

Copyright ©2009 Tresys Technology, LLC. All Rights
Reserved.

Other names and brands may be claimed as the property of
others. Information regarding third party products is provided
solely for educational purposes. Tresys Technology, LLC is not
responsible for the performance or support of third party
products and does not make any representations or warranties
whatsoever regarding quality, reliability, functionality, or
compatibility of these devices or products.

February 4, 2009

Karl MacMillan and Chris PeBenito

Tresys Technology

Securing RTI Data
Distribution Service
with SELinux

 Page 2 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

Contents

1 Introduction ...3

2 Overview of Security Enhanced Linux...3

2.1 Type Enforcement..4

2.2 Mandatory Security..5

2.3 Consistent and Centralized Policy ..5

3 Securing RTI’s DDS with SELinux ...6

3.1 Overview of RTI’s DDS and SELinux ...6

3.2 DDS Domain Separation..7

3.3 DDS Application Integrity ...8

4 RTI’s DDS and SELinux Performance...8

5 Meeting Government Security Requirements...10

5.1 Technical Overview of Security Requirements...11

5.2 Creating Solutions with CLIP ..12

5.3 Designing Applications to Meet Government Requirements...........................12

6 Summary ...13

 Page 3 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

1 Introduction

RTI Data Distribution Service (RTI’s DDS) is communications middleware for

distributed real-time applications. It is the most reliable, flexible and highest-performing

implementation of Object Management Group's (OMG) Data Distribution Service (DDS)

for Real-Time Systems standard available today. RTI’s DDS is field proven and is used

in many time-critical and data-critical applications such as financial transaction

processing, national railways, air traffic control, traffic monitoring, combat systems and

industrial automation.

Security Enhanced Linux (SELinux) is a flexible Mandatory Access Control (MAC)

mechanism originally developed by the U.S. National Security Agency and available as a

standard part of Linux and integrated into several Linux distributions. SELinux provides

a new level of host security, data separation, and role-based access control. SELinux

allows the creation of solutions that are secure even in the face of zero-day exploits and

meet the most stringent commercial and government security requirements.

Securing RTI’s DDS with SELinux provides a new level of security for applications and

solutions created with the DDS standard, including:

• Strongly separating data distributed via DDS to prevent inappropriate data

disclosure as a result of mis-configuration, software errors, or application

vulnerabilities.

• Protecting DDS-enabled application processes, configuration files, data, and audit

logs from other applications running on the same operating system instance.

• Constraining administrators, including limiting ‘root’ accounts, to create limited-

privilege administrators and enabling separation of duties.

• Meeting the most stringent government and commercial security standards

including DCID 6/3 PL4, NSSI 1253, DoD 8500.2, NIST 800-53, PCI, SOX, and

HIPPA.

This white paper will provide technical details concerning leveraging SELinux to secure

RTI -based applications and explore how SELinux and Linux can be used to create

solutions with RTI’s DDS that meet the most stringent government security requirements.

2 Overview of Security Enhanced Linux

SELinux provides a new level of security for Linux systems by providing the benefits of

MAC, long used to create the most secure systems for government, with unmatched

flexibility. The strength and flexibility of SELinux allows developers and administrators

the ability to craft security policies that meet a broad range of security goals, including

data confidentiality, system and application integrity, and administrator role separation.

SELinux has three main advantages over other security mechanisms: type enforcement

based access control, mandatory security, and a consistent centralized policy controlling

all system access. These advantages allow SELinux to provide the level of security

 Page 4 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

needed to face the hostile modern computing environment, even in the presence of

vulnerable software and malicious users. These advantages also address the most serious

shortcomings of Discretionary Access Control (DAC), the type of access control

traditionally offered by Unix, Linux, and Windows
1
.

