
© Real-Time Innovations, Inc. 2007 1

RTI in Financial Services:
Performance, Consistency, Reliability

An RTI Whitepaper

Real-Time Innovations, Inc.

385 Moffett Park Drive
Sunnyvale, CA 94089

www.rti.com

Increases in data volumes over the past few years have stretched current
financial information backbones, resetting the technology challenges in a way
that demands a new approach.

For example, Automated Trading Desk (atdesk.com), now part of Citigroup Inc.,
chose RTI to distribute real-time data from direct-exchange and ECN feeds to
price-prediction engines and automated trading applications. PIMCO
(pimco.com) has selected RTI as part of a new initiative to enforce and monitor
regulatory and client-imposed pre-trade investment restrictions.

RTI’s solution is a software-only messaging backbone based on a true peer-to-
peer architecture that fundamentally challenges earlier generations of daemon-
based architectures, and recent peer-to-peer approaches. Leveraging 16+ years
of research and development, RTI’s key technical value is unparalleled intelligent
messaging that performs predictably as message sizes increase and consistently
as overall message throughput grows under extreme market conditions. This
deterministic behavior is unmatched.

With no intermediate daemons, brokers or other components to add latency,
market data and market order/execution updates are benchmarking at over
3 million messages per second. RTI customers have reported mean latencies
as low as 43 microseconds in Gigabit Ethernet environments. Current tests
support symbol spaces of over 1,000,000 “subjects.” Overall throughput is
essentially linear as publishers are added, with maximum throughput limited only
by available bandwidth.

Earlier peer-to-peer approaches for market data distribution improve
performance and latency over daemon-based architectures, but often experience

© Real-Time Innovations, Inc. 2007 2

large deterioration in performance as message sizes and especially message
throughput increases.

For algorithmic trading and complex event processing, RTI’s key advantage
is the efficient mapping of messages to CEP streams. RTI’s data-centric
infrastructure offers the highest performance interface to the CEP relational
model.

RTI delivers secure enterprise class performance to bring minimum latency to
remote operations globally.

Fundamental Assumptions
Previous assumptions about the middleware infrastructure underlying distributed
applications are inadequate regarding the requirements on latency, determinism,
throughput, scalability, and availability as the volume of data and the complexity
of data flows continue to grow by yet another order of magnitude.

A different approach is needed that sets aside the traditional assumptions. The
RTI middleware infrastructure is based on the following assumptions/design
principles.

1. There can be no single point of failure or loading. Some
implementations use a daemon or a broker-based architecture, which can
lead to partial failure and complex failure/repair modes during recovery.
The RTI infrastructure is based on a decentralized protocol, with no single
point of failure, thus minimizing these partial failure situations.

2. The transport and the network are unreliable. RTI protocols assume

that the media can drop packets, links go down, and hardware fails. This
reliability is built into the messaging protocol, which has just recently been
formally adopted as an open industry standard1. APIs are provided so that
applications can be aware of external changes and respond accordingly.

3. A local cache improves performance and resiliency. In keeping with

the above two assumptions, the RTI infrastructure provides a local in-
memory cache for all communications.

4. Topology can change on the fly. Operational parameters must be

changeable on “live” systems without disruption. RTI’s messaging and
caching infrastructure provides automatic self-discovery and configuration,
so that components can be added and removed dynamically on a live
system without disruption. For example, servers can be added or removed
from a “server pool” without disrupting the clients. Furthermore, there are

1 Object Management Group (OMG) DDS Interoperability Protocol
[http://www.omg.org/technology/documents/dds_spec_catalog.htm]

© Real-Time Innovations, Inc. 2007 3

no startup dependencies imposed by the RTI infrastructure — servers and
clients can be started in any order.

5. Changing requirements demand a highly tunable infrastructure. RTI’s

design philosophy has been that a high performance middleware
infrastructure should be tunable, so that it can be optimized to the specific
application requirements. Thus, RTI exposes detailed configuration and
behavior parameters that control every aspect of the messaging and
caching infrastructure. The power and flexibility of RTI’s solution comes
through these “Quality-of-Service” (QoS) controls. Alternative approaches
do not expose this level of flexibility and control, making the hidden/implicit
assumptions opaque to the developer and non-customizable.

Messaging and Caching Communication Model
RTI’s approach is distinguished by the notion of application-defined QoS, the
flexible mechanisms for setting up data flows and the lack of centralized
resources, daemons or brokers.

