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The Rise of Data-Centric Programming 
The network is profoundly changing the nature of system design.  The “web” is just a 
first step; the Internet today focuses on connecting people at human interaction speeds.  
Future networks will connect vast arrays of cooperating machines at rates meaningful to 
physical processes.  These connections make truly distributed applications possible.  
Distributed applications will drive the future in many areas, from military information 
systems to financial trading to transportation.   
 
The network itself is only part of the required technology.  Today’s network makes it 
easy to connect nodes, but not easy to find and access the information resident in 
networks of connected nodes.  This is changing; we will soon assume the ability to pool 
information from many distributed sources, and access it at rates meaningful to physical 
processes.  Many label this new capability the “network centric” architecture.  We prefer 
the term “data centric” because the change, fundamentally, is driven by a fast and easy 
availability of information, not the connectivity of the network itself.  Whatever the 
name, it will drive the development of vast, distributed, information-critical applications. 
 

The importance of performance 
Switching from code-centric or architecture-centric thinking to data-centric design is a 
profound change.  Instead of configuring clients and servers, or building data-access 
objects and invoking remote methods, data-centric design implies that the developer 
directly controls information exchange.  Data-centric developers don’t write or specify 
code.  They build a “data dictionary” that defines who needs what data.  Then they 
answer the information questions: How fast is the data coming?  Does it need to be 
reliable?  Do I need to store it?  Where is it coming from?  What happens if a node fails? 
Publish-subscribe middleware enables data-centric design.  With this approach, nodes 
simply "subscribe" to the data they need and "publish" information they produce.  
Information flow is direct, immediate, and efficient.   



True power, however, requires the performance to deliver exactly the right data, right 
now.  The middleware can deliver some of this performance by being fast and efficient.  
Much of the performance, however, comes from efficiently specifying how and when 
data should be transmitted.   
 
This paper examines the complex issue of the performance of distributed networking 
software.  Part I of this series examined the challenge of defining real-time in a 
distributed system.   It also provided a basic background in real-time systems and 
middleware architecture and technology, and especially in the publish-subscribe Data 
Distribution Service for Real-Time Systems (DDS) standard by the Object Management 
Group (OMG).  Now we take a next step, and look at the factors and challenges of 
delivering the performance required to make data pervasive.  

How do we achieve real-time performance? 
Pervasive data requires two things: data availability and real-time performance.  Real 
time, fundamentally, means fast enough to reliably effect the environment.  Physical 
processes often operate in environments with millisecond response requirements.  In this 
environment, how do we achieve real-time? 

Application requirements---Not! 
Logically, discussion of performance should start with a clear definition of the 
application performance requirements.  Unfortunately, in nearly two decades of 
experience with hundreds of real-time systems, we have (almost) never seen a defensible 
performance specification, with hard “make it or not” numbers, for a complex system 
design.  That depth of understanding at the start of a project is just not a practical 
expectation.  It becomes somewhat more practical as the project evolves, but it’s often 
only really evident at system integration time.   
 
This may be a shocking claim; don’t read it the wrong way.  Roughing out the 
performance expectation is a critical exercise, even if a crisp answer is unlikely.  We are 
simply stating that it is the rare application architect that can state succinctly and 
authoritatively that the alarm message must propagate from the reporting node to those 
thirteen other locations within 1.7, and not 1.8, milliseconds. 
The best goal, in our experience, is to clearly understand the major performance drivers, 
and then design a system that can adapt to handle likely loads.  This results in the greatest 
chance of success.  It also yields a system that can withstand the inevitable future 
unexpected demands. 

Factors 
Even on a single computer, performance is not well defined.  To succeed, each single-
node part of a distributed application must execute its tasks quickly, reliably, and 
economically.  More importantly, it must complete the computations in time---real time--
-to successfully interact with its environment. 
 