2.1 Type Enforcement

SELinux controls access to system resources, such as files, based upon users, the current

role of the user, and a new concept called type enforcement. Optionally, SELinux also

offers multi-level security (MLS) sensitivity and categories. While the user, role, and

MLS based controls offered are useful, it is the type enforcement access control model

that offers an entirely new level of security. Type enforcement allows restrictions to be

applied to processes and resources based upon their function or content. Unlike DAC,

which only controls access based upon users and groups, type enforcement can apply

access control separately to processes running on behalf of the same user. This allows the

creation of least-privilege policies, which restricts processes to the minimum access

required to correctly function.

Type enforcement allows a security policy writer to assign an abstract identifier, or type,

to each process, file, or other resource. Access is then allowed in terms of the process

type’s access to a resource type. For example, consider a web server reading a web page

stored on disk in order to serve a client request. Assuming the type “apache_t” is assigned

to the web server process and the type “html_file_t” is assigned to the stored web page,

access would be granted in the SELinux policy using the following rule:

allow apache_t html_file_t : file read;

This statement allows all processes with the type “apache_t” to read files with the type

“html_file_t”.

All processes and resources with the same type are security equivalent, and have the

same access. Policy writers create as many, or as few, types as needed for a given system

and can flexibly assign those types to applications based on many factors. Some

examples include the type of the executable file, the type of the process executing the

application, and the current user and role.

To further illustrate the advantages of type enforcement, consider a typical user session in

which an email application, web browser, and word processor are running. Under DAC,

each application, which is comprised of one or more processes, would have all of the

access granted to the current user. This includes access to read or write all files owned or

accessible to that user, send and receive data over the network, and access special devices

such as sound cards or removable storage. A flaw in any of the applications would allow

an attacker complete access, despite each application only requiring a subset of the total

1 For the remainder of this paper, DAC will refer specifically to DAC as implemented in Unix and Linux.

Other forms of DAC, including the role-based access control found in Microsoft Windows, suffers from

similar shortcomings to the mechanism implemented in Linux.

 Page 5 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

access to function correctly. Under DAC, a vulnerable web browser could disclose

confidential files. A malicious document could use a word processor as a platform for

launching network attacks against an internal corporate network.

Contrastingly, in a least-privilege type-enforcement policy each application is assigned a

unique type and is only granted the access required in order to achieve its functional

purpose. For example, a web browser would be allowed to send and receive data over the

network, render web pages on the display, and read its preferences. Access to read

documents in the users home directory, run additional applications, or access special

devices could be denied. With type-enforcement, a flaw in the web browser is contained

by the least-privilege policy. Even the most severe vulnerability, one that allowed

arbitrary code execution, would be prevented from causing damage such as disclosure of

confidential data.

The concept of least-privilege can be extended to all system applications, including

server oriented applications such as web servers, databases, mail servers, etc.

Furthermore, applications can be specifically architected to take advantage of least-

privilege policies by splitting their functionality into several cooperating processes. This

strategy can produce applications that are secure even in the presence of flawed software.

2.2 Mandatory Security

SELinux access control is mandatory, meaning that all applications are confined by its

security policy. This is in contrast to DAC, where applications are able to influence the

outcome of access decisions. This distinction makes it possible to fully understand the

security properties of a system and create a system that remains secure despite flawed

software or malicious users.

To understand mandatory security, consider a user connecting to a shared file server.

Under DAC, applications running on behalf of the user can set the access allowed to the

files owned by that user. This allows applications to gain additional access, such as

making read-only files writable, or granting access to other users. Under DAC, it is not

possible to configure a system so that malicious applications or users cannot grant

additional access over that desired by organizational policy.

Contrastingly, under SELinux, only privileged applications are allowed to change the

security properties of resources. As a result, users and applications must work within the

confines of the policy and cannot influence security results. Under SELinux, the security

properties of a system are set at system creation time and remain fixed throughout the life

of the system. As a result, this allows system architects the ability to design, develop,

and deploy systems while eliminating the potential of allowing system integrity to be

compromised.

2.3 Consistent and Centralized Policy

SELinux implements access control over all system resources including: files, directories,

devices, networking, and inter-process communication, all using the same access control

 Page 6 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

model and centralized policy. As a result, all application access is controlled using the

same mechanism and syntax, simplifying the design, implementation, and verification of

the access control policy. Having a single system policy governing all access, the

centralized policy allows analysis of a complete system including complex automated

analysis to track the data flow throughout the system.

