

Meeting Real-Time Requirements in
Integrated Defense Systems

An RTI Whitepaper

Real-Time Innovations, Inc.
385 Moffett Park Drive
Sunnyvale, CA 94089

www.rti.com

Modern military operations integrate many functions including command and control,
weapons, and self-defense. Developing and integrating these applications is particularly
challenging because of their strict real-time performance demands. Often, latency and
throughput requirements exceed the capabilities of traditional enterprise messaging and
integration middleware.

Fortunately, extremely high-performance middleware has evolved that can handle
millions of messages per second with tenths of milliseconds of latency---many times
faster than messaging systems developed for less demanding enterprise applications. The
technology is fast, flexible, scalable, deterministic, and reliable. Equally important, the
middleware supports a net-centric design paradigm that greatly eases system integration
and evolution.

This paper examines the challenges faced by defense network software, traces the
evolution of real-time requirements, and examines how the required performance is
possible with modern, standards-based, commercial technology.

The Driver: Distributed Defense Systems
In the recent past, most defense systems comprised independent, relatively isolated
modules. A radar system, for instance, may have used a shared-memory multiprocessor
for high-speed communications. However, this design implies that all systems that

© Real-Time Innovations, Inc. 2007 2

depend on the radar’s tracking information must also physically connect to the radar
itself. These monolithic designs are expensive to design and maintain.

Thus, modern defense systems must be distributed. On the surface, this would seem a
solved problem; many technologies have arisen to build large distributed systems in the
enterprise. However, defense systems have some truly unique needs not met by
enterprise solutions. For instance, these systems require extreme performance and
reliability. Both the sheer volume of communications possible across the system
(throughput) and the time between sensing and responding (latency) are critical. Real-
time middleware must also provide reliability, fault tolerance, and system integration in
environments quite different from enterprise computing.

As a result, enterprise middleware is often inadequate to deal with the requirements of
integrated defense systems. System architects need a new approach.

Examples
Real-world applications drove the evolution of real-time middleware. Figures 1 through
4 show some of the hundreds of applications that have shaped real-time middleware.

Ship control; the LPD-17.
Figure 1 shows a ship in the US Navy designated LPD-17, the first of the San Antonio
class of Navy vessels. LPD is a large ship, approximately 2/3 the size of a Nimitz-class
aircraft carrier.

Real-time messaging middleware underlies a system on the ship called the Ship-Wide
Area Network (SWAN). The SWAN is responsible for:

• Shipboard control
• Machinery control
• Damage control
• Integrated condition assessment
• Steering control
• Advanced Degaussing (Magnetic signature)
• Mission control systems
• Navigation systems
• Communication systems
• Support systems for “visitors”

The SWAN is absolutely critical to the ship’s operation and achieving its mission. It
comprises hundreds of computers. Because this ship may find itself in the middle of a
conflict, it must also be able to take a hit anywhere and continue operations. This
required the ship builders to look for middleware that supports features like automatic
discovery so there would be no configuration. It supports redundant data sources, sinks,
data paths, and transports. In fact, you can physically cut the ship network in half and the
two halves will work independently. If you reconnect them, they will automatically
rediscover and heal the system.

© Real-Time Innovations, Inc. 2007 3

LPD was an early application of real-time middleware; the original design started in the
late 1990’s. It drove the middleware to be highly reliable and scalable to hundreds of
nodes.

Figure 1: LPD-17
RTI middleware runs the entire Ship-Wide Area Network on the LPD-17.

This application drove reliability and scalability

Ship defense control
Figure 2 is the control room for a ship self-defense system. This system is a last-line
defense against incoming missiles and aircraft. It directs thousand-round-per-second
depleted-uranium guns to track and shoot down incoming targets traveling at hundreds of
miles per hour. It coordinates high-speed radars, decision systems, and fast, automated
guns. These systems are now being deployed at sea on aircraft carriers and other large
ships.