Connecting many such systems into a network greatly complicates this simple analysis.  
In a network, issues such as efficient delivery to many simultaneous nodes, efficient 
utilization of bandwidth, reliability, and recovery from lost transmissions come into play.  
Complex, distributed real-time systems present the interesting new challenge.  Throwing 
networking into the mix complicates things greatly.  Network hardware, software, 
transport properties, congestion, and configuration effect response time.  “On time” may 
have different meanings for different nodes.  Networks merge embedded and enterprise 
systems, combining the challenges facing both.  Even the simplest question of all, “what 
time is it?” is hard to answer in a distributed system.   
 
But although it may be tough, solving the networked real-time challenge is critical.  It is 
the key to pervasive data.  This section overviews the most important factors to consider.  
Where appropriate, it also outlines the unique approach taken by new technologies like 
DDS. 

Basic network performance metrics 
Throughput and latency are the metrics most designers consider.  They are, however, 
often-minor factors in answering the question that matters: will the system work? 

Latency 
Latency is the time from the moment the sender writes the data until it is received at one 
or more interested nodes.  This is also known as “end-to-end” latency.  Since it is difficult 
to accurately coordinate distributed clocks, latency is usually calculated as half the round-
trip time of a message being sent, received, and then returned to the original sender.  In 
some applications, latency “jitter” is also important.  Jitter is a measure of how 
predictable the results are from one write to another.  
 
Latency is a layer game; from the instant the data to send is available, it must pass 
through the middleware layers, the network stack, the operating system, and the device 
drivers.  Each takes time.  Latency also grows as message size increases, making 
transport time more significant. 
 
For even reasonably large systems, the “1-to-N” latency can be more important than 
simple point-to-point latency.  Most older middleware designs are based on the 
Transmission Control Protocol (TCP), which implements a single point-to-point reliable 
connection.  Newer middleware can use multicast, the ability to send a single packet to 
many destinations.  DDS can run on multicast networks.  Most older technologies, 
including CORBA, JMS, etc., usually work only via 1-1 unicast.  Technologies that can 
take advantage of multicast can theoretically send to 50 nodes 50 times faster than 
traditional middleware. 

Throughput 
Throughput is the total number of bytes sent per unit of time.  For small packet sizes, the 
overhead of passing through all the layers of software dominates throughput.  As packets 



get larger, throughput usually increases; each delivers more data for roughly the same 
overhead.  For very large packets, wire speed can limit throughput.   
Most middleware is capable of approaching the common 1Gbit wire speed on today’s fast 
hardware.  However, again, the “1-to-N” problem is also important for throughput, and 
multicast is the key to distributed performance.  

Efficiency 
How much of the CPU can the middleware use?  At design time, this is difficult to 
answer.  Of course, it depends on what else you’re doing with the CPU.  In our 
experience, most designs should strive to accomplish their data transport requirements 
with about 15% of the CPU.  That leaves sufficient room for application software and 
future growth. 

Quality of Service 
Many designers overlook the effect of Quality of Service (QoS) on performance.  By 
QoS, we mean the semantics of delivery of data, including factors like  

• which data to deliver,  
• when delivery is expected,  
• what to do in case of failure, and  
• how many resources to use in the attempt to deliver data. 

Middleware designs offer differing control: QoS can be set on a system-wide, per-node, 
per type of information, or even on a per-data-stream basis.  Most networking 
technologies offer only rough control of global system timeouts.  In contrast, DDS, 
permits the finest control; DDS directly specifies dozens of QoS parameters.  Each of 
these affects delivery performance. 
 
Detailed analysis of QoS effects is beyond this paper. However, three issues are worth 
discussing: delivery reliability, failure detection and recovery, and deadlines. 

Reliability 
Unless the network media itself is reliable (rare), networks drop packets.  The only way 
to ensure delivery of lost packets is to retransmit.  However, that takes time.  Thus, there 
is a fundamental tradeoff between delivery reliability and time determinism.   
 
Some designs (CORBA, DCOM) are based on TCP and thus offer little to no control over 
this tradeoff.  DDS offers very fine control, all the way down to a per-data-stream level; 
you can choose reliable or “best efforts” transmission differently for every data topic sent 
to every node. 

