The Data-Centric Future
A white paper by Stan Schneider

Pervasive data in distributed applications simplifies the design
task for complex embedded systems

Truly profound technologies become part of everyday lifatdvt, plastics,
computers, and now networking have made this transititreifast 100 years. These
technologies are embedded in billions of devices; theg haelted into the assumed
background of the modern world.

Another stage is emerging in this progression: pervasattime data. This
pervasive real-time infrastructure is an extension ofritexrnet; the new capability is to
connect devices at very high speeds, rather than pedmleran-interaction speeds. Just
as the “web” connected people and fundamentally changeaveaall interact, pervasive
data will connect devices and change how they interact.

Today’s network technology makes it easy to connect nddésot so easy to
find and access the information resident in network®ohected nodes. This is
changing; we will soon gain the ability to pool infornsatifrom many distributed
sources, and access it at rates meaningful to physicagsex Many label this new
capability the “network centric” architecture. Howevemare appropriate term is “data
centric” because the change, fundamentally, is dibyefast, easy availability of
information, not by the connectivity of the networlelfs Whatever the name, this
infrastructure will drive the development of vast, dmited, information-critical
applications.

WwWw.rti.com RTI-1106

Internet

= N
Node

Enterprise

Node

Embedded

Node

Internet
Node

osiis

Global Data Space

E e

Enterprise
Node

Figure 1: The Data Centric Future

Technology is evolving from data networks to pervasive data.
With pervasive data, all information is available anytime at
any place, without consideration of itsorigin.

Real-time middleware is the technological key driving trassformation. We will now
examine the issues in developing a middleware that caeetc

The rise of data-centric thought

Most systems built today are connected to a networkwveider, most are not
designed to flexibly deliver data to support truly distribuapgdlications. They are
instead designed around clients and servers, applicatenfeices, and other code-centric
concepts.

The real change is from code-centric or architectunéricethinking to data-
centric design. Instead of configuring clients and seregrsuilding data-access objects
and invoking remote methods, data-centric design imghiegsthe developer directly
controls information exchange. Data-centric develogerst write or specify code.

They build a “data dictionary” that defines who needatwtata. Then they answer the
information questions: How fast is the data comingie$it need to be reliable? Do |
need to store it? Where is it coming from? What hapgeneade fails?

With this information in hand, the next task is to mag information flow.
Publish-subscribe middleware is the key enabling technd@ogyata-centric design.

WwWw.rti.com RTI-1106

Publish-subscribe nodes simply "subscribe" to data theg aed "publish” information
they produce. Thus, the information flow map is direttyslatable to publishers and
subscribers. The middleware does the rest: messagedingatly between the
communicating nodes. The fundamental communications Irmapgkes both
discovery—what data should be sent where—and delivery—wtteham to send it.

This design should be familiar; it mirrors time-crétiénformation-delivery
systems in everyday life. All mass-media communieetiancluding television, radio,
magazines, and newspapers, are fundamentally publish-f&smhnologies. Publish-
subscribe systems are good at distributing large quantiti@seritical information
quickly, even in the presence of unreliable delivery raagms.

With direct access to data, system integration is exdemagnitude easier.
Designers have always built interface specificatituas detail which information flows
between system components. With a publish-subscribematon busthe interfaceis
the design; interface specifications can essentially be diyaotplemented. (See figure 2
below). This data-centric design technique eliminat@senaus intermediate steps, and
with them all the overhead and opportunity for erroy aetrain.

Interface Software T2l Implementation
oo Architecture APls &
Specification (clients/servers) AR Integration
Implementation
Interface &
Specification Integration

Figure 2: Conventional vs. Data Centric System Design

Networking middleware

Networking middleware is a code layer above the baGie/TP stack that
implements sophisticated data transfer and managementsmadktworking
middleware consists of software agents that shutttenmdtion between different
components of complex, distributed applications.

WwWw.rti.com RTI-1106

There are many types of middleware. Distributed HadibeSaand peer-to-peer
document sharing, including technologies like BitTorrentléagaa, create a distributed
source for individual files. They were first widelyeas(or abused) by music sharing
services. These technologies are massively scalableesaafrrelatively low-bandwidth
data. They make virtually no attempt to keep the datsistemt throughout the network.