Alternatively, traditional Unix DAC only controls access to files and directories. Other

types of access are controlled using other mechanisms, such as IPTables for network

access. These other access control mechanisms often have differing means of specifying

access and offer different types of control granularity. Furthermore, some access, such as

binding to low ports, is controlled by implicit, hard coded rules that are inflexible.

Leveraging DAC results in a applications being granted access that is extremely difficult

to understand.

Finally, granting required access under DAC often requires security compromises. For

example, many applications must run as root to bind to low ports or exercise other

administrative privileges. This results in applications gaining broad privileges when only

limited access is required. Such compromises are not required when SELinux is

employed, as it is possible to grant the appropriate access directly to an application.

3 Securing RTI’s DDS with SELinux

SELinux can add security to solutions created with RTI Data Distribution Service by

securing the underlying platform, protecting RTI-based applications, and enforcing

independent control over these applications. This section will examine the basic approach

to securing RTI-based applications with SELinux and then examine, in more detail,

several additional aspects of securing these applications.

3.1 Overview of RTI’s DDS and SELinux

Fundamentally, RTI and SELinux are well suited due to the peer-to-peer, library based

implementation of RTI’s DDS. The design links DDS into user applications without the

need for a single, central application connecting DDS clients and servers. This

architecture is well suited to the process oriented access control that SELinux provides,

thus allowing comprehensive control of DDS applications, including controlling which

DDS applications are able to communicate.

To understand the interaction of DDS and SELinux, consider a simplified scenario of two

applications, a publisher and a subscriber, communicating using DDS. In this simple

scenario, each application will consist of a single process with multiple threads
2
. All of

the functionality of DDS will be embedded in each of these processes, allowing them to

communicate directly using Linux inter-process communication (IPC) mechanisms or

standard networking protocols.

2
 SELinux views all threads within the same process as equivalent as there is no safe way

to allow separate access to individual threads on a Unix system.

 Page 7 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

SELinux easily controls the access of the DDS publisher or subscriber processes in the

above example, including access that represents DDS communication with standard type-

enforcement policy statements. Assigning a unique type to each process allows SELinux

to flexibly control communication, contain those applications using a least-privilege

policy, and to protect the application integrity.

3.2 DDS Domain Separation

DDS Domains represent logical groupings of DDS applications used to control

communication; DDS applications must participate in the same DDS Domain in order to

communicate. DDS Domains are a core concept to DDS and can act as a fundamental

building block to secure systems built with DDS. However, the separation offered by

DDS Domains is, by design, enforced solely by the DDS libraries and is intended as a

functional rather than secure separation mechanism. Therefore, an exploitable flaw in one

DDS application could allow an attacker to break the DDS Domain isolation and attack

DDS applications participating in other DDS Domains.

The access control, authentication, and transport layer security features integrated into

RTI’s DDS have important security benefits and offer additional levels of separation

from DDS Domains. However, these security measures alone cannot achieve full DDS

Domain separation that can survive flawed applications. In particular, threat models that

assume cooperating malicious applications cannot be addressed without a separate,

independent layer of control such as SELinux.

To understand the security added by SELinux to DDS Domain separation, consider two

DDS Domains, each with multiple publisher and subscriber applications. Enforcing DDS

Domain separation using SELinux can be achieved by creating four SELinux types: a

publisher and subscriber type for each DDS Domain. An SELinux policy can then be

crafted that only allows communication between processes within the same domain. For

local communications using Linux IPC, the SELinux policy directly allows the required

access. For network communications SELinux controls DDS network communications in

two ways: network access control and IPSec network labeling.

Network access control leverages the predictable and standardized network port usage of

DDS. SELinux allows applications to control a specific processes access to the network

in terms of ports, IP addresses, network interfaces, and protocols using either the legacy

SELinux network controls or the newer IPTables-based packet labeling. Regardless of

which controls are used, DDS Domain separation is enforced by strictly controlling

network access to those ports associated with a particular DDS Domain.