Failure detection and recovery 
Failure detection and recovery is a complex problem.   
The first requirement is to know when part of the system has failed.  All middleware 
designs provide this in some form, either through exceptions on transmit (CORBA, JMS) 



or explicit “are you alive” protocols (DDS). In general again, DDS provides much finer 
notification control. 
 
Publish-subscribe systems also offer a first-level failover capability by arbitrating 
between multiple publishers.  The DDS “ownership” concept allows a publisher to own a 
data stream; if it fails, ownership passes automatically to a backup publisher.  

Deadlines 
Most networks are “usually” very fast, but sporadically slow or unreliable.  Many factors 
cause this, including operating-system lockouts, stack buffering and overflows, and 
network-media failure.  How does middleware guarantee delivery to a specific node at a 
specific time in the presence of an unreliable network?  The unsatisfying answer: it 
cannot.  
 
Fortunately, it turns out that most applications can operate without this guarantee.  Two 
things are important: knowing when to expect on-time delivery, and notification in the 
hopefully rare cases when that expectation is not met.  With this information, the 
application can request the information it needs when it needs it, and react when that 
request fails. 

Scalability 
As systems grow, they push the limits of the underlying communication paradigm.  The 
ability to scale is a combination of many factors, ranging from broad system architecture 
to implementation details like memory allocation.  This is a complex problem, made 
more complex by the many dimensions by which a system can grow.  We discuss here 
only a few of the considerations. 

Scalability factors 

Nodes 
Most think of scalability in terms of physical nodes.  Obviously, as this factor grows, 
more messages are required.  However, it is only one of many possible growth factors.  
Characterizing a system size by the number of nodes is easy and common---but often not 
that meaningful. 

Applications 
Each node can support multiple end applications.  In fact, most complex systems run 
several applications, often fairly independent, on each physical node.  The number of 
applications is a better metric than the number of nodes, since the middleware must 
service each application with the data it needs. 

Number of topics 
A simple application may have only a few topics to share.  Complex applications may 
require thousands. 



Connectedness 
A sparsely-connected system requires much less communications traffic than a densely-
connected one.  More importantly, as a system grows, dense connection topologies can 
cause exponential growth in the number of required configuration “meta” traffic 
messages. 

Data size 
Finally, large databases present performance problems of their own.  Accessing this data 
is a well-studied database problem.  Interfacing those databases to high-performance 
middleware is newly-emerging technology; see below. 

Scalability Concerns 

Send time 
Each time it sends data, the middleware must know what data to send and where to send 
it.  Gathering this information takes time that grows with the system.  Sending an update 
of one topic a second to a few of a dozen applications may be done with simple lists.  
Choosing which of thousands of applications should receive a complex set of many 
thousands of topics many times a second may require sophisticated data sorting and 
lookup techniques.  

Discovery time 
As systems grow, the problem of which applications need what data grows.  This 
problem is called “discovery”.  In a server-based architecture, the server must store and 
forward all this information.  In a peer-to-peer architecture, each node must communicate 
its needs and capabilities to every other node that shares those needs.  As the system 
grows, the traffic required to manage this information grows.  The time required to 
accommodate that traffic also grows, and can present a limit to scalability. 

What does the future hold? 
There is a new generation of connected systems in sight.  Data-centric architectures will 
change the world by making information truly pervasive.  Pervasive information, 
available at nearly-instant speeds, will enable much more capable distributed, data-
critical applications. 
Real-time middleware is the technological key driving the data-centric transformation.  
Truly pervasive data requires real-time delivery to any location.  That requirement 
imposes many performance and scalability problems.   
As we address these challenges, we will develop truly pervasive data.  These 
technologies are evolving rapidly.  They will soon deliver the real-time performance, 
scalability and data integrity required by large distributed embedded systems.  Although 
there are many challenges, a data-centric, pervasive-information future is coming soon. 