Transactional systems, designed for applications likkibgnoffer guaranteed
integrity and persistent data, even in the face of syfédures. However, high-
performance scalability is a challenge.

Data distribution and messaging systems strive to upddtpleunodes with
rapidly changing data at speeds measured in microsec®edblnologies include the
traditional “middleware” such as CORBA, message queue$Bikes MQueue, and
publish-subscribe systems like JMS. While some of thielsg middleware solutions
deliver reasonable data transfer performance, most tsrgaler systems of only a few
hundred nodes, and leave issues of data consistencyeasraise for the application.

The emergence of DDS:
the real-time publish-subscribe middleware standard

Embedded systems connect devices; since devices are liast@ebple, these
networks require performance well beyond the capabilifitsaditional middleware.
Hundreds of embedded designs have now been completed witicadvaublish-
subscribe middleware. This experience drove the fic#@ed standard that targets real-
time distributed systems, the Object Management Grougta Distribution Service for
Real Time Systems (DDS) Standard.

DDS is sophisticated technology; It goes well beyontp& publishing and
subscribing functions. It allows very high performarteag of thousands of
messages/sec) and fine control over many quality of sepacameters so designers can
carefully modulate information flow on the network.dAtailed description of DDS is
beyond the scope of this paper; see www.omg.éfgwever, it is based on very familiar
concepts. We present a high-level analogy here.

DDS is like a neighborhood news service for computerputk reporters at every
“house” and delivers the stories they write to everyrotioeise that cares to subscribe.

Each house has fine control over what news it getswN®u can subscribe to every
single update on every topic or weekly summaries ofgnst You can have reliable
delivery directly to your iPod, or have them just toss@epan your doorstep when they
can. You don't know or care where the stories caom,fso multiple reporters can back
each other up to make sure you always get your morning treffart. You can even set
deadlines for delivery, ask to be notified when your neaghlare on vacation, and much
more.

Of course, this is just an analogy; DDS does not targighborhood or inter-
human communications. DDS targets high-performanceanks. It can deliver tens of
thousands of "stories" a second to any or every “hoaisg/our network. The “stories”
are data updates of any type; “houses” are any computerb@deled device. The “fine

WwWw.rti.com RTI-1106

control” options are Quality of Service (QoS) parangethat fine-tune delivery
requirements. QoS enables a dynamic contractual negotizetween every data
publisher and subscriber to determine and set up accessnaalgadataset under a
specified delivery terms.

This infrastructure fundamentally changes how easytd design and set up a
highly-connected real-time networked application. Complestriduted, information-
critical applications are the next generation of conmgutiThe impact on many of today's
real-world applications will come much sooner and Is¢ §s$ transformational.

What makes a system real time?

Let's take a second to examine the challenge of workimgal-time, especially
for distributed systems.

There is a famous Stanford PhD qualifying-exam questidrasiies, “Why are
clear things clear?” It’s a trick question, becauseetieno property of materials that
yields clearness. Things are clear because they dowottalisflect, or scatter light.
Fundamentally, they are clear because they fail tonoéear.

Systems are real time for a similar reason: théydde non-real time. Consider
a control system that must respond to a sensor (B2gi@erature rise) by changing some
actuator (e.g., closing a valve). To respond to the stgntihe sensor must detect the
stimulus, that detection must be reported to peripherdiNzae, the peripheral must
interrupt the CPU, the operating system must procesatereupt, the application must
calculate a response, the response must be passedtbusi®r, and the valve must
close. If each of these steps takes a fixed amoumhef the system will be
deterministic. If those times sum to a small enougbeyaghe valve may close before the
boiler overheats, and the system can be calledineal tif any of these steps takes an
unknown or excessive time, the system will fail tada time.

If the sensor and actuator are connected over a nettherkhain of events
minimally includes creating a network message, passingréssage through the
network stack, putting the message through some tranemisgdium, receiving the
message at the other node, passing it back up througlathe ahd interrupting another
processor that controls the valve. Even this simpéto-one system has many more
opportunities to fail to be real time.

