as pre-allocating the

resources needed to send or receive a “topic”.

2 DDS Synopsis

The publish-subscribe model connects anonymous

information producers (publishers) with information

consumers (subscribers). The overall distributed

application (the PS system) is composed of processes, each

running in a separate address space possibly on different

computers. We will call each of these processes a

“participant”. A participant may simultaneously publish

and subscribe to information.

Figure 1 illustrates the overall DCPS model, which consists

of the following entities: DomainParticipant, DataWriter,

DataReader, Publisher, Subscriber, and Topic. All these

classes extend DCPSEntity, representing their ability to be

configured through QoS policies, be notified of events via

listener objects, and support conditions that can be waited

upon by the application. Each specialization of the

DCPSEntity base class has a corresponding specialized

listener and a set of QoSPolicy values that are suitable to it.

Publisher represents the objects responsible for data

issuance. A Publisher may publish data of different data

types. A DataWriter is a typed facade to a publisher;

participants use DataWriter(s) to communicate the value of

and changes to data of a given type. Once new data values

have been communicated to the publisher, it is the

Publisher's responsibility to determine when it is

appropriate to issue the corresponding message and to

actually perform the issuance (the Publisher will do this

according to its QoS, or the QoS attached to the

corresponding DataWriter, and/or its internal state).

Topic

QosPolicy

Publisher Subscriber

<<interface>>

Listener

DataReader

DCPSEntity

DataWriter

Data

WaitSet

Condition

<<interface>>

DataType

*

0..1

*

*

1

11

*

*

*

1

*

1
*

Figure 1 UML diagram of the DCPS model

A Subscriber receives published data and makes it

available to the participant. A Subscriber may receive and

dispatch data of different specified types. To access the

received data, the participant must use a typed DataReader

attached to the subscriber.

The association of a DataWriter object (representing a

publication) with DataReader objects (representing the

subscriptions) is done by means of the Topic. A Topic

associates a name (unique in the system), a data type, and

QoS related to the data itself. The type definition provides

enough information for the service to manipulate the data

(for example, serialize it into a network-format for

transmission). The definition can be done by means of a

textual language (e.g. something like “float x; float y;”) or

by means of an operational “plugin” that provides the

necessary methods.

A technical overview of DDS can be found in [1] with

details in the OMG submission [2]. A good high-level

overview of the background, benefits, and applications can

be found in [11].

The rest of the paper will focus on a comparison of DDS

with HLA (Section 0) and outline a mapping of HLA to

©2006 Real-Time Innovations. All Rights Reserved 3 0406

DDS (Section 5) from an end user/distributed application

developer’s perspective.

3 HLA/DDS Equivalents

A map of key HLA concepts and terminology and the DDS

equivalents is summarized below. Additional details can be

found in Section 5.

HLA DDS

HLA-OMT DDS-DLRL

HLA-RTI (IFSpec) DDS-DCPS

HLA-Rules -

Federation Domain

Federate Participant / Application

RTIAmbassador DomainParticipant,

Publisher, DataWriter,

Subscriber, DataReader

FederateAmbassador Listener classes

Object class Keyed Topic

Interaction class Topic (no keys)

Update attribute Write "keyed" instance

Reflect attribute Read/Take "keyed" data samples

Send interaction Write “non-keyed” instance

Receive interaction Read/Take “non-keyed” samples

Table 1 HLA/DDS equivalents

4 Comparison of DDS with HLA

In this section we discuss DDS from the perspective of a

distributed application developer familiar with HLA.

4.1 Similarities with HLA

4.1.1 Publish-subscribe architecture

Like HLA, DDS-DCPS offers a publish-subscribe

communication model. Data dissemination between

producers and consumers may be from one-to-one, one-to-

many, many-to-one, or many-to-many. The communication

model is decentralized: publishers and subscribers are

decoupled i.e. have no knowledge of each other. Publishers

and Subscribers can join/leave dynamically. This model

enables dynamically scalable application architectures.

