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Modern military operations integrate many functions including command and control, 
weapons, and self-defense.  Developing and integrating these applications is particularly 
challenging because of their strict real-time performance demands.  Often, latency and 
throughput requirements exceed the capabilities of traditional enterprise messaging and 
integration middleware. 
 
Fortunately, extremely high-performance middleware has evolved that can handle 
millions of messages per second with tenths of milliseconds of latency---many times 
faster than messaging systems developed for less demanding enterprise applications.  The 
technology is fast, flexible, scalable, deterministic, and reliable.  Equally important, the 
middleware supports a net-centric design paradigm that greatly eases system integration 
and evolution. 
  
This paper examines the challenges faced by defense network software, traces the 
evolution of real-time requirements, and examines how the required performance is 
possible with modern, standards-based, commercial technology. 
 

The Driver: Distributed Defense Systems 
In the recent past, most defense systems comprised independent, relatively isolated 
modules.  A radar system, for instance, may have used a shared-memory multiprocessor 
for high-speed communications.  However, this design implies that all systems that 
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depend on the radar’s tracking information must also physically connect to the radar 
itself.  These monolithic designs are expensive to design and maintain.   
 
Thus, modern defense systems must be distributed.  On the surface, this would seem a 
solved problem; many technologies have arisen to build large distributed systems in the 
enterprise.  However, defense systems have some truly unique needs not met by 
enterprise solutions.  For instance, these systems require extreme performance and 
reliability.  Both the sheer volume of communications possible across the system 
(throughput) and the time between sensing and responding (latency) are critical.  Real-
time middleware must also provide reliability, fault tolerance, and system integration in 
environments quite different from enterprise computing. 
 
As a result, enterprise middleware is often inadequate to deal with the requirements of 
integrated defense systems.  System architects need a new approach. 

Examples 
Real-world applications drove the evolution of real-time middleware.  Figures 1 through 
4 show some of the hundreds of applications that have shaped real-time middleware.   

Ship control; the LPD-17. 
Figure 1 shows a ship in the US Navy designated LPD-17, the first of the San Antonio 
class of Navy vessels.  LPD is a large ship, approximately 2/3 the size of a Nimitz-class 
aircraft carrier.    
 
Real-time messaging middleware underlies a system on the ship called the Ship-Wide 
Area Network (SWAN).  The SWAN is responsible for: 

• Shipboard control 
• Machinery control 
• Damage control 
• Integrated condition assessment 
• Steering control 
• Advanced Degaussing (Magnetic signature) 
• Mission control systems 
• Navigation systems 
• Communication systems 
• Support systems for “visitors” 
 

The SWAN is absolutely critical to the ship’s operation and achieving its mission.  It 
comprises hundreds of computers.  Because this ship may find itself in the middle of a 
conflict, it must also be able to take a hit anywhere and continue operations.  This 
required the ship builders to look for middleware that supports features like automatic 
discovery so there would be no configuration.  It supports redundant data sources, sinks, 
data paths, and transports.  In fact, you can physically cut the ship network in half and the 
two halves will work independently.  If you reconnect them, they will automatically 
rediscover and heal the system.  
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LPD was an early application of real-time middleware; the original design started in the 
late 1990’s.  It drove the middleware to be highly reliable and scalable to hundreds of 
nodes. 
 
 

 

Figure 1: LPD-17 
RTI middleware runs the entire Ship-Wide Area Network on the LPD-17.  

This application drove reliability and scalability 
 

Ship defense control 
Figure 2 is the control room for a ship self-defense system.  This system is a last-line 
defense against incoming missiles and aircraft.  It directs thousand-round-per-second 
depleted-uranium guns to track and shoot down incoming targets traveling at hundreds of 
miles per hour.  It coordinates high-speed radars, decision systems, and fast, automated 
guns.  These systems are now being deployed at sea on aircraft carriers and other large 
ships. 
 