Leveraging the network access control features of SELinux brings strong, independent

control over the communication of DDS based applications. Even if multiple DDS

applications in separate DDS Domains are exploited, they can be prevented from

communicating as they will not be allowed to communicate over the same network ports.

Further, SELinux can restrict the ability of applications to generate raw IP packets to

circumvent access controls. Of course, these controls are still built upon the overall

security of the connected network.

 Page 8 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

IPsec labeled network adds an additional level of security by leveraging IPsec to reliably

convey a process type across the network. The IPsec labeling is transparent to the

application and allows a remote system to determine the type of remote processes without

relying on the security of the network transport
3
.

3.3 DDS Application Integrity

Strong protection of application integrity is one of the benefits of SELinux over other

access control mechanisms. Type enforcement can be used to protect configuration files,

executables, libraries, audit logs, and other application data from corruption or tampering

by users or other applications running on a system. This protection extends to

administrative ‘root’ users and other privileged processes.

Protection of application integrity can reinforce other security measures utilized in DDS-

based applications. For example, by only allowing the correct DDS applications to read

certificates and private keys used for the DTLS authentication and transport layer security

features of RTI’s DDS, SELinux can prevent rogue software from posing as a trusted

publisher or subscriber. Similarly, SELinux can provide an important component of the

runtime security when creating tamper resistant applications by preventing access to

software executables and libraries.

4 RTI’s DDS and SELinux Performance

A security architecture is not viable unless it can be enabled in all situations, including

those that require the high performance offered by RTI. Through careful design and

implementation, the performance impact of SELinux has been reduced so as to achieve

near native Linux performance. The minimal performance impact of an active SELinux

security policy allows it to be enabled by default as a part of Red Hat Enterprise Linux 4

and 5.

SELinux introduces a small performance overhead on each system call, which has several

performance implications:

• Performance of code that does not involve system calls, including

computationally intensive floating or fixed-point math, is in no way effected by

SELinux.

• The performance impact of SELinux for a specific application depends on system

call usage. For example, the performance impact would be smaller for an

application that makes infrequent write calls with a large amount of data

compared to an application that makes frequent write calls with a small amount of

data.

3 More information on SELinux network security, including information on IPsec labeling can be found at

http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/.

 Page 9 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

• Benchmark data created using micro-benchmarks, such as lmbench
4
, will

typically show worst case performance with typical application workloads

experiencing much lower performance impact
5
.

• The performance impact tends to be fixed and predictable both in terms of CPU

utilization and latency. Careful design allows SELinux access checks to avoid

long or unpredictable impact on system call latency.

Initial measurements of latency generated by running the standard RTI latency

measurement utility with and without SELinux enabled show small increases in latency.

The test setup utilized Red Hat Enterprise Linux 5 with the legacy SELinux network

access controls and RTI Data Distribution Service 4.3d, both 32bit versions. These

performance measurements are useful primarily for comparing relative performance

rather than absolute performance, as little overall performance tuning was performed.

Further, the network access controls used show worst case performance and later versions

of the Linux kernel beyond that found in Red Hat Enterprise Linux 5 include many

SELinux performance enhancements that will improve these results
6
.

RTI's DDS Latency (Shmem) on SELinux

100

110

120

130

140

150

160

170

16 32 64 128 256 512 1024 2048 4096 8192

Message Size (bytes)

R
o

u
n

d
-T

ri
p

 L
a

te
n

cy
 (

u
s)

Type Enforcement OFF

Type Enforcement ON

Figure 1 - Comparison of latency with and without SELinux enabled for the shared memory
transport.

Figure 1 shows the relative latency achieved using the shared memory transport with and

without SELinux. Figure 2 shows the same measurement using the IPv4 transport. Both

4 http://www.bitmover.com/lmbench/

5 Some early performance measurements showed this clearly – see

http://www.nsa.gov/selinux/papers/freenix01/freenix01.html.