4.1.2 Support of diverse dissemination semantics

The information transferred by data-centric

communications can be classified into: signals, streams,

and states. Signals represent data that is continuously

changing (such as the readings of a sensor). Signals can

often be sent best-efforts. Streams represent snapshots of

the value of a data-object that must be interpreted in the

context of previous snapshots. Streams often need to be

sent reliably. States represent the state of a set of objects

(or systems) codified as the most current value of a set of

data attributes (or data structures). The state of an object

does not necessarily change with any fixed period. Fast

changes may be followed by long intervals without change.

Consumers of “state data” are typically interested in the

most current state. However, as the state may not change

for a long time, the middleware may need to ensure that the

most current state is delivered reliably. In other words, if a

value is missed, then it is not always acceptable to wait

until the value changes again.

Both HLA and DDS support dissemination of signal and

stream data. In HLA the “transportation” property of an

object class attribute can be specified as “best-effort” or

“reliable”. In DDS the RELIABILITY QoSPolicy can set

to BEST_EFFORT or RELIABLE. DDS provides

additional QoS policies to support the dissemination of

state data, as described in Section 4.3.2. In HLA, the time-

management aspect can be used to support aspects of state

data dissemination, but comes with additional ordering

semantics.

4.1.3 Object classes and per instance updates

Like HLA, DDS offers support for modeling object classes

and updating specific object instances. In DDS, a Topic

represents an object class. Topics can be associated with a

Key to uniquely identify object instances. The

representation and format of the key depends on the data

type. However, since a Topic is bound to a unique type,

the service can always interpret the key properly given the

Topic and the value of a data object.

The combination of a fixed-type Topic and a Key

(henceforth Keyed Topic) is sensible for data-centric

systems because the Topic represents either a unique data

object (e.g. a temperature sensor) in the case where there

are no keys, or a set or related data-objects that are treated

uniformly (e.g. track information of aircraft as generated by

a radar system), where each individual aircraft can be

distinguished by a key. DDS delegates the interpretation of

the key to the data-type, so that it is possible for the key to

be a single value within the data-object (e.g. a serial

number field) or a combination of fields (e.g. airline-name

and flight-number).

©2006 Real-Time Innovations. All Rights Reserved 4 0406

4.1.4 Application portability via a standardized API

specification

Like HLA, the DDS specification specifies a standardized

API or interface specification. The DDS model is described

in UML, while the DDS APIs are described in standard

OMG IDL. The standardized IDL to language (C, C++,

Java, Ada, etc.) mapping rules are applied to derive a

precisely defined language specific DDS API.

Implementation level details are not addressed by the

specification.

4.2 Differences from HLA

4.2.1 Object modeling supports composition and

inheritance

HLA Object Model Template (HLA-OMT) provides a

common framework for object model documentation,

thereby fostering interoperability and reuse of simulations

and their components. HLA-OMT provides data modeling

constructs that allows objects to be described in terms of

their attributes and inheritance relationships.

The DDS-DLRL supports a richer set of data modeling

constructs: it allows objects to be described not only in

terms of their attributes and inheritance relationships, but

also in terms of methods and aggregation relationships with

other objects. The DDS-DLRL layer provides more direct

access to the exchanged data, seamlessly integrated with

the native-language data-accessing constructs.

4.2.2 Content based subscriptions vs. regions

HLA offers support for associating normalized “regions”

with a publication to specify the range of data produced,

and with a subscription to specify the range of data that can

be consumed. Implementations generally exploit the region

information to minimize data transfer and optimize routing.

DDS-DCPS supports content-based subscriptions by means

of a filter that allows a DataReader to filter the data

received from a given Topic based on the contents of the

data itself. A filter is specified in terms of an expression

and parameters, which can be interpreted by a Subscriber

and/or a Publisher. Thus, implementations can exploit this

information to optimize information exchange.

In addition, DDS also has a notion of a PARTITION

QoSPolicy, which can be used to introduce a logical

partition among the topics visible by a Publisher and a

Subscriber. A DataWriter within a Publisher

communicates with a DataReader in a Subscriber only if

(in addition to matching the Topic and having compatible

QoS) the Publisher and Subscriber have a common

partition name string.