A few years ago, this system would have to be deployed under the control of a single
computer “box”, with all the disadvantages of a monolithic design. There was simply no
way to communicate the data required fast enough over a network. As networking
hardware has stepped up to the required performance level, the software has followed
suit. This system drove the middleware to meet extreme performance requirements. It
required distributing data with sub-millisecond latencies to dozens of nodes.

© Real-Time Innovations, Inc. 2007 4

Figure 2: SSDS Control Room
The SSDS is coordinates high-speed radars and ship defense weapons.

This application required extremely low-latency performance.

Radar systems
Figure 3 shows a series of images from a simulation test bed built at the Naval Surface
Warfare Center (NSWC) in Dahlgren, VA. Navy engineers developed it to test load
balancing and coordination for advanced radar systems. Similar radar applications
include the Aegis and new DDG-1000 ships, as well as airborne sensors such as the
Airborne Warning and Control System (AWACS) modified 707 in Figure 4.

Advanced radar systems must handle tens of thousands of simultaneous “tracks”---
continuously-updated positions of aircraft, ships, vehicles, and missiles in an area. Ten
thousand radar tracks generate a lot of data, and it must be delivered on time. This
system required the middleware to reliably support extremely high throughput.

Figure 3: HiPer-D Simulator
This system simulated hundreds of computers cooperating to track tens of
thousands of targets. It drove the middleware to support load balancing

and high throughput.

Main Display Area with 2 Operator Equipment for Multiple Ship

Software Development

SPY Control

TBM Signal Sun Tactical Compute

© Real-Time Innovations, Inc. 2007 5

Figure 4: AWACS
The Airborn Warning and Control System radar coordinates many high-

speed radar and communication systems.

Characterizing Real-Time Requirements
Of course, these are only a few of the applications. Real-time middleware today is
driving communications subsystems, fusing disparate sensors into a single world view,
connecting motion control, graphics, and controls in flight simulators, integrating sensors
and command for unmanned vehicles, and much more. Each of these applications
requires “real time” response. Unfortunately, that isn’t always well defined. We turn
now to the metrics that characterize timeliness.

What is real time?
Formally, a computer system is “real time” if a correct response must be both
computationally accurate and timely with respect to its external environment. For
example, a control system that must respond to a sensor (e.g. a temperature rise) by
changing some actuator (e.g., closing a valve) is real time if the valve reliably closes
before the boiler explodes. Reliability is the key trait, and speed is important for
reliability. This formal definition isn’t often useful. In practice, a wide range of systems
are called “real time”, from a sub-millisecond weapon controller to a “fast enough”
online airline reservation system.

Over time, two general meanings have arisen for real time, one for enterprise software
and one for software embedded in devices such as defense electronics. In the enterprise,
a system is real time if it responds “now” as perceived by a human. Thus, a system that
reports stock prices within a few seconds is real time with respect to a human trader. In
embedded systems, real time means predictable and fast with respect to physical
processes. Generally, a real-time embedded system must reliably respond in a
millisecond or less to be considered real time.

So, “real time” in enterprise applications can be orders of magnitude slower than “real
time” for embedded applications. Over time, this discrepancy drove the technology

© Real-Time Innovations, Inc. 2007 6

developed for the two industries apart; embedded real-time middleware is much evolved
past its enterprise counterparts in timing reliability, or determinism.

Performance Metrics
To succeed, each application needs to execute its tasks quickly, reliably, and
economically. However, even on a single computer, performance is not well defined. On
a network, complex issues such as delivery to many simultaneous nodes, bandwidth
utilization, media reliability, congestion, and failure recovery come into play. Each of
these is, by itself, a dimension of performance. However, four key metrics do a good job
of characterizing basic performance: latency, jitter, throughput, and efficiency.

Latency is the time between when one application sends a message and other applications
receive it. Latency determines how quickly a system can respond to an external event.

The best way to reduce latency is to reduce handling. Each “hop”, or server, that handles
a message adds significant latency. Within a processor, latency is a layer game; after an
application sends data it must still pass through the middleware layer, the network stack,
the operating system, and the device drivers. Each takes time, but can be optimized by
reducing processing and copying data. Latency also grows as message size makes
transport time significant.