A few years ago, this system would have to be deployed under the control of a single 
computer “box”, with all the disadvantages of a monolithic design.  There was simply no 
way to communicate the data required fast enough over a network.  As networking 
hardware has stepped up to the required performance level, the software has followed 
suit.  This system drove the middleware to meet extreme performance requirements.  It 
required distributing data with sub-millisecond latencies to dozens of nodes. 
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Figure 2: SSDS Control Room 
The SSDS is coordinates high-speed radars and ship defense weapons.  

This application required extremely low-latency performance. 

Radar systems 
Figure 3 shows a series of images from a simulation test bed built at the Naval Surface 
Warfare Center (NSWC) in Dahlgren, VA.  Navy engineers developed it to test load 
balancing and coordination for advanced radar systems.  Similar radar applications 
include the Aegis and new DDG-1000 ships, as well as airborne sensors such as the 
Airborne Warning and Control System (AWACS) modified 707 in Figure 4.   
 
Advanced radar systems must handle tens of thousands of simultaneous “tracks”---
continuously-updated positions of aircraft, ships, vehicles, and missiles in an area.  Ten 
thousand radar tracks generate a lot of data, and it must be delivered on time.  This 
system required the middleware to reliably support extremely high throughput.   
 

 

Figure 3: HiPer-D Simulator 
This system simulated hundreds of computers cooperating to track tens of 
thousands of targets.  It drove the middleware to support load balancing 

and high throughput. 
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Figure 4: AWACS 
The Airborn Warning and Control System radar coordinates many high-

speed radar and communication systems. 

 

Characterizing Real-Time Requirements 
Of course, these are only a few of the applications.  Real-time middleware today is 
driving communications subsystems, fusing disparate sensors into a single world view, 
connecting motion control, graphics, and controls in flight simulators, integrating sensors 
and command for unmanned vehicles, and much more.  Each of these applications 
requires “real time” response.  Unfortunately, that isn’t always well defined.  We turn 
now to the metrics that characterize timeliness. 

What is real time? 
Formally, a computer system is “real time” if a correct response must be both 
computationally accurate and timely with respect to its external environment.  For 
example, a control system that must respond to a sensor (e.g. a temperature rise) by 
changing some actuator (e.g., closing a valve) is real time if the valve reliably closes 
before the boiler explodes.  Reliability is the key trait, and speed is important for 
reliability.  This formal definition isn’t often useful.  In practice, a wide range of systems 
are called “real time”, from a sub-millisecond weapon controller to a “fast enough” 
online airline reservation system.   
 
Over time, two general meanings have arisen for real time, one for enterprise software 
and one for software embedded in devices such as defense electronics.  In the enterprise, 
a system is real time if it responds “now” as perceived by a human.  Thus, a system that 
reports stock prices within a few seconds is real time with respect to a human trader.  In 
embedded systems, real time means predictable and fast with respect to physical 
processes.  Generally, a real-time embedded system must reliably respond in a 
millisecond or less to be considered real time.   
 
So, “real time” in enterprise applications can be orders of magnitude slower than “real 
time” for embedded applications.  Over time, this discrepancy drove the technology 
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developed for the two industries apart; embedded real-time middleware is much evolved 
past its enterprise counterparts in timing reliability, or determinism. 

Performance Metrics 
To succeed, each application needs to execute its tasks quickly, reliably, and 
economically.  However, even on a single computer, performance is not well defined.  On 
a network, complex issues such as delivery to many simultaneous nodes, bandwidth 
utilization, media reliability, congestion, and failure recovery come into play.  Each of 
these is, by itself, a dimension of performance.  However, four key metrics do a good job 
of characterizing basic performance: latency, jitter, throughput, and efficiency. 
 
Latency is the time between when one application sends a message and other applications 
receive it.  Latency determines how quickly a system can respond to an external event. 
  
The best way to reduce latency is to reduce handling.  Each “hop”, or server, that handles 
a message adds significant latency.  Within a processor, latency is a layer game; after an 
application sends data it must still pass through the middleware layer, the network stack, 
the operating system, and the device drivers.  Each takes time, but can be optimized by 
reducing processing and copying data.  Latency also grows as message size makes 
transport time significant. 
 
