

July 2011
System Architecture for
Robust Integration
An introduction to Common Integration Patterns

 Rick Warren - Director of Technology Solutions
 Bill Antypas - Chief Consulting Engineer

Gordon Hunt - Chief Applications Engineer

System Architecture for Robust Integration

July 2011 2 © 2011 Real-Time Innovations

Architecture Overview

Enterprises increasingly need to develop distributed systems in an agile manner, with
minimal perturbation to end users and at lower costs. An important consideration in realizing
these benefits is to break down expensive system stovepipes and to leverage common
services and capabilities. Only a competitive marketplace based on interoperable standards
with transparent governance can provide the agility, reuse, and cost control necessary. A
vendor-specific or non-interoperable infrastructure cannot, regardless of whether the
customer has access to its source code.

Interoperability requires that distributed services share a common understanding of the data
on which they operate—the data’s structure as well as its Qualities of Service (QoS, i.e. how
it changes and how it’s distributed). Using an agreed-upon message format (sometimes called
an Interface Control Document, or ICD) is not sufficient, because if the relationship of
message to data is not explicit, the integration infrastructure cannot govern the data. Instead,
every application must take the job on itself—in a redundant, application-specific way.
Applications become more brittle and harder to develop, and without a robust integration
infrastructure, systems become closed stovepipes.

System architectures can be classified based on the level to which they govern their data.

• An application-centric architecture provides little or no governance. It is so called
because each application is a world unto itself. Its state is implicit and not exposed. The
operations that act on that state are specific to that application. As a result, applications
cannot interoperate unless they are tightly coupled to each other. Each application must
understand the others, so it is difficult to change them independently. Such architectures
are therefore typically appropriate for monolithic distributed “systems” (really just single
applications) under the tight control of an authority capable of evolving them all at once.

Example implementation technology: CORBA

Example scenario: Each object defines a unique interface, to which all of its clients are
tightly coupled.

• A data-centric architecture provides strong governance over data. It is so called
because it organizes the interactions among applications in terms of stateful data rather
than in terms of operations to be performed. Data structure and QoS are explicit and
discoverable. The operations that act on that state are uniform1. As a result, the
integration infrastructure is able to enforce the data structure and QoS contracts on behalf
of the applications, such that applications are not permitted to communicate malformed
data or to change data in inappropriate ways. Applications are easier to develop, less
dependent on each other, and more fault-tolerant. Such architectures are therefore

1 These operations typically follow a pattern called “CRUD”—Create, Read, Update, and Delete—because most
supporting technologies have parallels to these operations. In SQL [4], the operations are INSERT, SELECT,
UPDATE, and DELETE. In HTTP, they are POST, GET, PUT, and DELETE. In DDS, they are WRITE, READ,
DISPOSE, and UNREGISTER.

System Architecture for Robust Integration

July 2011 3 © 2011 Real-Time Innovations

appropriate for distributed systems of any size, including systems of systems and those
involving multiple teams.

Example implementation technologies: SQL databases [4] (data at rest only), RESTful
web services [6] (data at rest only), and OMG DDS [2] (data in motion).

Example scenario: Two applications connect to a relational database. One changes a row
in the database, identified by its key, and the other subsequently queries the updated
value.

• In between these two, a message-centric architecture governs the mechanism of
communication (i.e. the flow of messages) but not the state data to which that
communication refers. State and/or operations may be exposed using application-specific
message sets—for example, an ICD describing that a message with contents X updates a
certain state that should be been established by a previous message with contents Y. The
integration infrastructure is able to govern the flow of messages, ensuring that they flow
where they are intended and that their contents are well formed; applications are therefore
somewhat decoupled from one another. However, the infrastructure cannot determine
whether messages have the appropriate impacts on system state, or govern the
distribution of that state, or ensure that applications operate based on up-to-date and
correct views of the broader system. As a result, integrations are typically point-to-point
among constituent subsystems and tend to be brittle. Applications are responsible for
maintaining their own state, which can lead to challenges if they fail and restart or need
to be redeployed elsewhere on the network. Such architectures are appropriate for small
to medium-sized distributed systems that have a limited number of known constituent
subsystems and that can be upgraded all at once if necessary.

Example implementation technologies: AMQP [1], Java Message Service (JMS) [3], WS-
Notification [5]

Example scenario: One application may expose a notification “mouse clicked” and
another exposes an operation “create widget”. Both of these operations are expressed in
terms of JMS messages. An Enterprise Service Bus (ESB) sits between them and sends a
“create widget” message every time it receives a “mouse clicked” message.

Data-centric architecture is most broadly applicable, because it provides strong governance
over the integration. However, the simpler the integration to be performed, and the more
control that the integrating organization has over the constituent subsystems, the less serious
the ramifications of a lack of governance. Consequently, for systems of modest complexity
under a single authority, other approaches may yield acceptable results.

Integration Principles

System integrators have found that robust Open-Architecture integration requires
interoperability at three levels:

System Architecture for Robust Integration

July 2011 4 © 2011 Real-Time Innovations

1. Byte Level. The system elements must be able to exchange unstructured data.
(Technologies that support application-centric architecture address interoperability up
to this level.)

2. Message Level. The system elements must share a common “syntax” for their
communication. (Technologies that support message-centric architecture address
interoperability up to this level.)

3. Data Level. The system elements must relate the messages they exchange to explicit
data objects that change in well-defined ways—they must share a common set of
semantics. (Technologies that support data-centric architecture address
interoperability up to this level.)

Data-centric architecture relates messages to data according to the following principles:

1. The structure, changes, and motion of stateful data must be well defined. “State”
consists of the information that an application needs in order to interpret messages
correctly. For example, suppose there is an announcement, “the score is four to
three”. What game is being played? Who are the players? Which one of them has
four points and which three? The answers to these questions comprise the state that is
necessary to understand the message. This is a specialization of the Service-Oriented
Architecture principle of standardized service contracts; see [10].