Jitter is a measure of how variable the latency results are from one message to another.
A system with low latency and controlled jitter will deliver messages quickly without
suffering from “outliers,” or very late messages. For real-time systems, jitter is critical.
In fact, jitter is often more important than average latency; a system with high jitter is
unreliable.

Throughput is the total number of messages or quantity of data sent per unit time. For
small messages, the overhead of passing through all the layers of software dominates
throughput. As messages get larger, throughput usually increases; each delivers more
data for roughly the same overhead. Ideally, throughput is limited only by the wire
speed, e.g., a gigabit of data per second on a Gigabit Ethernet.

Efficiency measures the processor load needed to support the middleware. Most designs
should strive to limit their middleware overhead to 15% of the CPU. That leaves
sufficient room for application software and future growth.

Real-Time Middleware Technology
Now we turn to some of the unique aspects of real-time middleware and contrast it with
enterprise designs. Examples are all based on RTI’s implementation, which has been
used in nearly 500 unique real-time applications, including those cited above.

Design Principles
We start by reviewing some of the assumptions about the environment and resulting
design principles.

© Real-Time Innovations, Inc. 2007 7

There can be no single point of failure or loading
Most messaging middleware uses a daemon or a broker-based architecture, which can
lead to partial failure and complex failure/repair modes during recovery. The RTI
infrastructure is based on a decentralized protocol, with no single point of failure, thus
minimizing these partial failure situations.

The transport and the network are unreliable
RTI protocols assume that the media drops packets, links go down, and hardware fails.
Thus, reliability is built into the messaging protocol above the network stack.
Application Programming Interfaces (APIs) allow applications to control the reliability
and receive notifications of network errors.

Local cache improves performance and resiliency
The RTI infrastructure provides a local in-memory cache for all data. The cache provides
a simple layer of data management; the middleware can store recent values and provide
them quickly without retransmission. Some alternate approaches push the burden of
managing a local cache onto the programmer; with RTI’s solution, the local caches are
automatically updated to deliver the highest performance under changing network and
dataflow conditions.

Topology can change on the fly
Operational parameters must be changeable on “live” systems without disruption. RTI’s
messaging and caching infrastructure provides automatic self-discovery and
configuration, so that components can be added and removed dynamically on a live
system without disruption. RTI-based applications do not suffer from the issues arising
due to partial or broken connections because the underlying protocol is not connection-
oriented. Furthermore, there are no startup dependencies imposed by the RTI
infrastructure — applications can start in any order.

Changing requirements demand a tunable infrastructure
A high performance middleware infrastructure should be tunable, so that it can be
optimized to meet specific application requirements. Thus, RTI exposes detailed
configuration and behavior parameters that control every aspect of the messaging and
caching infrastructure. For ease of use, all the “knobs” have default values “out-of-the-
box” to address standard application requirements. The power and flexibility of RTI’s
solution comes through these “Quality-of-Service” (QoS) controls. Alternative
approaches do not expose this level of flexibility and control, making the hidden/implicit
assumptions opaque to the developer and non-customizable.

Meeting the Needs
Real-time middleware underlies many very-diverse systems. However, they all share
common needs: flexibility, performance, service control, fault tolerance, and system
integration. We now examine how the technology meets these needs.

© Real-Time Innovations, Inc. 2007 8

Flexibility
Real-time systems are complex. As is often the case, the best way to address complexity
is with a simple concept; the publish-subscribe paradigm. Conceptually, with publish-
subscribe, you simply ask for the information you need and send the information you
have. The middleware matches senders to receivers, ensuring that each data “contract” is
satisfied. Of course, it’s not that simple in practice; many details must be specified. But
the overall model is intuitive and usable.