Jitter is a measure of how variable the latency results are from one message to another.  
A system with low latency and controlled jitter will deliver messages quickly without 
suffering from “outliers,” or very late messages.  For real-time systems, jitter is critical.  
In fact, jitter is often more important than average latency; a system with high jitter is 
unreliable. 
 
Throughput is the total number of messages or quantity of data sent per unit time.  For 
small messages, the overhead of passing through all the layers of software dominates 
throughput.  As messages get larger, throughput usually increases; each delivers more 
data for roughly the same overhead.  Ideally, throughput is limited only by the wire 
speed, e.g., a gigabit of data per second on a Gigabit Ethernet. 
 
Efficiency measures the processor load needed to support the middleware.  Most designs 
should strive to limit their middleware overhead to 15% of the CPU.  That leaves 
sufficient room for application software and future growth. 
 

Real-Time Middleware Technology 
Now we turn to some of the unique aspects of real-time middleware and contrast it with 
enterprise designs.  Examples are all based on RTI’s implementation, which has been 
used in nearly 500 unique real-time applications, including those cited above. 

Design Principles 
We start by reviewing some of the assumptions about the environment and resulting 
design principles.  
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There can be no single point of failure or loading 
Most messaging middleware uses a daemon or a broker-based architecture, which can 
lead to partial failure and complex failure/repair modes during recovery.  The RTI 
infrastructure is based on a decentralized protocol, with no single point of failure, thus 
minimizing these partial failure situations. 

The transport and the network are unreliable 
RTI protocols assume that the media drops packets, links go down, and hardware fails.  
Thus, reliability is built into the messaging protocol above the network stack.  
Application Programming Interfaces (APIs) allow applications to control the reliability 
and receive notifications of network errors. 

Local cache improves performance and resiliency 
The RTI infrastructure provides a local in-memory cache for all data.  The cache provides 
a simple layer of data management; the middleware can store recent values and provide 
them quickly without retransmission.  Some alternate approaches push the burden of 
managing a local cache onto the programmer; with RTI’s solution, the local caches are 
automatically updated to deliver the highest performance under changing network and 
dataflow conditions. 

Topology can change on the fly 
Operational parameters must be changeable on “live” systems without disruption.  RTI’s 
messaging and caching infrastructure provides automatic self-discovery and 
configuration, so that components can be added and removed dynamically on a live 
system without disruption.  RTI-based applications do not suffer from the issues arising 
due to partial or broken connections because the underlying protocol is not connection-
oriented.  Furthermore, there are no startup dependencies imposed by the RTI 
infrastructure — applications can start in any order. 

Changing requirements demand a tunable infrastructure 
A high performance middleware infrastructure should be tunable, so that it can be 
optimized to meet specific application requirements.  Thus, RTI exposes detailed 
configuration and behavior parameters that control every aspect of the messaging and 
caching infrastructure.  For ease of use, all the “knobs” have default values “out-of-the-
box” to address standard application requirements. The power and flexibility of RTI’s 
solution comes through these “Quality-of-Service” (QoS) controls.  Alternative 
approaches do not expose this level of flexibility and control, making the hidden/implicit 
assumptions opaque to the developer and non-customizable. 
 

Meeting the Needs 
Real-time middleware underlies many very-diverse systems.  However, they all share 
common needs:  flexibility, performance, service control, fault tolerance, and system 
integration.  We now examine how the technology meets these needs. 
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Flexibility 
Real-time systems are complex.  As is often the case, the best way to address complexity 
is with a simple concept; the publish-subscribe paradigm.  Conceptually, with publish-
subscribe, you simply ask for the information you need and send the information you 
have.  The middleware matches senders to receivers, ensuring that each data “contract” is 
satisfied.  Of course, it’s not that simple in practice; many details must be specified.  But 
the overall model is intuitive and usable. 
 
