
© Real-Time Innovations, Inc. 2008 1

How Does Your Real-time Data Look?

By Supreet Oberoi

Real-Time Innovations, Inc.
385 Moffett Park Drive
Sunnyvale, CA 94089

www.rti.com

Introduction
Are all real-time distributed applications supposed to be designed the same way? Is the design for a UAV-based
application the same as that of a command-and-control application?

In the case of a UAV-based application, a high volume of data gets created, only some of which is of interest to
the base station. To preserve the radio link’s bandwidth, only the relevant information is transmitted. The
application will use the data for post-mission analysis, so it also has persistence and data-mining needs. In
contrast, a real-time command-and-control application needs low-latency and high-reliability, but has little need
to persist or cleanse the data in real-time. No, all real-time distributed applications are not designed the same
way. While we categorize both these applications as real-time with similar data-transmission characteristics,
their architectures and designs vary significantly because the information that they manage and process varies
significantly.

This paper characterizes the lifecycle of data in real-time applications—from creation to consumption. The paper
covers questions that architects should ask about data management—creation, transmission, validation,
enrichment, and consumption; questions that will determine the foundation of their project.

© Real-Time Innovations, Inc. 2008 2

Why is it important to characterize your
real-time data?
Historically, architects developing real-time
distributed applications have focused more on the
technical challenges of network communication than
on the challenges of information management.

For example, when developing an application that
collects payload data from a UAV, application
architects typically focus on the best way to use a
lossy and low-throughput radio link, how to manage
an ad-hoc network, how to manage reliability in
network transmissions, and other network-specific
characteristics.

Until the development of real-time middleware like
OMG’s Data Distribution Service for real-time
systems, these network communication issues posed
a significant challenge. By designing a distributed
system without understanding the true characteristics
of the data, you could end up with an application
that wastes valuable resources—from network
bandwidth, to CPU, to memory.

For example, an application that monitors sensor
alert conditions may waste network resources by not
using Complex Event Processing (CEP) to perform
local processing of data and by only transmitting
alert conditions; a UAV-based application that
requires simulation of payload data may incur delays
in analyzing data that is not stored correctly in the
first place.

To summarize, building a distributed system
inherently implies that it is a network

communications challenge—in reality, it is also an
information management challenge.

Question 1: What types of data do you have?
Different types of data have different data
transmission, persistence, processing, and mining
needs. Again, taking the example of a UAV-based
application: the application may exchange or
transmit video, sensor (payload) or control data with
the ground station. While the network characteristics
for sending video data may tolerate loss of data, this
will not be true for exchanging control data (“plane,
turn right”) where the network link needs to be
reliable.

The video data will require a high-throughput
connection and persistence for later analysis when
data is replayed, while the control data may not
require persistence. The sensor data may require
preprocessing for events and erroneous readings
before transmission, but the control data has no
preprocessing requirements.

Since the application architect can foresee mining
the sensor data, she may require all sensor data to be
persisted in a relational database. However, video
data will most likely be queried only by timestamps
and no other associated dimensions; persisting it in a
relational database is not required.

At the very least, the system architect should pose
the following questions about each type of data that
exists in the system:

Figure 1: A simplified information diagram of a UAV-based system

© Real-Time Innovations, Inc. 2008 3

What are the network transmission characteristics of
your data?

• Rate and volume of data generation
• Data-transmission performance
• Preprocessing and event inference

What are the post-network transmission
characteristics of your data?

• Persistence
• Replay and simulation
• Data querying and mining
• Integration with enterprise and legacy systems

Question 2: How much and how fast are you
publishing data?
Consider the example UAV-based system that is
publishing a video feed to a ground station. To
design an integrated information management
system, the architect should ask these questions:
• How fast is the video data created?
• What is the typical size of a video sample?
• On average, how many publishers are sending

data to the ground station?
• For how long does the data need to be

available for mining and for query?

Without a proper understanding of answers to these
questions, the architect runs the risk of making many
mistakes: overwhelming the publishing and/or
subscribing node with data, overwhelming the
network with data, not using the right information
management system like RDBMS, not using data
enrichment and summarization techniques like
Complex Event Processing.

Question 3: What are your data-transmission
performance needs?
The performance characteristics for your data
transmission can be different from your network
transmission. For example, on a UAV supported by
a low-throughput, high-latency radio link, the video
feed may have high-throughput performance
constraints and the sensor alerts may have low-
latency constraints. Similarly, the control data on a
command-and-control application running over a
gigabit LAN (high throughput, low latency) will
have low-latency, but low-throughput, constraints.

Based on the data characteristics, the application
architect will configure the middleware differently—

for example, to maximize an application’s
throughput, the developer may use RTI
middleware’s message batching feature.

While latency and throughput are two key data
performance constraints, there are others, such as
CPU and memory usage. While embedded RTOS
systems continue to obey Moore’s law of expanding
CPU power, they are traditionally more constrained
both by memory and by CPU compared to their
enterprise cousins like Solaris, Windows, or Linux
platforms. An RTOS system polling a sensor at a
high rate with strict demands for reliability will
consume high memory resources. (RTOS will keep
samples in memory until the subscriber confirms
that the data has been received.) Similarly, a system
that is publishing large volumes of data will most
likely cause a bottleneck with CPU usage.

Question 4: Does your information have any
real-time processing needs?
Distributed systems need real-time information
processing for many reasons, such as preserving
network bandwidth or reacting to events in real time.
For example, a distributed system that is monitoring
for networked-node intrusion will want to do real-
time processing of all open network ports to
determine if they are authorized. If an unauthorized
or suspicious open port is detected, the application
will disseminate that event in real time to all other
nodes. In other words, the application architecture
cannot afford the high latency of sending the
information to a centralized node for processing. In
addition, the patterns for detecting alerts may change
frequently—again, the example of malicious node
access comes to mind. Hackers continually apply
new strategies to gain unauthorized access, so the
algorithms for processing network I/O need to be
updated very frequently. In such cases, using
Complex Event Processing along with real-time data
distribution middleware like RTI Data Distribution
Service is useful.