Real-time publish-subscribe differs most markedly from traditional middleware in tuning
options. For example, most middleware is built on top of the Transmission Control
Protocol (TCP). TCP was designed in the 1970’s; it provides reliable byte-stream
connections between two computers. Especially because it ensures reliability, TCP is
very useful…but it’s also very restrictive. For instance, TCP only supports
communications between two computers. Its driving state machine has many timeouts,
none of them user-settable. It supports reliability, but hides away all the important
details: how many times to retry dropped packets, how much memory to use, when to
send retries, etc.

RTI middleware, by contrast, is built on top of the User Datagram Protocol (UDP), a
much simpler technology. The middleware takes control of reliability, retries, memory,
and timing. All parameters are set to defaults, but exposed to the user application. Thus,
users can tune the real-time middleware to handle much more demanding requirements
with higher performance.

Reliability is but one of many, many parameters that affect a real-time system. RTI
middleware also allows tuning control over timing and timeouts, memory and resource
usage, network transports, priorities, and more.

Performance
Real-time middleware must be blazingly fast; the first step to meeting this challenge is
cutting overhead to the bone. For example, older “client-server” designs require a round-
trip request/response cycle for each message. With publish-subscribe, there is no request
traffic for each message. All the information required to form virtual “connections” is
exchanged through a process called “discovery” that occurs during initialization and
when new nodes join. At send time, the sending node already knows exactly where to
send the information.

Most middleware today uses central servers to coordinate data flow. Servers slow
dataflow; sending to an intermediate server at least doubles the latency of sending a
“nonstop” packet, since the packet must be both received and sent a second time. In
practice, servers cause even more latency, since they may be loaded, congested, or not
immediately responsive for many reasons. Interposing a server into every transmission
also doubles the total traffic on the network. RTI middleware requires no servers,
brokers, or daemons in the data path. Data flows directly, end-to-end, from sender to
receiver.

© Real-Time Innovations, Inc. 2007 9

On current hardware and operating systems, the stack and raw network transport can
handle around 50,000 messages per second. This is largely independent of the message
size until the wire approaches saturation. Broker-based middleware, such as most “MQ”
products and JMS implementations, must pass each message through a network stack at
least four times (sender, broker in, broker out, receiver). This reduces performance
considerably, see Figure 5. Batching, the process of consolidating multiple application-
level messages into a single transport-level datagram, minimizes the number of discrete
messages passed through the protocol stack and sent over the wire. After batching,
server-based architectures achieve throughput in the range of 100,000 messages per
second with latencies of several milliseconds.

Because it skips all intermediaries, RTI middleware is capable of nearly this throughput
performance without batching. With batching, RTI can achieve point-to-point throughput
of over 3,000,000 application-level messages per second1.

0

100

200

300

400

500

600

700

800

900

1,000

16 32 64 128 256 512 1024 2048 4096 8192

Message Size (bytes - without batching)

M
eg

ab
its

 p
er

 S
ec

on
d

RTI

Broker-based

Figure 5: Throughput
RTI’s direct peer-to-peer architecture achieves point-to-point throughput
over twenty times better than broker-based designs. With batching (on

right), it can send millions of messages per second.

Latency is also crucial. RTI has measured single-message latency (no batching) below
65 microseconds (0.065 millisec) with no appreciable jitter variation (Figure 6). Latency
performance requires strict attention to real-time design principles. For instance, RTI
allocates no memory after initialization, because finding memory blocks can add
unpredictable delays. Also, RTI supports direct transmission in the user thread context.
In this mode, there are no task switches or other operating system delays between the
application send call and the activation of the network stack.

1 8-byte messages. Measured over Gigabit Ethernet between single-threaded applications running on 2.0
GHz Opteron processors with 32-bit Red Hat Enterprise Linux 4.0.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

25 50 100 200 400 800 1600
Message Size (bytes)

M
es

sa
ge

s
pe

r S
ec

on
d

650.0

700.0

750.0

800.0

850.0

900.0

950.0

1000.0

M
eg

ab
its

 p
er

 S
ec

on
d

© Real-Time Innovations, Inc. 2007 10

0

100

200

300

400

500

600

700

800

64 128 256 512 1024 2048 4096 8192

Message Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Broker-based

99%

RTI

Figure 6: Latency
This graph compares RTI’s latency with broker-based middleware. The
solid line is the median latency with standard deviation error bars. The

dotted lines show the “99%” latency; 99% of all messages fall within this
bound. RTI delivers much faster latency with no significant jitter.