Real-time publish-subscribe differs most markedly from traditional middleware in tuning 
options.  For example, most middleware is built on top of the Transmission Control 
Protocol (TCP).  TCP was designed in the 1970’s; it provides reliable byte-stream 
connections between two computers.  Especially because it ensures reliability, TCP is 
very useful…but it’s also very restrictive.  For instance, TCP only supports 
communications between two computers.  Its driving state machine has many timeouts, 
none of them user-settable.  It supports reliability, but hides away all the important 
details: how many times to retry dropped packets, how much memory to use, when to 
send retries, etc.  
 
RTI middleware, by contrast, is built on top of the User Datagram Protocol (UDP), a 
much simpler technology.  The middleware takes control of reliability, retries, memory, 
and timing.  All parameters are set to defaults, but exposed to the user application.  Thus, 
users can tune the real-time middleware to handle much more demanding requirements 
with higher performance. 
 
Reliability is but one of many, many parameters that affect a real-time system.  RTI 
middleware also allows tuning control over timing and timeouts, memory and resource 
usage, network transports, priorities, and more.   

Performance 
Real-time middleware must be blazingly fast; the first step to meeting this challenge is 
cutting overhead to the bone.  For example, older “client-server” designs require a round-
trip request/response cycle for each message.  With publish-subscribe, there is no request 
traffic for each message.  All the information required to form virtual “connections” is 
exchanged through a process called “discovery” that occurs during initialization and 
when new nodes join.  At send time, the sending node already knows exactly where to 
send the information. 
 
Most middleware today uses central servers to coordinate data flow.  Servers slow 
dataflow; sending to an intermediate server at least doubles the latency of sending a 
“nonstop” packet, since the packet must be both received and sent a second time.  In 
practice, servers cause even more latency, since they may be loaded, congested, or not 
immediately responsive for many reasons.  Interposing a server into every transmission 
also doubles the total traffic on the network.  RTI middleware requires no servers, 
brokers, or daemons in the data path.  Data flows directly, end-to-end, from sender to 
receiver. 
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On current hardware and operating systems, the stack and raw network transport can 
handle around 50,000 messages per second.  This is largely independent of the message 
size until the wire approaches saturation.  Broker-based middleware, such as most “MQ” 
products and JMS implementations, must pass each message through a network stack at 
least four times (sender, broker in, broker out, receiver).  This reduces performance 
considerably, see Figure 5.  Batching, the process of consolidating multiple application-
level messages into a single transport-level datagram, minimizes the number of discrete 
messages passed through the protocol stack and sent over the wire.  After batching, 
server-based architectures achieve throughput in the range of 100,000 messages per 
second with latencies of several milliseconds.  
 
Because it skips all intermediaries, RTI middleware is capable of nearly this throughput 
performance without batching.  With batching, RTI can achieve point-to-point throughput 
of over 3,000,000 application-level messages per second1.   
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Figure 5: Throughput 
RTI’s direct peer-to-peer architecture achieves point-to-point throughput 
over twenty times better than broker-based designs.  With batching (on 

right), it can send millions of messages per second. 
 
  
Latency is also crucial.  RTI has measured single-message latency (no batching) below 
65 microseconds (0.065 millisec) with no appreciable jitter variation (Figure 6).  Latency 
performance requires strict attention to real-time design principles.  For instance, RTI 
allocates no memory after initialization, because finding memory blocks can add 
unpredictable delays.  Also, RTI supports direct transmission in the user thread context.  
In this mode, there are no task switches or other operating system delays between the 
application send call and the activation of the network stack. 
 

                                                 
1 8-byte messages. Measured over Gigabit Ethernet between single-threaded applications running on 2.0 
GHz Opteron processors with 32-bit Red Hat Enterprise Linux 4.0. 
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Figure 6: Latency 
This graph compares RTI’s latency with broker-based middleware.  The 
solid line is the median latency with standard deviation error bars.  The 

dotted lines show the “99%” latency; 99% of all messages fall within this 
bound.  RTI delivers much faster latency with no significant jitter. 