4.2.3 Ownership semantics and granularity

HLA supports the notion of the attributes of an object

instance being owned by federates. HLA requires exclusive

ownership of an attribute----at most one federate can own it

at any given time; however ownership of an attribute can

be divested and/or acquired. DDS supports the notion of

ownership, but with differences. DDS attaches an

OWNERSHIP QoSPolicy to a Topic, and can be either

EXCLUSIVE or SHARED. The EXCLUSIVE ownership

of an instance is somewhat similar to the HLA ownership:

at most one DataWriter can be the owner of an instance at

any given time. To arbitrate ownership among multiple

DataWriters, each is associated with an

OWNERSHIP_STRENGTH QoSPolicy. The highest

OWNERSHIP_STRENGTH DataWriter is considered the

owner. Thus, unlike HLA, the owner can change

dynamically based on the OWNERSHIP_STRENGTH,

and does not require a divesture/acquire protocol. Unlike

HLA, DDS also allows SHARED ownership of an instance

(the default). Multiple writers are allowed to update an

instance, and all the updates are made available to the

readers.

Yet another difference is in the granularity of ownership.

HLA allows different attributes of an instance to be owned

by different federates. DDS allows ownership only at the

level of instances. However, equivalent effect can be

achieved in DDS by treating each separately “own”-able

attribute as Keyed Topic and using the same key for all

such attributes. This is described in Section 5.2.1.

4.3 New in DDS

4.3.1 Strongly typed data model

In DDS, participants can ‘read’ and ‘write’ data efficiently

and naturally with a typed interface. Underneath, the DDS

middleware will distribute the data so that each reading

participant can access the ‘most-current’ values.

This is a significant departure from HLA, where the data

elements themselves are un-typed and un-marshaled. In

HLA, the data elements are plain sequences of octets; the

data marshalling/demarshalling is left to the application

developer.

4.3.2 State propagation semantics

An important use case for data-centric publish subscribe

systems is the propagation of state information. Here we

use the word “state” in the classic meaning of system

theory and state-machines. That is, the state of the system

is the information needed to determine future responses

©2006 Real-Time Innovations. All Rights Reserved 5 0406

without reference to the past history of inputs and outputs.

In general, the state of a system is described by the

combined values of a set of data objects that dynamic

systems call the “state variables”.

State propagation is important because it provides a

compact way for an application to model a remote system

as well as allowing a late-joining participant to behave as if

it had seen the complete history of the system.

For data-centric systems, if so desired by the application,

the DCPS service can ensures that:

(a) The states reconstructed by the subscribing participant

should be restricted to states that actually existed in the

publishing participant.

(b) The order in which the states are reconstructed on the

subscribing participant should preserve the order in which

the states happened in the publishing participant.

(c) If the state on the publishing side settles (i.e. does not

change for “a while”) the state seen by the subscribing

participant should match that of the publishing participant.

4.3.2.1 Coherent updates

Sometimes multiple state variables must be updated

together for the state to transition to the next coherent (or

valid) state. Imagine for example that the latitude,

longitude, velocity vector, and altitude of an aircraft are

kept as three separate state variables A=(latitude,

longitude), B=(velocity_vector) and C=(altitude). The DDS

interface must provide the participant the means to update

A, B, and C “atomically” in the sense that the receiving

participant should not be allowed to see a new value of A

without simultaneously seeing the new value for B and C

as well. Otherwise they may erroneously infer the aircraft

is on a collision course.

DCPS allows a participant to request that a set of changes

be propagated in such a way that they are interpreted at the

receiver's side as a consistent set of modifications. This

functionality is provided by a Publisher via two operations,

namely begin_coherent_changes() to start a

coherent set and end_coherent_changes() to

terminate it.

4.3.2.2 Ordered delivery

DDS also defines a DESTINATION_ORDER QoSPolicy

that can be associated with a Topic or a DataReader. The

destination order can be BY_RECEPTION_TIMESTAMP,

which is like the “Receive ordered” (RO) delivery in HLA,

i.e. data is ordered based on the reception time in each

Subscriber. Thus, there is no guarantee that changes will be

seen in the same order at different Subscribers.

The destination order can be BY_SOURCE_TIMESTAMP

which can means data is ordered based on the time-stamped

placed at the source either by the service or the application.