The real challenge is to combine high latency with low throughput. If the offered load
(feed rate) is high, then many messages can be quickly combined into a single packet.
RTI’s batching implementation can run as a separate thread, allowing multicore
processors to aggregate messages without incurring transmission delay. Thus, even an
aggregated stream can achieve very low latency. With bursty offered-load rates, there is
a tradeoff between low latency and high throughput. RTI lets the application make this
tradeoff through both byte and time limits; it sends the message when either is surpassed.
The time limit controls worst-case latency; the message is sent within a fixed latency of
the first data queuing event. The byte limit keeps the message sizes within optimal
ranges.

Reliability
Networks drop packets. This happens for many reasons, including medium
intermittency, congestion, and stack buffer limitations. The only way to ensure delivery
of lost packets is to detect the loss and retransmit. However, that takes time. Thus, there
is a fundamental tradeoff between delivery reliability and time determinism.

© Real-Time Innovations, Inc. 2007 11

Most middlewares offer little-to-no control over this tradeoff. RTI offers very fine
control, all the way down to a per-data-stream level; you can choose strictly reliable or
“best efforts” transmission differently for each data stream sent to each different node.
RTI middleware additionally offers levels of reliability between these extremes by
allowing control over the memory buffers used for reliability. On the publishing side, the
memory is used to save a designated number of old messages for possible retransmission
or updating a newly-joined application. On the subscriber side, the memory can buffer
packets received after a lost packet, letting the system efficiently request retransmission
of only the few packets that were actually dropped.

Multicast
Multicasting, the ability to send a single packet to many destinations, drastically cuts
overall latency and raises effective throughput while increasing efficiency. Multicast can
theoretically send information to 50 nodes 50 times faster than unicast.

Multicast reliability is a famously-hard challenge. Simple methods, such as
acknowledging every packet, flood the network with acknowledgment traffic, defeating
the prime benefit (Figure 7).

Multicast reliability requires sophisticated negative-acknowledgment (NACK) strategies.
Instead of sending positive acknowledgments, NACK-based protocols request
retransmission only for the few messages actually dropped. Configurability is important;
the reliability protocol must ensure rapid detection of missed packets to fulfill latency
requirements while minimizing network overhead.

The RTI protocol tags messages with sequence numbers. A subscriber detects that a
message is lost when it receives a message out of order. Publishers periodically send
“heartbeat” messages with the last sequence number to bound lost-message detection
time. Heartbeat messages are normally piggybacked on application messages to reduce
network overhead. To avoid flooding the network if many nodes miss a packet (a NACK
“storm”), each subscriber applies a random delay before replying to a heartbeat with an
acknowledgement. This prevents multiple subscribers from responding at the same time.

© Real-Time Innovations, Inc. 2007 12

Figure 7: Reliable Multicast
Multicast is efficient, but reliability is a famously-hard problem.

Acknowledging every message just shifts the congestion to the confirmation
stage. Negative-acknowledgement works well for occasional drops, but

results in “storms” of retry requests if many nodes miss a message.

Bandwidth Control
When many processors share a network, there is always the danger that one will put so
much data on the network that it locks out the others. Thus, bandwidth control is critical;
optimal overall operation requires limiting the bandwidth that a single publisher can use.
To control bandwidth the middleware sets the maximum data sent in a specific time
window. The system automatically buffers any overflow, and feeds it gradually into the
network later.

Filters
One key way to increase performance is to be smart and deliver only the data really
needed. RTI offers several ways to accomplish this, including partitioning, time filters,
and content filters.