What makes distributed middleware real time?

Complex, distributed real-time systems present tleesting new challenge.
Throwing a network into the mix complicates things greagtwork hardware,
software, transport properties, congestion, and configurafffect response time. “On
time” may have different meanings for different nodesrithe simplest question of all,
“what time is it?” can be hard to answer in a distted real-time system. Although it
may be tough, solving the real-time challenge across aoriets/critical. It is the key to
truly pervasive data.

WwWw.rti.com RTI-1106

So, what makes middleware real time? The easy answédd be that
middleware is real time if it can always process retguesa sufficiently-short
deterministic timefrante Unfortunately, this is rarely possible or even definable
distributed systems. Most designers cannot assummbleebdr strictly time-
deterministic underlying network transport, as most cdst@de real-time systems must
operate without these luxuries. Most architects ddknow the real performance bounds
of their systems. Usually, you know only that the nekitcansport seems to afford the
raw performance to succeed if properly managed. The kexctessful distributed real-
time middleware is to optimize those last two worgsoperly managed”. That
discussion is beyond this paper...

Data-centric development in action

Data-centric development methodology is not some $ai@eel future technology
— it is already in use today in a wide variety of agilans. It is typically employed
where the increased complexity of the application Aardtagnitude of the system
design task makes a move to a simpler and more fledéelopment environment an
irresistible proposition. Such systems also benefihfthe enhanced performance and
scalability inherent in this data-centric design approbkehus look at two recent — and
very different — examples.

Tokyo's Highway Line system consists of a central mi&ation-control center and
hundreds of information kiosks and displayed scatteradydlwe city's highway system.
They needed a low maintenance, high reliability commtioics system that was
sufficiently robust for delivery of constant updates tokiosks. The drivers and
passengers who are stopped at the parking area rest @esto get information on
traffic conditions, projected arrival times to partaulocations, alternate routes, and
enforcement points where traffic is being redirectedamtrolled due to obstructions in
the roadways caused by construction or accident.

The size and complexity of such a widely distributed-tieze system pose a number
of specific design challenges, notably:

(1) how to provide reliable real-time information to commutareut arrival times,
traffic problems, changes in schedules, potential probdemslternate routes;

(2) ensuring the provision of information to transit offisiaind employees on a
timely basis;

(3) how to ensure delivery of this information on transmisdéinks that vary in
bandwidth, signal to noise ratio, and physical location;

(4) how to develop, operate, maintain and eventually upgradenplex system

running on a variety of computer server and client platfowith diverse
hardware and software incompatibilities.

! Of course, none of the rest of the system canddik real-time. Thus, for instance, for

maximum determinism, you need a real time operatingisyand a sufficiently fast, unloaded network.
Other sources have covered these issues in depth.

WwWw.rti.com RTI-1106

By using a publish-subscribe model based on RTI's implet@miaf DDS, the
developers of the Highway Line network designed a systemg aslynchronous message
passing between concurrently operating subsystems, campactariety of anonymous
information producers (central office) with many otequally anonymous information
consumers (kiosk and terminals).

In such a system, when a data producer — the server -hmgieme data on a topic,
all the consumers — the kiosks and terminals - subscribitgtddpic receive it. The
data producers and consumers remain anonymous, resuléirigase coupling of sub-
systems and a robust service that decouples participaniofte another, provides
location transparency, and the flexibility to dynamigaltld or remove elements.

In addition to the benefits of performance and flexipiinherent in the data-centric
publish-subscribe model, what also appealed to the Tokyo gevslwas the speed and
efficiency of the development process. Unlike the fatient/server link, DDS
essentially provides a connectionless API. Thus it doesequire that the system
designer get involved in the underlying communications podéod@ he developer only
needs to tell the system what the bandwidth comgégrare, the information needed at
each node, what actions needed to be taken, when tat €erd receive it, and what is
required in response.