6 Summary of some recent performance improvements can be found at http://james-

morris.livejournal.com/2153.html and http://james-morris.livejournal.com/31714.html.

 Page 10 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

tests confirm that the SELinux introduces only a small, linear increase in latency of

approximately 2%.

RTI's DDS Latency (IPv4) on SELinux

0

200

400

600

800

1000

1200

16 32 64 128 256 512 1024 2048 4096 8192

Message Size (bytes)

R
o

u
n

d
-T

ri
p

 L
a

te
n

cy
 (

u
s)

Type Enforcement OFF

Type Enforcement ON

Figure 2 - Comparison of latency with and without SELinux enabled for the IPv4 transport.

5 Meeting Government Security Requirements

Solutions targeting the US Government are often required to meet stringent security

requirements and configuration guidance checklists. These range from the baseline

configuration mandated by the Defense Information Systems Agency (DISA) Security

Technical Implementation Guides (STIGS)
7
 to requirements for classified, multi-level

systems outlined in the Director of Central Intelligence Directive 6/3 (DCID 6/3) and

National Security Systems (NSS) Instruction 1253. Meeting these requirements is often a

challenge from a technical, documentation, and developer knowledge point-of-view.

Meeting government security requirements impacts all phases of solution development

and deployment. The requirements must be met technically, requiring careful design,

implementation, and testing. Then the solution is evaluated for compliance, typically

requiring documentation, testing, and final decision process that balances threats, solution

security posture, and mission need to determine if and how a system can be fielded.

Documentation includes information on likely threats, intended usage, design, and

operation of the solution. Finally, a fielded solution must be maintained and monitored in

accordance to the documented procedures.

7 http://iase.disa.mil/stigs/index.html

 Page 11 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

To meet these challenges with Linux, the Certifiable Linux Integration Platform (CLIP)

was created
8
. CLIP provides a security hardened operating system platform to host secure

applications. CLIP defines a specific configuration of Red Hat Enterprise Linux 4 and 5,

including SELinux policy, designed to provide the foundation for hosting secure

applications. This configuration consist of a separation of roles, mandatory access control

(MAC), discretionary access control (DAC), and data separation. With this foundation in

place, the hosted application needs only to concern itself with the specific security details

of its task and not necessarily those associated with these overhead functions. By using

CLIP, implementers can provide evidence of compliance with established operating

system security requirements. These established operating system security requirements

are:

• Director of Central Intelligence Directive 6/3 “Protecting Sensitive

Compartmented Information within Information Systems” (DCID 6/3) Protection

Level 4 (PL4)

• National Security Systems (NSS) Instruction 1253 “Security Controls Catalog for

National Security Systems” High Impact requirements

• Department of Defense (DoD) Instruction Number 8500.2 “Information

Assurance (IA) Implementation” MAC I Classified requirements

• Defense Information System Agency (DISA) Information Assurance Support

Environment (IASE) Security Technical Implementation Guides (STIG) Unix

V5R1

This section will provide a brief technical overview of these requirement sets and

describe how CLIP can be used to meet requirements with RTI’s DDS.

5.1 Technical Overview of Security Requirements

Most security requirement sets, including those referenced above, cover a variety of

subject areas including:

• Confidentiality: SELinux policy is used in CLIP to guarantee that only those

entities with sufficient access approval may process sensitive data. The extensible

nature of SELinux policy enables a developer to manage sensitive data, and create

a security policy that exposes this data on a need-to-know basis. An example of a

secure application which would benefit using CLIP is a Cross Domain Solution,

which needs to have fine-grained control over the disclosure of information, most

of which could be managed by proper configuration of SELinux policy.

• Integrity: A secure system must protect against unauthorized modification of

data. Data integrity need not be limited to system security relevant information,

but all information contained on the system. The mandatory access controls

provided by SELinux ensures the integrity of the data.

8 http://oss.tresys.com/projects/clip

 Page 12 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

• Availability: SELinux policy isolates data into separate security domains. CLIP

provides a utility to backup file security labels, allowing overall filesystem

backup to occur without affecting the security relevant state of the filesystem.