Assuming that a global logical time-stamp can be

maintained by some alternate means (say by a helper

“logical clock” utility), DDS can effectively support “time-

stamped order” (TSO) delivery in the HLA-sense.

4.3.2.3 Access units

In large systems, it may not be practical to model all the

state variables as defining a single monolithic state. It may

also not be practical to insist that all changes to state

variables made by a participant are propagated in order

without introducing delays. For this reason, the application

may partition the state into separate independent units, each

composed of several variables. DCPS refers to each of

these units as an “access unit”.

DCPS offers several ways for the application to define the

access units: (1) by means of grouping DataReader

(DataWriter) objects under Publisher (Subscriber) objects,

and also (2) by means of the PRESENTATION QoSPolicy

on a Publisher (Subscriber). This policy defines the

access_scope---the largest scope spanning the object

instances for which order and coherency of updates can be

preserved within a Publisher (Subscriber), and weather or

not the application is interested in preserving coherency

and/or ordering within that scope.

4.3.3 Rich QoS policies to capture communication

semantics

A distinguishing aspect of DDS is the clean separation of

the syntactical communication model specified via UML

diagrams, from the communication semantics captured by

associating QoSPolicies with various DCPSEntity defined

in the UML model. This approach is extensible to support

future needs as new semantic requirements emerge, without

requiring a change in the syntactical structure of the

communication model.

DDS enumerates a list of QoSPolicies, defines their

interpretation, specifies the possible values, specifies the

DCPS entities to which they are applicable, and specifies

weather they are dynamically changeable during the course

of operation. The QoSPolicies supported by DDS can be

categorized into those:

©2006 Real-Time Innovations. All Rights Reserved 6 0406

• Relating to what information is disseminated:

PARTITION, DURABILITY;

• Relating to the grouping, coherency, and ordering of

information: PRESENTATION,

DESTINATION_ORDER;

• Relating to the priority of information disseminated:

OWNERSHIP, OWNERSHIP_STRENGTH;

• Relating to the validity of information: LIVELINESS,

DEADLINE, TIME_BASED_FILTER;

• Relating to the resources dedicated to manage

information: RELIABILITY, HISTORY,

RESOURCE_LIMITS;

• Relating to optimizing information exchange:

LATENCY_BUDGET;

• Relating to user-defined information semantics (eg.

authentication): USER_DATA.

Some of these are elaborated here. Additional details can

be found in [2].

4.3.4 Access to meta-data

Meta-data refers to the information about events happening

in a domain, such as participants joining a domain, creation

of or topics, data readers and/or data writers in a domain. A

distinguishing aspect of DDS is the access to meta-data via

built-in topics via a DomainParticipant’s

get_builtin_subscriber() method. DDS specifies

the following built-in topics:

• DCPSParticipant

• DCPSTopic

• DCPSPublication

• DCPSSubscription

Using these, an application can get information on the

events happening in the domain and/or middleware.

4.4 In HLA, but not in DDS

4.4.1 No APIs specific to federation save/restore and

synchronization points

Unlike HLA, DDS does not provide standardized APIs

specifically for domain save/restore, or for defining

domain-wide synchronization points. However, DDS does

not preclude one from building an HLA-like federation

management services using the standardized DDS APIs and

QoS policies (see Section 5.2.5).

4.4.2 No APIs specific to time management

Unlike HLA, DDS does not provide standardized APIs

specifically for time-management. However, DDS does not

preclude one from building an HLA-like time management

service using the standardized DDS APIs and QoS policies

(see Section 5.2.6).

4.5 Beyond the scope of DDS and HLA

4.5.1 Implementation details

Like HLA, DDS leaves the implementation details up to

the middleware provider/vendor. DDS standardizes only

the on the APIs, the QoS policies, and their semantics.

4.5.2 Wire protocol

Like HLA, DDS does not specify an underlying wire-

protocol (as it is considered to be an implementation

detail). However, for networked distributed applications,

this is a highly significant (and often controversial) choice,

as it influences the interoperability with other distributed

applications. OMG CORBA middleware uses the IIOP

standard wire-protocol for distributed applications. An

efficient wire protocol suited for data-centric publish

subscribe is the Real-Time Publish-Subscribe (RTPS) wire

protocol [10] developed by RTI, and adopted as an industry

standard by the IDA Group. The prevalent choice will

likely be determined by a combination of market forces,

data delivery performance, backwards compatibility, future

extensibility, and ease of portability of the underlying wire

protocol.