Partitioning logically divides the network into several sub-networks. Messages may be
published into one or more logical partitions; only subscribers in one of the publisher’s
partitions will receive the data. This can greatly reduce the dataflow traffic. Equally
important, it simplifies discovery by restricting the potential extent of the data
distribution.

RTI also offers time-based filters. A time-based filter sets a minimal separation period
between updates. This can be used in a radar application, for instance, to update an
operator’s console with new information at most once every 5 seconds. Without this, the
application would have to sort through potentially thousands of updates to keep the
display current.

Content-based filters only send updates that match pre-set content criteria. Thus, for
example, a HMI program could be configured to only accept radar tracks within a

ACK NACK

ACK
ACK

ACK NACK NACK
NACK

NACK

NACK storm

© Real-Time Innovations, Inc. 2007 13

specified range, or a monitor program could request an alarm if traffic exceeded 80%
load.

The middleware attempts to make intelligent decisions about publisher versus subscriber-
side filtering. Since it reduces network traffic, publisher-side filtering is preferable when
the middleware can easily determine that there are no subscribers requesting the data.
However, subscriber-side filtering is much more efficient, for instance, when a multicast
packet is destined for 80 of 100 subscribing nodes.

Quality of Service Control
Many designers overlook the effect of Quality of Service (QoS) on system performance
and capability. By QoS, we mean the semantics of delivery of data, including factors like

• which data to deliver,
• when delivery is expected,
• what to do in case of failure, and
• how many resources to use in the attempt to deliver data.

QoS settings optimize network resources to fit the problem. RTI middleware can, for
instance, send radar track updates every 10 seconds to an HMI operator station, reliably
record every reading on a database server, send another application updates only for those
targets within a 5-mile radius, while simultaneously multicasting thousands of updates
per second to hundreds of cooperating applications on the network.

RTI offers a unique per-data-stream control over QoS. It does this through
request/offered semantics: publishers offer levels of service and subscribers make service
requests. The middleware establishes communication only if the request can be satisfied
by the offer. The middleware then enforces this semantic contract; any violations are
reported to the application.

For instance, a publisher can offer “best efforts” updates, meaning that it will not save
any old data for attempted retransmission. If a subscriber requests reliable service, the
middleware will deny this logical connection. On the other hand, a reliable publisher is
capable of serving a best-efforts subscriber, so that connection will work.

Fault Tolerance
Complex systems need the ability to detect and manage faults. Of course, this is even
more important---and difficult---in a distributed system. Fault tolerance provides the
ability to handle unexpected or degraded conditions and keep going. This is no small
issue; handling error conditions accounts for up to 80% of typical networking code.

The first requirement is to know when part of the system has failed. All middleware
designs provide this in some form, either through exceptions on transmit (most enterprise
implementations) or explicit “are you alive” protocols (RTI). The designs differ mostly
a) in how and when they notify the application, and b) in the granularity of notification,

© Real-Time Innovations, Inc. 2007 14

for instance whether you are notified of failure of just your communication or of all the
responsibilities of a node when it goes down. RTI provides much finer notification
control and faster notification than other designs, because it was intended from the
beginning to be a real-time protocol.

Once detected, the fault must be handled. The first priority is to continue operations
without impacting the rest of the system. This is sometimes non-trivial; for instance,
older TCP-based designs often suffer huge delays while connections time out; they lack
the QoS control to adapt quickly. Because the RTI publish-subscribe architecture is not
connection-oriented, it can offer an intuitive first-level failover capability. The
middleware allows multiple publishers of the same data stream and arbitrates which data
stream is received by subscribers based on a specified priority.

System Integration
Today’s network technology makes it easy to connect nodes, but it’s not so easy to find
and access the information resident in networks of connected nodes. This is changing;
publish-subscribe middleware allows applications to pool information from many
distributed sources and access it from many locations at rates meaningful to physical
processes. Many label this new capability the “net-centric” or “data-centric” architecture.