• Accountability: In any type of secure system, it is essential to maintain

accountability for security relevant events. CLIP uses system call auditing,

combined with the auditing and user authentication capabilities of SELinux, to

provide administrators with detailed information about all security relevant

changes to a system's state.

5.2 Creating Solutions with CLIP

The CLIP package includes several software packages, a full SELinux policy, and a set of

repeatable and customizable configurations in the form of Kickstart
9
 scripts. CLIP also

includes extensive documentation available by request that is suitable as the starting point

for the documentation required by certification and accreditation.

Using the provided Kickstart script, which automates the installation and configuration of

Red Hat Enterprise Linux, a developer can quickly create a hardened CLIP system. The

installed system will meet all of the target requirement sets of CLIP and can be used as a

development platform. During the development of the applications that form the

complete solution, additional SELinux policy can be added to protect and control those

applications.

5.3 Designing Applications to Meet Government Requirements

A solution designed to meet government security requirements requires both a secure

platform, such as CLIP, and secure applications. Secure application design, particularly

secure applications designed to maximize the benefits of MAC, is a large topic. However,

there are several guiding principles that can form a useful starting point:

• Place the minimal amount of trust possible in each application on the system. This

design principle is accomplished through careful design to produce an architecture

where the security of the system relies on a small number of carefully designed

components.

• Grant each component the least amount of privilege necessary to correctly

function. This principle is the tactical complement of the reduced trust goal. After

architecturally reducing the trust in each component, grant the component the

minimal necessary privilege via system security policies. This limits the damage

that can be accomplished in the event of an exploit.

• Divide applications into multiple, cooperating processes rather than a single

monolithic process. This allows further reduction in trust of each process and

9 http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Installation_Guide-en-US/s1-kickstart2-

whatis.html

 Page 13 of 13 www.tresys.com

Securing RTI’s DDS with SELinux

yields functional benefits, including the efficient use of multiple core processors

as well as the ability to distribute workloads across several systems.

• Rely on operating system security functions before application security functions.

Rather than enforce security in the applications, where possible shift the security

“heavy lifting” to the operating system functions to gain the advantage of the

careful design and extensive testing of these features. Example functions include

the Pluggable Authentication Modules (PAM), Linux Audit Subsystem, and

SELinux.

• Enforce the flow of information through the system with SELinux. SELinux

allows the creation of assured pipelines
10

, where the flow of information through

the system components is enforced by the SELinux policy. The careful control of

information flow within a system allows a wide variety of security goals to be

achieved, including data separation and confidentiality.

By providing a high-performance middleware layer, RTI simplifies the creation of

applications that follow these design principles. The peer-to-peer nature of RTI’S DDS

simplifies the creation of cooperating, least-privilege processes that can easily be secured

by SELinux.

6 Summary

RTI Data Distribution Service is a high-performance, distributed middleware layer for

real-time applications. SELinux is a flexible Mandatory Access Control mechanism

available as a part of Linux, including Red Hat Enterprise Linux. SELinux provides a

new level of host security, data separation, and role-based access control and allows the

creation of solutions that are secure even in the face of zero-day exploits and meet the

most stringent commercial and government security requirements. This new level of

security is achieved by the use of type-enforcement, which applies unique access control

policies to individual processes.

RTI and SELinux are well suited because of the peer-to-peer, library based

implementation of RTI’s DDS. This design embeds DDS into third-party applications

without the need for a single, central application connecting DDS clients and servers.

This design fits well with the process oriented access control model of SELinux, allowing

comprehensive control of DDS applications, including controlling which DDS

applications are able to communicate. Combining RTI and SELinux allows the creation

of solutions that meet the most stringent security requirements, including those mandated

by the US Government.

For an overview of DDS and its applicability to your needs, you may be interested in the

RTI whitepaper “Is DDS for You”: https://www.rti.com/mk/DDS.html

10 http://cs.unomaha.edu/~stanw/papers/csci8920/loscocco.pdf