4.5.3 Topic “key” specification and mapping

The DDS specification defines APIs for handling Keyed

Topics, and implicitly defines a mapping of “keys” to

instance_handles. Thus, an implementation provider can

chose the manner in which the “keys” are specified and

mapped to instance handles.

4.5.4 Tools and process for distributed application

programming and debugging

 Like HLA, the tools and process for distributed application

programming and debugging using DDS are considered

outside the scope of the specification. Vendors can chose to

provide the best value driven by market forces.

5 Mapping HLA to DDS

In this section we briefly examine each major aspect of the

HLA specification and relate it the DDS specification, from

the perspective of a distributed application developer. The

HLA/DDS equivalents are summarized in Table 1.

5.1 Object modeling

The DDS equivalent of the HLA-OMT is the DDS-DLRL

layer. It defines support for modeling object class

specialization and aggregation hierarchies. The DDS-

©2006 Real-Time Innovations. All Rights Reserved 7 0406

DLRL layer defines a UML meta-model that specifies the

object relationships that can be described using DLRL. The

DDS equivalent of developing a HLA FOM and/or SOM

would be to describe the simulation entities in DDS-DLRL.

5.2 Interface specification

The DDS equivalent of the HLA-RTI interface

specification is the DDS-DCPS communication model and

APIs specified using UML and and IDL. The HLA-RTI

API specifies two primary interfaces: the RTIAmbassador,

which defines the APIs that an application can use to

access the middleware facilities, and the

FederateAmbassador, which defines the callback APIs that

the middleware can use to notify an application of updates

and events. The DDS equivalent of the RTIAmbassador

APIs is embodied in the DomainParticipant, Publisher,

DataWriter, Subscriber, DataReader classes; while the

callback equivalent of the FederateAmbassador APIs is

embodied in the Listener classes.

In addition, DDS-DCPS APIs also support a “wait-based”

data access mechanism. The wait-based approach provides

a set of conditions that threads inside the participant can

use to block while waiting for specific sets of changes.

When any of the changes of interest occur, the thread is

unblocked and can access the data directly in its own

context.

Lets briefly examine how each of the key HLA-RTI

interface specification areas relate to DDS-DCPS APIs.

5.2.1 Declaration management

The DDS equivalent of an HLA “object class” is a Keyed

Topic, while that of an HLA “interaction class” is a non-

keyed Topic. However, the mechanism for updating a

subset of an object instance attributes in DDS is different

than in HLA. In DDS, a Keyed Topic must be created for

each subset of object instance attributes that is to be

updated as a unit. Each such “attribute-subset” Keyed Topic

should use the same key fields so that they can refer to a

common object instance. DataWriters (DataReaders) are

bound to these “attribute-subset” Keyed Topics and

attached to an “object-class” Publisher (Subscriber). The

PRESENTATION QoSPolicy on the “object-class”

Publisher (Subscriber) is set to GROUP to achieve

coherent and ordered data dissemination for “attribute-

subsets” of an object class. The grouping, coherency, and

ordering semantics may be adjusted to achieve a range of

behaviors.

HLA provides FederateAmbassador callbacks to let a

producer know if there are consumers for a data item via

the startRegistrationForObjectClass(), the

stopRegistrationForObjectClass(),the

 turnInteractionsOn(), and the

turnInteractionsOff() methods. In DDS, the

equivalent effect is achieved by using the built-in

subscriber (Section 4.3.4) to listen for equivalent events.

5.2.2 Object management

DDS-DCPS supports a DURABILITY QoSPolicy that can

be set to allow late joining DataReaders to “discover”

previously published object instances. DDS-DLRL

provides support for modeling complex object

relationships, including support for object specialization

(which is the only kind of relationship modeled by HLA).

DDS provides additional control over the semantics of data

distribution by providing hooks to tweak the grouping,

coherency, and ordering of updates.