The RTI messaging and caching infrastructure is based on a familiar “publish-
subscribe” paradigm, with some unique additions and specializations that make it
suitable for high-performance real-time client-server and point-to-point
interactions as well.

Topic:
“MarketData”

id2

idn

idm

id id

idid

Topic: “Orders”

Domain:
Securities

Writer

Writer

WriterReader

Reader

Reader

• No centralized resources
• Decentralized protocol’s logical view
• Data lives in local cache(s) App

Code

App
Code

App
Code

App
Code

Subject
Filter(s)

Data-Object(s)

Offered
QoS

Requested
QoS

Requested
QoS

Requested
QoS

Offered
QoS

Offered
QoS

id1

Local
Cache

Local
Cache

Local
Cache

Local
Cache

Local
Cache

Local
Cache

Component: A
(Producer)

Component: B
(Consumer)

Component: C
(Producer & Consumer)

Component: D
(Producer & Consumer)

Partition
“Derivatives”
“Domestic”

Partition
“Equities”
“International”

Partition
“Derivatives”

Partition
“Equities”
“Domestic”

Figure 1. Conceptual overview of RTI’s decentralized peer-to-peer communication model. There are
no centralized cache or resources, no servers, no daemons. All the data lives in local caches. The
underlying decentralized messaging protocol implements a logical “shared whiteboard” view.

© Real-Time Innovations, Inc. 2007 4

The figure provides an overview of the RTI communication model. At the core of
the communication model is the notion of a “data-object” which refers to some
changing real-world entity. For example, a data-object might be stock ticker
symbol with changing ask/bid prices (market data). Another example of a data-
object might be an order to buy/sell a certain security, with the state changing
from created/opened/acked to executed/cancelled.

Producer components (e.g., Component A) use a Writer entity to “publish”
changes to data-objects, while Consumer components (e.g., Component B)
“subscribe” to changes in data-objects via a Reader entity. A “message” is a
change to data-object, sent from a Writer to Readers. An application component
may be both a producer and a consumer for the same or different data-objects
(e.g. Components C and D). The RTI infrastructure takes care of delivering the
right updates to the right components at the right time, without requiring the
components to be even aware of each other.

Data objects are organized into Topics. A Topic is a collection of data-objects
that all have the same structure and semantics. In Figure 1. C, the “MarketData”
Topic is a collection of symbols being traded for which the market data is
continuously changing. Similarly, the “Orders” Topic refers to the collection of
issued orders.

Within a Topic, a data object is identified by a unique “id”, which is derived from
certain specially marked fields in the data type2. Data types are defined for a
topic, as well as which fields are to be used as “keys” (from which a unique id is
derived for a data object).

A Reader or Writer entity is bound to a Topic. Topics are thus a means of
associating Reader and Writer entities. Writer(s) communicate changes to the
underlying data objects by sending messages to the Readers. A Topic does not
“physically” exist in one place. Rather, it is a decentralized notion used to
associate Reader and Writer entities, implemented by the underlying
decentralized messaging protocol. Readers and Writers have local in-memory
caches for buffering the messages describing the changes to the underlying data
objects.

A Writer entity can publish updates to one or more specific data objects on the
associated Topic. There can be multiple Writers for a given data object. When
publishing an update, the Producer always (implicitly or explicitly) specifies the
underlying data object being updated.

A Reader entity can subscribe to a subset of the data objects on the associated
Topic by specifying a “Subject Filter.” A Subject Filter is an expression3 on the id
fields of the Topic’s underlying data type. Thus, if a Consumer component is only

2 Analogous to the primary keys in a table in the Database world
3 RTI supports SQL-92 grammar on the fields of the Topic’s data

© Real-Time Innovations, Inc. 2007 5

interested in a subset of stock tickers from the “MarketData” Topic, it can do so
by using a Subject Filter for those symbols.

Partitioning
In order for a Topic to associate Readers and Writers, they must all belong to the
same “Domain.” A Domain is a logical data space that defines the scope of
communications; messages in different domains are isolated from one another. A
Domain is shown as a cloud in Figure 1. C, and realized by RTI’s decentralized
messaging protocol. For example, “Securities” trading might be in a separate
domain from “Currency” trading, which in turn might be in a different domain from
“Futures” trading. An application component creates a “Participant” entity to
become a member of a Domain. The Reader, Writer, and Topic entities are
locally created from the Participant entity, and belong to it. An application
component can participate in multiple domains by creating multiple Participant
entities.