Instead of a direct, active link to a server in whioh tlient is required to query for
updates, RTI's DDS implementation is very informationtde, and does not require
such active linkages, which require constant updating. Tbwexd the Tokyo system
developers to simply tell the DDS API what informatismeeded at which terminal and
on what schedule. As a subscription protocol, the sydesigners can designate
beforehand the quality of service and the delivery prodilber than negotiating this each
time a transaction is initiated.

The flexibility of the publish-subscribe framework and thct that it is independent
of the underlying server, terminal or network hardwareotimgre configuration also
gives the developers of the Tokyo Highway Line netwbekability to be more open
ended in relation to future extensions of the systeterms of number of terminals, the
underlying hardware or OS, the physical network and the badtidwaequired.

Another, and perhaps even more challenging, applicatiarivies the use of RTI's
DDS implementation in the US Navy's ambitious programevelop its Sea Power 21
concepts in support of Joint Vision 2020 for airborne eadyning surveillance, battle
management and Theater Air and Missile Defense (TAMD).

As part of this system, the US Navy's E-2C Hawkeye dirpravides all-weather
airborne early warning, airborne battle management aminemd and control functions
for the Carrier Strike Group and Joint Force Commander.

The newest variant of the E-2C (Hawkeye 2000) with it mession computer,
improved radar displays and Cooperative Engagement Cap&Biit(y), combines with
the shipboard Aegis weapon system to provide an enhancededeeae system and will
form the cornerstone of future sea-based TBMD.

RTI Data Distribution Service has been used in the dpusdmt of the upgraded
Hawkeye project, and has been selected for use in shg@eeration of the Aegis
system, due for deployment in 2008.

WwWw.rti.com RTI-1106

Figure 3 below shows a real-world example taken fronté&sign of the Hawkeye
aircraft. Again, data-centric thinking transformed theie architectural approach in

this demanding “hard real-time” application.

2.0 Sensors

1.0 Common Services MUX RDR

DIA_ | NAV | MCP | IPCC i""’%

FIL TDM _ 7
uﬁ;’{&'ffﬁ

=
3.0 Fusion /
}'

RIP . TRK MS I,-— :
L] LR i
5.0 Cranzviind atinns

L4 L11

4.CBM

610 Sensor Control

SEN DSC

8.0 Training

7.0 V swaiization

HMI ACIS

Figure 3a: Functional Design

Functionally-oriented software modules must talk to many other modules. Grouping into
functional clusters does nothing to change that reality and ease software integration.

WwWw.rti.com RTI-1106

2.0 Sensors

DIA

3.0 Fusion
RIP

I 60 Sensar Caontrol
5.0 C=niniuni.ations 4 u

L4 L11 L16 SEN | _DSC

7.0 WV siajization

HMI & ACIS
R

Figure 3b: Integration
Adding new functionality cascades integration re-work across many modules.

[e—

1.0 Common Services MUX
DIA NAV MCP IPCC

FIL TDM | aADNS TIS
e

2.0 Sensors

4.0 BMC2
3.0 Fusion WAC TDA [RAIDER| CHAT

RIP CEC TRK

6.0 Sensor Control
SEN DSC

5.0 Communications
L4 L11 L16 IPv6

HMI ACIS T40

Figure 3c: Publish-Subscribe Design
Publish-subscribe architecture simplifies data communications, greatly easing
integration.

=
c
=2
=
>
1
73]
=
o
o
(2]
=
o
1]
-n
3
3
@
=
o
=
=

WwWw.rti.com RTI-1106

What does the future hold?

There is a new generation of connected systems ih sigdta-centric
architectures will change the world by making informatiutytpervasive. Pervasive
information, available in real-time, will enable mutiore capable distributed, data-
critical applications.

Real-time middleware is the technological key drivingdata-centric
transformation. The next exciting step is merging imition distribution, storage, and
discovery into a pervasive data model. These techmsi@re evolving rapidly. They
already satisfy many of the real-time performancgirements of embedded systems
and are developing to integrate high-performance data aocdssenterprise. Although
there are many challenges in performance, scalabilitlydata integrity, a data-centric,
pervasive-information future is coming. Soon.

WwWw.rti.com RTI-1106