5.2.3 Data distribution management

HLA provides relevance and scope advisory switches for

attributes and interactions; callback methods such as

turnUpdatesOnForObjectInstance() provide

hints for optimizing data distribution performance. In

addition, publications and subscriptions can be tagged with

regions, to optimize data routing.

DDS has the operations suspend_publications()

and resume_publications() that provide a hint to

the middleware that multiple data-objects within the

Publisher are about to be written, and thus allow the

middleware to use bandwidth more efficiently by batching

the distribution of a set of writes. An implementation could

disable the dissemination of messages and accumulate

changes until resume_publications() is called.

DDS content-based subscriptions can be used to achieve

some of the same goals catered to by HLA regions, as

discussed in Section 4.2.2. DDS has

TIME_BASED_FILTER QoSPolicy that can be used to

specify a minimum separation between periodic updates

delivered to a DataReader, and thus cut down on the

network bandwidth used.

5.2.4 Ownership management

DDS provides support for ownership management, but with

differences, as discussed in Section 4.2.3. The DDS

ownership management model is significantly different

©2006 Real-Time Innovations. All Rights Reserved 8 0406

with regards to not forcing a “centralized” implementation.

Additional handshaking and divesture/acquisition

coordination semantics can be added on top of it to

effectively support an HLA-like ownership model.

5.2.5 Federation management

Unlike HLA, DDS does not define standardized APIs for

participant join/resign events, saving/restoring distributed

application state, or for defining arbitrary synchronization

points. Some of these requirements are specific to the

simulation application domain, and DDS is aimed at a

broader distributed application community.

However, DDS can effectively support an HLA-like

federation management using the standard APIs and QoS

policies. For example, an application can specifically create

a SaveRestoreTopic or a SynchronizationPointTopic, and

require all participants subscribe to them. The QoS policies

on these topics can be set to be ensure the correct

operational behavior semantics, e.g. reliable and ordered.

5.2.6 Time management

Unlike HLA, DDS does not define standardized APIs for

time management. These are specific to the synchronous

simulation application domain, while DDS is aimed at a

broader audience.

However, as hinted in Sections 4.3.2.2 and 4.4.2, DDS can

effectively support an HLA-like time management model

using the standard APIs and QoS policies. A DDS

DataWriter allows the application to specify the time-

stamp when it writes an update to an instance. A “logical

clock” service can be built on top of the DDS APIs that

maintains a monotonically increasing logical time within a

simulation, via the use of a LogicalTimeTopic to which

each participant subscribes. This logical time stamp can be

use to write an object instance update. A consumer can

specify a DESTINATION_ORDER QoSPolicy of BY_

SOURCE_TIMESTAMP, thus effectively receiving the

data in time-stamped order (TSO) delivery. Additional

HLA-like time management APIs can be provided at the

application level. The DDS QoS policies provide the

flexibility to tailor the time management behavior to

simulation needs.

5.3 Rules

HLA specifies ten rules that provide policy guidance on

setting up HLA federations. The DDS specification does

not specify any rules or policy guidance, but neither does it

preclude the use of established policies and procedures in

setting up a distributed application. Thus, one could build a

distributed simulation using DDS that adhere to the

equivalent HLA rules.

6 Conclusions

DDS is suitable for a large subset of the class of problems

targeted by HLA, and builds on the experience of prior

publish-subscribe architectures. It is novel in the use of

strongly typed topics, support for state propagation, and the

specification of QoS semantics. It addresses the key HLA

areas except for simulation specific requirements such as

time management and federation synchronization---leaving

them up to the simulation domain level services that can be

built on top of the standardized APIs and QoS policies.

This is consistent with the broader scope of DDS, aimed at

addressing a wide variety of data centric communication

needs.

Possible directions for utilizing DDS within the HLA

community range from: (1) building a "bridge" layer for

mapping HLA and DDS, (2) implementing HLA on top of

DDS, and (3) implementing DDS on top of HLA. New

product categories may emerge in these areas, driven by

market forces.

The RTI Data Distribution Service product line [9] includes

a commercially supported implementation of DDS, along

with a supporting set of distributed application

programming and debugging tools.