System requirements are also becoming much more dynamic. In the past, software may
have assumed a fixed application design and a fixed number of nodes. Increasingly, we
see that distributed systems must adapt to changes in scale, function, and performance
requirements before, during, and after deployment. System designers need to “plug and
play” network nodes and topologies as they match the evolving needs of the distributed
application. They must architect distributed systems that meet the needs of the target
application today but can also embrace the changes of tomorrow. Delivering such a high
level of flexibility in these designs creates a major challenge for the development
infrastructure.

A data-centric architecture fundamentally changes how easy it is to design and evolve a
networked application. Figure 8 shows a real-world example taken from the design of
the US Navy’s E-2C Hawkeye aircraft. Data-centric thinking transformed this design.
The data-centric architecture is more modular and maintainable than older client-server
based designs. It provided a structured overall design paradigm that allows expansion,
changes, and independent development.

© Real-Time Innovations, Inc. 2007 15

Figure 8a: Functional Design
Functionally-oriented software modules must talk to many other modules.
Grouping into functional clusters does nothing to change that reality and

ease software integration

.

Figure 8b: Integration
Adding new functionality cascades integration re-work across many

modules.

© Real-Time Innovations, Inc. 2007 16

Figure 8c: Publish-Subscribe Design
Publish-subscribe architecture simplifies data communications, greatly easing

integration.

The DDS Standard
Because of their long lifecycles and multi-vendor contributions, defense systems require
standards. In 2005, the Object Management Group (OMG) adopted a standard called the
Data Distribution Service for Real-Time Systems (DDS). This standard is the first
middleware specification that directly targets high-performance distributed systems. The
standard includes both an API specification and a wire-protocol design. RTI was one of
the key drivers of the DDS standard.

The DDS standard has become the rallying point for high-performance, standards-based
middleware. For example, nearly every US Navy surface ship under design or refresh
has standardized on DDS for networking middleware. The penetration goes beyond ship-
wide networks to include most high-performance weapons, radar, and communications
systems on the ships. The Army’s huge Future Combat Systems (FCS) program has also
chosen DDS as a standard rallying point. Aircraft are also rapidly adopting the
technology, starting with on-board radar systems and moving to communications and
UAV ground-support systems. Recently, the joint Air-Force/Navy communications
initiative, the Net-centric Enterprise Solutions for Interoperability (NESI) mandated use
of DDS for the 160 programs it oversees. Finally, The Defense Information Services
Agency (DISA) has mandated DDS for all data-distribution applications throughout the
US Military.

International adoption is also on the rise. Most major NATO weapons system designs are
upgrading to DDS technology. Also, DDS forms the core communications capability for
South Korea’s most important new ship systems.

RTI is the DDS market leader with over 80% market share according to two independent
market analyses.

© Real-Time Innovations, Inc. 2007 17

The Future: Benefits of Real Time
Today’s defense systems rely on distributed designs. To take advantage of the benefits of
distributed computing, these systems must depend on communication middleware layers.
Fortunately, real-time middleware is proven, capable, and easily applied; it is changing
system architectures and leading designers to faster, higher-performance, more
maintainable distributed systems. These advantages are critical to lowering the military’s
spiraling IT costs.

In defense systems, including C4ISR, radar, and simulation applications, fractions of a
second make the difference between success and failure. The performance achieved by
current technology is impressive. With current hardware, real time publish-subscribe can
achieve latency less than 65 microseconds without significant jitter. Throughput for
larger messages is limited only by the wire speed. With batching, sustained throughput
for smaller messages can exceed 3 million messages per second.

Defense systems also need flexible designs that will adapt to changing requirements over
time. The rise of the DDS standard helps significantly. With DDS, defense architects
have a much more flexible, high-performance integration infrastructure. Fine Quality of
Service control is especially important for ensuring high performance, for controlling
reliability, and for developing fault-tolerant systems.

Real-time middleware is mature and proven; it is broadly-deployed technology used in
hundreds of actual applications working under harsh real-world conditions. It delivers
the performance and functionality to address the new realities facing the defense industry.