 
 
The real challenge is to combine high latency with low throughput.  If the offered load 
(feed rate) is high, then many messages can be quickly combined into a single packet.  
RTI’s batching implementation can run as a separate thread, allowing multicore 
processors to aggregate messages without incurring transmission delay.  Thus, even an 
aggregated stream can achieve very low latency.  With bursty offered-load rates, there is 
a tradeoff between low latency and high throughput.  RTI lets the application make this 
tradeoff through both byte and time limits; it sends the message when either is surpassed.  
The time limit controls worst-case latency; the message is sent within a fixed latency of 
the first data queuing event.  The byte limit keeps the message sizes within optimal 
ranges. 
 

Reliability 
Networks drop packets.  This happens for many reasons, including medium 
intermittency, congestion, and stack buffer limitations.  The only way to ensure delivery 
of lost packets is to detect the loss and retransmit.  However, that takes time.  Thus, there 
is a fundamental tradeoff between delivery reliability and time determinism.   
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Most middlewares offer little-to-no control over this tradeoff.  RTI offers very fine 
control, all the way down to a per-data-stream level; you can choose strictly reliable or 
“best efforts” transmission differently for each data stream sent to each different node.  
RTI middleware additionally offers levels of reliability between these extremes by 
allowing control over the memory buffers used for reliability.  On the publishing side, the 
memory is used to save a designated number of old messages for possible retransmission 
or updating a newly-joined application.  On the subscriber side, the memory can buffer 
packets received after a lost packet, letting the system efficiently request retransmission 
of only the few packets that were actually dropped. 
 

Multicast 
Multicasting, the ability to send a single packet to many destinations, drastically cuts 
overall latency and raises effective throughput while increasing efficiency.  Multicast can 
theoretically send information to 50 nodes 50 times faster than unicast. 
 
Multicast reliability is a famously-hard challenge.  Simple methods, such as 
acknowledging every packet, flood the network with acknowledgment traffic, defeating 
the prime benefit (Figure 7). 
 
Multicast reliability requires sophisticated negative-acknowledgment (NACK) strategies.  
Instead of sending positive acknowledgments, NACK-based protocols request 
retransmission only for the few messages actually dropped.  Configurability is important; 
the reliability protocol must ensure rapid detection of missed packets to fulfill latency 
requirements while minimizing network overhead. 
 
The RTI protocol tags messages with sequence numbers.  A subscriber detects that a 
message is lost when it receives a message out of order. Publishers periodically send 
“heartbeat” messages with the last sequence number to bound lost-message detection 
time.  Heartbeat messages are normally piggybacked on application messages to reduce 
network overhead.  To avoid flooding the network if many nodes miss a packet (a NACK 
“storm”), each subscriber applies a random delay before replying to a heartbeat with an 
acknowledgement.  This prevents multiple subscribers from responding at the same time. 
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Figure 7: Reliable Multicast 
Multicast is efficient, but reliability is a famously-hard problem.  

Acknowledging every message just shifts the congestion to the confirmation 
stage.  Negative-acknowledgement works well for occasional drops, but 

results in “storms” of retry requests if many nodes miss a message. 
 
 

Bandwidth Control 
When many processors share a network, there is always the danger that one will put so 
much data on the network that it locks out the others.  Thus, bandwidth control is critical; 
optimal overall operation requires limiting the bandwidth that a single publisher can use.  
To control bandwidth the middleware sets the maximum data sent in a specific time 
window.  The system automatically buffers any overflow, and feeds it gradually into the 
network later. 
 

Filters 
One key way to increase performance is to be smart and deliver only the data really 
needed.  RTI offers several ways to accomplish this, including partitioning, time filters, 
and content filters. 
 
Partitioning logically divides the network into several sub-networks.  Messages may be 
published into one or more logical partitions; only subscribers in one of the publisher’s 
partitions will receive the data.  This can greatly reduce the dataflow traffic.  Equally 
important, it simplifies discovery by restricting the potential extent of the data 
distribution. 
 