7 References

[1] Gerardo Pardo-Castellote: "OMG Data Distribution

Service: Architectural overview", IEEE International

Conference on Distributed Computing Systems, 2003.

[2] OMG: “Data Distribution Service for Real-Time

Systems RFP”, Document orbos/2003-03-15,

http://www.omg.org, March 2003.

[3] Shawn Parr, Russell Keith-Magee: “The Next Step -

Applying the Model Driven Architecture to HLA”,

Paper Id 03S-SIW-123, 2003 Spring Simulation

Interoperability Workshop. Spring 2003.

[4] Andrew Tolk, “Avoiding another Green Elephant -- A

Proposal for the Next Generation HLA based on the

Model Driven Architecture”, Paper Id 02F-SIW-004,

2002 Fall Simulation Interoperability Workshop, Fall

2002.

[5] SISO, IEEE: “High-Level Architecture (HLA)”,

http://www.sisostds.org/ 2000.

[6] OMG: “Distributed Simulation Systems V1.1”,

Document formal/2000-12-01, http://ww.omg.org,

2000.

©2006 Real-Time Innovations. All Rights Reserved 9 0406

[7] OMG: “The CORBA Notification Service”, Document

orbos/98-11-01, http://www.omg.org, 1998.

[8] Sun Microsystems: “The Java Messaging Service (JMS)

specification”, http://java.sun.com/products/jms/, 2001.

[9] Gerardo Pardo-Castellote, Stan Schneider, Mark

Hamilton: “NDDS: The Real-Time Publish-Subscribe

Network”, White Paper, Real-Time Innovations, Inc.,

http://www.rti.com, 1999.

[10] Interface for Distributed Automation (IDA) Group:

“Real-Time Publish-Subscribe (RTPS) Wire Protocol”,

www.ida-group.org 2001.

[11] Gerardo Pardo-Castellote, Brett Murphy: “New

Networking Standard from OMG Will Simplify

Distributed Simulation Development”, Paper Id 03F-

SIW-65, 2003 Fall Simulation Interoperability

Workshop, Fall 2003.

Author Biographies

RAJIVE JOSHI, Ph.D. is the Director of Research at

Real-Time Innovations, Inc. Dr. Joshi specializes in object-

oriented and component-based software architecture and

design, and is currently leading the implementation of the

emerging OMG's Data Distribution Service.

His professional experience includes serving as the product

lead and architect of component-based graphical

programming tools for distributed control applications, and

serving as a consultant and developer for distributed

systems projects in the areas of robotics and automation,

including Schilling's Quest remotely operated vehicle,

CrouseHinds's automated filament alignment system, and

teleoperation experiments that aired on CNN.

Dr. Joshi is the author of several publications in the areas

of software platforms, multisensor fusion, and computer

vision, and evolutionary computing. He is the author of the

book "Multisensor Fusion: A Minimal Representation

Framework", a recipient of the best paper award at the

1996 Multisensor Fusion and Integration Conference, and a

recipient of the Charles M. Close best doctoral thesis prize.

Dr. Joshi received his Ph.D and M.S. degrees in Computer

and Systems Engineering from Rensselaer Polytechnic

Institute, and a Bachelor of Technology in Electrical

Engineering from the Indian Institute of Technology at

Kanpur.

Dr. Joshi can be reached at 408-200-4754 or

rajive.joshi@rti.com

GERARDO PARDO-CASTELLOTE, Ph.D. is the Chief

Technology Officer at RTI. Dr. Pardo-Castellote

specializes in Real-Time software architectures and

networking.

His professional experience includes time-critical software

for data acquisition and processing, real-time planning and

scheduling software, control system software, and

software-system design.

Dr. Pardo-Castellote actively participates in numerous

conferences and standards-making organizations. He

currently chairs the Data Distribution Group at the Object

Management Group (OMG) and is the primary author of

the DDS specification.

Dr. Pardo-Castellote received his Ph.D. in Electrical

Engineering in 1995 from Stanford University. Dr. Pardo-

Castellote also holds an MS in Computer Science and an

MS in Electrical Engineering from Stanford University and

a BS in Physics from the University of Granada (Spain).

Dr. Pardo-Castellote can be reached at 408-200-4751 or

pardo@rti.com.