Domains are important for effective distribution of real-time information, efficient
network bandwidth utilization, and controlled access to different types of financial
information.

For partitioning within a Domain, Readers and Writers can be grouped for control
of data access via user-defined strings called “Partitions”. A partition is an
application-defined “tag” on a Writer or Reader entity. Writers and Readers for a
Topic do not communicate unless they have a common tag or are untagged.
Figure 1. C shows a hypothetical scenario where component C belongs to the
“equities” line of business and subscribes to orders that are tagged as (“Equities”,
“Domestic”), while it publishes market data updates that are tagged as
(“Equities”,“International”). Component D belongs to the “derivatives” line of
business and subscribes to market data updates that are tagged as
(“Derivatives”), while it publishes orders tagged as (“Derivatives”, “Domestic”).
Component C will see updates from component D because they both belong to
the “Domestic” partition, however component D will not see updates from
component C because they have no common partitions.

Flexible Data Types
RTI provides choices for dealing with data types to suite the needs of a range of
application requirements, to shield application developers from the need to know
details of data handling and to allow for dynamically changing data types without
forcing application components to restart.

Many alternative messaging technologies do not allow types to be dynamically
changed without forcing a restart of the application components. Some
alternatives do not support strong typing, forcing applications to always manage
the marshalling and demarshalling of messages. This creates more work for the

© Real-Time Innovations, Inc. 2007 6

application development team, complicates the application logic and is error-
prone.

In comparison, RTI’s approach is malleable to an application’s requirements.
RTI’s implementation exchanges type codes as part of the middleware’s
metadata exchange protocol, allowing applications to discover when there are
mismatched type definitions for a Topic. The protocol is extremely efficient and
exchanges type definitions only once—when Readers and Writers discover each
other—not on a per-message basis.

Ensuring Real-Time Quality-of-Service (QoS)
RTI’s infrastructure provides built-in facilities to express and handle requirements
such as expressing that the trader wants to ensure that an “automatic trade”
order is not open for more than 10 milliseconds.

RTI’s messaging and caching infrastructure is designed to deliver not only
application data, but also the associated QoS events. Data paths between
Writers and Readers on matching Topics are established if-and-only-if the
offered QoS is compatible with the requested QoS. If the RTI infrastructure
detects that the requested/offered QoS are incompatible, the applications on
each side can be notified of this “QoS event”. For example, if a reader were to
request data faster than can be provided by a writer, then this situation would
result in a notification of this “incompatible QoS” event.

Reader
“Topic”

Writer
“Topic”

Failed to
produce

data

Listener

Failed to
produce

data

ListenerListener
Offered

QoS
Offered

QoS Listener

Failed to
get data

Listener

Failed to
get data

Requested
QoS

Requested
QoS

Network
Figure 2. RTI delivers not just application data, but also QoS events.

In addition, when a QoS is not satisfied during operation, the middleware can
notify the application of a “QoS event”. The figure shows an example where a
producer component (left) offers to produce subject updates, say every 1 ms. If
the application fails to provide a message update within 1ms, the application can
be notified of this QoS event by an associated listener. Likewise, a consumer
component (right) may request an update every 10 ms. If an update fails to arrive
in 10 ms (say, for the open-order), the application can be notified of this QoS
event via a listener (so, perhaps the order can be cancelled). RTI offers a rich set

© Real-Time Innovations, Inc. 2007 7

of QoS policies, many of which come with corresponding listeners that can be
used to notify the application when a QoS is not satisfied. The QoS described
here is called the DEADLINE QoSPolicy, which can be used to achieve real-time
operation in a distributed environment.

As a result of this model, the QoS can be tuned on a per Writer and per
Reader basis. Each Writer-Reader pair establishes independent quality of
service (QoS) agreements. This provides fine-grained control so that a given
application component can, for example, subscribe to market data, internal
analytics, position data, market order confirmations---each with its own specific
behavior and recovery patterns. This aspect, unique to RTI, enables application
designs that easily support extremely complex, flexible data flow requirements.
Ensuring that participants meet the level-of-service contracts enables predictable
operation necessary for real-time systems.