RTI also offers time-based filters.  A time-based filter sets a minimal separation period 
between updates.  This can be used in a radar application, for instance, to update an 
operator’s console with new information at most once every 5 seconds.  Without this, the 
application would have to sort through potentially thousands of updates to keep the 
display current. 
 
Content-based filters only send updates that match pre-set content criteria.  Thus, for 
example, a HMI program could be configured to only accept radar tracks within a 

ACK NACK 

ACK 
ACK 

ACK NACK NACK 
NACK 

NACK 

NACK storm 



© Real-Time Innovations, Inc.  2007  13

specified range, or a monitor program could request an alarm if traffic exceeded 80% 
load. 
 
The middleware attempts to make intelligent decisions about publisher versus subscriber-
side filtering.  Since it reduces network traffic, publisher-side filtering is preferable when 
the middleware can easily determine that there are no subscribers requesting the data.  
However, subscriber-side filtering is much more efficient, for instance, when a multicast 
packet is destined for 80 of 100 subscribing nodes. 

Quality of Service Control 
Many designers overlook the effect of Quality of Service (QoS) on system performance 
and capability.  By QoS, we mean the semantics of delivery of data, including factors like  

• which data to deliver,  
• when delivery is expected,  
• what to do in case of failure, and  
• how many resources to use in the attempt to deliver data. 

 
QoS settings optimize network resources to fit the problem.  RTI middleware can, for 
instance, send radar track updates every 10 seconds to an HMI operator station, reliably 
record every reading on a database server, send another application updates only for those 
targets within a 5-mile radius, while simultaneously multicasting thousands of updates 
per second to hundreds of cooperating applications on the network. 
 
RTI offers a unique per-data-stream control over QoS.  It does this through 
request/offered semantics: publishers offer levels of service and subscribers make service 
requests.  The middleware establishes communication only if the request can be satisfied 
by the offer.  The middleware then enforces this semantic contract; any violations are 
reported to the application.   
 
For instance, a publisher can offer “best efforts” updates, meaning that it will not save 
any old data for attempted retransmission.  If a subscriber requests reliable service, the 
middleware will deny this logical connection.  On the other hand, a reliable publisher is 
capable of serving a best-efforts subscriber, so that connection will work. 
 

Fault Tolerance 
Complex systems need the ability to detect and manage faults.  Of course, this is even 
more important---and difficult---in a distributed system.  Fault tolerance provides the 
ability to handle unexpected or degraded conditions and keep going.  This is no small 
issue; handling error conditions accounts for up to 80% of typical networking code.   
 
The first requirement is to know when part of the system has failed.  All middleware 
designs provide this in some form, either through exceptions on transmit (most enterprise 
implementations) or explicit “are you alive” protocols (RTI).  The designs differ mostly 
a) in how and when they notify the application, and b) in the granularity of notification, 
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for instance whether you are notified of failure of just your communication or of all the 
responsibilities of a node when it goes down.  RTI provides much finer notification 
control and faster notification than other designs, because it was intended from the 
beginning to be a real-time protocol. 
 
Once detected, the fault must be handled.  The first priority is to continue operations 
without impacting the rest of the system.  This is sometimes non-trivial; for instance, 
older TCP-based designs often suffer huge delays while connections time out; they lack 
the QoS control to adapt quickly.  Because the RTI publish-subscribe architecture is not 
connection-oriented, it can offer an intuitive first-level failover capability.  The 
middleware allows multiple publishers of the same data stream and arbitrates which data 
stream is received by subscribers based on a specified priority.   

System Integration 
Today’s network technology makes it easy to connect nodes, but it’s not so easy to find 
and access the information resident in networks of connected nodes.  This is changing; 
publish-subscribe middleware allows applications to pool information from many 
distributed sources and access it from many locations at rates meaningful to physical 
processes.  Many label this new capability the “net-centric” or “data-centric” architecture.  
 