Another reason for doing real-time processing of the
data as close to the source as possible is to preserve
network bandwidth. A sensor on a satellite may be
collecting samples at a very high rate, but perhaps
the ground station is only interested when an event
of interest happens. In that case, it is prudent to
preserve the network bandwidth by doing as much of
the information processing as possible on the
satellite, and only transmitting events of interest to

© Real-Time Innovations, Inc. 2008 4

the ground station. Again, the architects can benefit
by leveraging technologies such as Complex Event
Processing to validate and enrich the data before it is
prepared for network transmission.

Question 5: What are your application’s
persistence needs?
Applications engineers and architects who delve in
the real-time world of embedded systems and RTOS
sometimes overlook the fact that the data needs to be
persisted, or that issues pertaining to persistence are
equally relevant. The bottom-line goal for most
applications—real time or not, distributed or not—is
to generate data that can be consumed. In this cycle
of data creation and consumption, persistence plays
a key part. Application architects can use persistence
to achieve many different functional goals, such as
fault tolerance, providing historical data for late-
joining subscribers, and archival.

Consider the example of a sensor that is generating
data with high-reliability constraints. To make sure
that no data is lost if there is a crash in the middle of
publishing the data on the wire, or to make sure that
all data is received if a subscriber crashes in the
middle of reading the data from the wire, the
application architect will need to employ persistence
techniques. In addition, the architect will need to use
persistence to enable replay, data mining, or
integration (these topics are discussed in the
following section).

Depending on the location and the nature of access,
different persistence tools will be used. For example,
to enable persistence for a relatively low volume of
data on a UAV’s RTOS board, an embedded
database like SQLite may be used. To persist data
like video feeds that have relatively simple query
interfaces (query by time), even a flat file may
suffice. In contrast, the persistence needs for storing
sensor payload data from many different UAVs at a
ground station will require a more complex system,
such as an enterprise-grade RDBMS with
sophisticated capabilities to do data mining and
managing large volumes of data.

If the application demands the use of a relational
database, then the data structures need to be mapped
to database tables. The architect will need to resolve
throughput-impedance-mismatch issues, since data
rates in real-time applications are traditionally much
faster than the rates that enterprise-grade databases

can manage. The architect may choose to use the
RTI middleware’s content-filtering and Complex
Event Processing capabilities, along with an in-
memory database like TimesTen, to address such
issues.

Question 6: Does your system have replay or
simulation needs?
Every developer with experience in building
distributed systems already knows that debugging
distributed applications is tough! There are many
reasons.

First, many bugs in distributed applications are
caused by a complex sequence of events between
networked nodes that are difficult to reproduce. A
particular event may be caused by a machine failure
at a particular moment, which is difficult to
reproduce. Another reason is that it is very expensive
to recreate the test case for debugging. For example,
there may be an application failure during a field test
in deploying a distributing application on a ship, or
in running a field test with a set of UAVs. It is just
not feasible for an engineer to reserve a ship until
she fixes her bug!

One approach that is very useful in debugging
distributed applications is to capture all the data—
discovery, metadata, and user data—without
affecting the performance of the system. Then later,
if the developer wants to recreate a particular
incident that occurred during a field test, she can
replay the captured data in the same order, at the
same or different rate, to better understand why the
system reacted the way it did.
This capability is different from having persistence
for your application. Persistence usually applies to
saving the desired set of user data. What we are
referring to here is the capability to store all the
relevant data that is required to recreate the state of
the distributed application. An application architect
may consider using RTI Recorder to address such
issues.

Question 7: How does your data integrate?
In a world of mandated interoperability between
systems, and a global information grid, application
architects need to make sure that relevant data is
available, or even pushed to an external system.

Application architects need to consider tools and
technologies that make integration with back-end

© Real-Time Innovations, Inc. 2008 5

enterprise systems scalable and flexible (no system
redesign required if a data structure is updated).

Enterprise Service Bus (ESB), with the use of web-
services, is increasingly becoming the technology of
choice when designing systems for integrations. A
Complex Event Processing engine, which contains
adapters for integrating different systems like RTI
middleware and RDBMS, can also be a sensible
choice.

To design for integration with back-end systems, an
application architect should address these questions:
• What subset of real-time data do I need to

integrate?
• What processing (cleansing, validating,

enriching) do I need to perform prior to
integration?

• How will I resolve the data-impedance issue
between a real-time and non-real time system?

• How do I build a flexible system that loosely
couples the real-time system with the back-
end system?

• Do I need to use ESB or a CEP?

Summary
The goal of building a distributed, real-time
application is the same as the goal of building an
enterprise OLTP, CRM, ERP, or any other
application—to manage information to give your
enterprise a competitive edge. To achieve this goal,
system and application architects need to focus on
information management in addition to network
communication and management.

Some of the best answers are provided by asking the
right questions. This paper details questions
architects should consider addressing as part of their
system design.

About RTI
Real-Time Innovations (RTI) provides high-
performance infrastructure solutions for the
development, deployment and integration of real
time, data-driven applications. RTI’s messaging,
caching, Complex Event Processing (CEP) and
visualization capabilities deliver dramatic
improvements in latency, throughput and scalability
while slashing cost of ownership. The company’s
software and design expertise have been leveraged
in a broad range of industries including defense,
intelligence, simulation, industrial control,
transportation, finance, medical and communications.
Founded in 1991, RTI is privately held and
headquartered in Santa Clara, CA. For more
information, please visit www.rti.com.

 v0609b