Automatic and Dynamic Peer-to-Peer Data Flows
A fundamental design paradigm in RTI is to ensure continued operation in the
face of failure. For example, if a link fails and severs a network, each side of
network will continue to work independently. When the link is restored, the entire
network will recover with minimal system overhead. Application components
can be added and removed dynamically and started in any order. This is
possible because, in RTI’s implementation, direct peer-to-peer data paths are
automatically established between compatible Writers and Readers. Unlike some
other alternatives, RTI’s solution does not rely on brokers, servers or daemons.
Often, those approaches lead to single points of failure, performance bottlenecks
and startup dependencies.

With RTI, the application simply links to an RTI library which implements the de-
centralized messaging protocol to establish data flows. Direct peer-to-peer data
flows are established in two phases: (1) a discovery phase (also referred to as
metadata exchange), in which the application component declarations of the
Readers, Writers, QoS are exchanged between Participants over pre-defined
built-in topics; (2) the delivery phase, in which application messages are
communicated. Dynamic changes to Readers, Writers, or their QoS are
communicated via the built-in topics in real time.

Data paths are established automatically based on the declarations made to the
RTI middleware by application components. Data paths are reconfigured when
application components are added, removed or dynamically change their QoS.

In addition, an application can subscribe to the built-in topics to get full
introspection into the dynamic changes occurring in a Domain. Thus, an
Operator Dashboard application can be aware of when a Trader comes on-line or
goes off-line and make dynamic adjustments, including bringing other

© Real-Time Innovations, Inc. 2007 8

components on-line to handle the change in system load. Other messaging
infrastructures do not expose this level of detail about the system topology.

The automatic discovery and configuration of data flow in RTI provides a
significant operational advantage for systems with dynamic configuration
changes:

• RTI quickly discovers new participants, and automatically establishes the
appropriate data flows. The infrastructure cleanly flushes old or failed
components and data flows as well.

• Partial failure and startup dependencies are avoided as the application
code and the RTI infrastructure libraries are linked together in a single
component and run in one address space.

Pluggable Transports
RTI’s infrastructure is built on top of a pluggable transport interface. The RTI
pluggable transport model does not require the underlying media to be reliable or
connection oriented, and is flexible to accommodate a variety of signaling
schemes. The reliability protocol is thus built inside the RTI libraries and is
configurable via QoS parameters to match the needs of the operating
environment.

This pluggable framework approach enables RTI capabilities to be utilized on top
of a new transport technology; supports the use of multiple transports
simultaneously and enables working through firewalls.

RTI automatically takes care of fragmentation, sequencing, reconstruction and
retries of the lost fragments of large messages which exceed the underlying
physical transport’s “maximum message size” limit. The reliability protocol is
designed to understand message fragments and is optimized to resend only the
lost fragments. The application programmer is relieved of the burden of dealing
with tricky fragmentation issues, especially when working with a mix of different
transports technologies.

Custom transports have been developed for switched fabrics, such as
StarFabric. The RTI approach can support native InfiniBand switched fabric
without incurring the overhead of TCP/IP network stack emulation, as is typically
the case with other approaches.

Client-Server and Transactional Interaction
The Client-Server pattern is commonly found in financial services, for example
when a Trader’s client issues an order execution request to servers and expects
a response acknowledging receipt of the order. Additional responses may be
issued indicating that the order has been processed and finally indicating the
result of the execution. In addition, the position updates resulting from the

© Real-Time Innovations, Inc. 2007 9

processing of the order may need to be distributed not only to the originating
Trader’s client, but also to many other components, such as P/L management,
Risk Management and so on. A load-balanced cluster of servers is often used in
this scenario.

RTI’s communication model supports the client-server interaction pattern quite
naturally and efficiently.

RTI’s approach to client-server and transactional interaction patterns leads to:

• Robust Zero-Configuration Deployment
o No startup dependencies: can start client and servers in any order
o Robust to link and component failures
o Redundant servers with no single point of failure

• Higher Performance
o Maximal Concurrency: can have asynchronous or synchronous

calls
o Maximal Throughput: clients don’t waste time waiting
o Minimal Latency: no polling or connection management

• Scalable architecture

Next Steps
To learn more about RTI’s high-performance infrastructure for financial services
applications or to request an evaluation, email info@rti.com or visit
http://www.rti.com/markets/financial-services.html.