System requirements are also becoming much more dynamic.  In the past, software may 
have assumed a fixed application design and a fixed number of nodes.  Increasingly, we 
see that distributed systems must adapt to changes in scale, function, and performance 
requirements before, during, and after deployment.  System designers need to “plug and 
play” network nodes and topologies as they match the evolving needs of the distributed 
application.  They must architect distributed systems that meet the needs of the target 
application today but can also embrace the changes of tomorrow.  Delivering such a high 
level of flexibility in these designs creates a major challenge for the development 
infrastructure.   
 
A data-centric architecture fundamentally changes how easy it is to design and evolve a 
networked application.  Figure 8 shows a real-world example taken from the design of 
the US Navy’s E-2C Hawkeye aircraft.  Data-centric thinking transformed this design.  
The data-centric architecture is more modular and maintainable than older client-server 
based designs.  It provided a structured overall design paradigm that allows expansion, 
changes, and independent development. 
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Figure 8a:  Functional Design  
Functionally-oriented software modules must talk to many other modules. 
Grouping into functional clusters does nothing to change that reality and 

ease software integration 
 

. 

 

Figure 8b: Integration 
Adding new functionality cascades integration re-work across many 

modules. 
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Figure 8c: Publish-Subscribe Design 
Publish-subscribe architecture simplifies data communications, greatly easing 

integration. 
 

The DDS Standard 
Because of their long lifecycles and multi-vendor contributions, defense systems require 
standards.  In 2005, the Object Management Group (OMG) adopted a standard called the 
Data Distribution Service for Real-Time Systems (DDS).  This standard is the first 
middleware specification that directly targets high-performance distributed systems.  The 
standard includes both an API specification and a wire-protocol design.  RTI was one of 
the key drivers of the DDS standard.   
 
The DDS standard has become the rallying point for high-performance, standards-based  
middleware.  For example, nearly every US Navy surface ship under design or refresh 
has standardized on DDS for networking middleware.  The penetration goes beyond ship-
wide networks to include most high-performance weapons, radar, and communications 
systems on the ships.  The Army’s huge Future Combat Systems (FCS) program has also 
chosen DDS as a standard rallying point.  Aircraft are also rapidly adopting the 
technology, starting with on-board radar systems and moving to communications and 
UAV ground-support systems.  Recently, the joint Air-Force/Navy communications 
initiative, the Net-centric Enterprise Solutions for Interoperability (NESI) mandated use 
of DDS for the 160 programs it oversees.  Finally, The Defense Information Services 
Agency (DISA) has mandated DDS for all data-distribution applications throughout the 
US Military. 
 
International adoption is also on the rise.  Most major NATO weapons system designs are 
upgrading to DDS technology.  Also, DDS forms the core communications capability for 
South Korea’s most important new ship systems. 
 
RTI is the DDS market leader with over 80% market share according to two independent 
market analyses. 
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The Future: Benefits of Real Time 
Today’s defense systems rely on distributed designs.  To take advantage of the benefits of 
distributed computing, these systems must depend on communication middleware layers.  
Fortunately, real-time middleware is proven, capable, and easily applied; it is changing 
system architectures and leading designers to faster, higher-performance, more 
maintainable distributed systems.  These advantages are critical to lowering the military’s 
spiraling IT costs.   
 
In defense systems, including C4ISR, radar, and simulation applications, fractions of a 
second make the difference between success and failure.  The performance achieved by 
current technology is impressive.  With current hardware, real time publish-subscribe can 
achieve latency less than 65 microseconds without significant jitter.  Throughput for 
larger messages is limited only by the wire speed.  With batching, sustained throughput 
for smaller messages can exceed 3 million messages per second.     
 
Defense systems also need flexible designs that will adapt to changing requirements over 
time.  The rise of the DDS standard helps significantly.  With DDS, defense architects 
have a much more flexible, high-performance integration infrastructure.  Fine Quality of 
Service control is especially important for ensuring high performance, for controlling 
reliability, and for developing fault-tolerant systems.    
 
Real-time middleware is mature and proven; it is broadly-deployed technology used in 
hundreds of actual applications working under harsh real-world conditions.  It delivers 
the performance and functionality to address the new realities facing the defense industry.  
 
 
 
 
 

 