2. The contracts governing the structure, changes, and motion of stateful data
must be discoverable. This is the same as the Service-Oriented Architecture
principle of discoverable service contracts; see [8].

3. State must be managed by the infrastructure, and applications must be stateless.
This is the same as the Service-Oriented Architecture principle of stateless
applications [9] as captured in the state repository pattern [7].

4. State must be accessed and manipulated by a set of uniform operations.
Operations express attempts to change the state. This principle is shared with the
REST Architecture; see [6].

The above principles allow applications and systems to interoperate at the level of an explicit
data model. When a system’s data model is explicit, it can be used at run time by applications
to make dynamic decisions based upon the content of the data, increasing capability and
operational agility. Further, interactions can be governed by infrastructure, reducing per-
application costs and inter-application coupling. On the other hand, if the data model is
implicit, decisions must be pre-determined, established, and enforced by static code prior to
execution, decreasing agility and increasing vendor lock-in.

Summary

In traditional IT systems, a modest number of applications were developed by related teams
within the same organization and managed by a single authority. These systems had short life
cycles and could be evolved all at once if necessary. Consequently, message-centric
approaches were sufficient. However, today’s enterprises are increasingly being asked to
address systems of systems that must be long-lived and incorporate subsystems that were not
known a priori and for which “big bang” upgrades are impossible. In such systems,
appropriate dissemination and synchronization of state are critical, and a data-centric
approach can significantly improve agility and drive down total cost of ownership.

System Architecture for Robust Integration

July 2011 5 © 2011 Real-Time Innovations

Appendix: Technology Evaluation

This section describes several technologies in terms of the architectural principles outlined in
this document.

Principle DDS AMQP
Relational
Database WS-Notification

Interoperable
Transport
Protocol

Yes

(DDS-
RTPS/UDP)

Yes

(TCP)

No Yes

(HTTP)

Interoperable
Messaging
Protocol

Yes

(DDS-RTPS)

Yes No Yes

(SOAP)

Standardized
Contracts

– Formal Type
Definition
Language

Yes

(OMG IDL or
W3C XSD)

Yes

(AMQP-specific)

Yes

(SQL)

Yes

(W3C XSD)

– Operations Yes

(Uniform
operations;
portable API
[2])

Partial

(Formal message
syntax; non-standard
API)

Yes

(Uniform
operations;
portable API
[4])

Partial

(Formal message
syntax; non-
standard API)

System Architecture for Robust Integration

July 2011 6 © 2011 Real-Time Innovations

Principle DDS AMQP
Relational
Database WS-Notification

– Data
Structure

Yes Partial

(Optional message
format definitions,
but unspecified
association between
message flow and
format and between
message and data)

Yes Partial

(Standard
message formats,
but messages
have undefined
relationship to
data)

– Data Motion Yes No No No

– Data
Changes

Yes No No No

– Run-Time
Contract
Enforcement

Yes No Yes No

State
Repository,
Stateless
Applications

Yes No Yes No

Discoverable
Contracts

Yes No Yes Yes

Note that architecture abstractions and technology implementations are related but
independent. A system’s architecture may be at a certain level while the technologies that
implement it are at a lower level. In this case, the system builders will have to “make up the
difference” themselves, leading to increased cost and risk. Consider the implications for
interoperability, reliability, and system maintenance of such an approach vs. one based on
more capable technologies.

System Architecture for Robust Integration

July 2011 7 © 2011 Real-Time Innovations

Nevertheless, in systems of systems, it may be necessary to integrate a subsystem that has a
given architecture (e.g. data-centric) with another subsystem that has a different architecture
(e.g. message-centric). This can be done by means of a mediation service between the
subsystems.

• As messages flow from the message-centric subsystem to the data-centric one, the
mediation service collapses and correlates messages with one another to generate
changes to the data objects to which they pertain.

• As data objects change in the data-centric subsystem, the mediation service generates
the appropriate messages describing those changes in the message-centric subsystem.

• As messages flow from the message-centric subsystem to the data-centric one, the
mediation service collapses and correlates messages with one another to generate
changes to the data objects to which they pertain.

• As data objects change in the data-centric subsystem, the mediation service generates
the appropriate messages describing those changes in the message-centric subsystem.

Resources

The following resources are referenced in this document.

Specifications
1. Advanced Message Queuing Protocol (AMQP), version 1-0r0. AMQP Working

Group. http://www.amqp.org/confluence/display/AMQP/AMQP+Specification.
2. Data Distribution Service (DDS), version 1.2. Object Management Group (OMG),

document number formal/2007-01-01. http://www.omg.org/spec/DDS/1.2/.
3. Java Message Service (JMS), version 1.1. Java Community Process (JCP), Java

Specification Request (JSR) 914. http://www.jcp.org/en/jsr/detail?id=914.
4. Structured Query Language (SQL). International Organization for Standardization

(ISO), document number ISO/IEC 9075-14:2008.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=4
5499.

5. Web Services Notification (WSN), version 1.3. OASIS. http://www.oasis-
open.org/committees/wsn/.

Additional Resources
6. REST architecture: http://en.wikipedia.org/wiki/Representational_State_Transfer
7. SOA Pattern: State Repository. http://soapatterns.org/state_repository.php
8. SOA Principle: Service Discoverability.

http://www.soaprinciples.com/service_discoverability.php
9. SOA Principle: Service Statelessness.

http://www.soaprinciples.com/service_statelessness.php
10. SOA Principle: Standardized Service Contract.

http://www.soaprinciples.com/standardized_service_contract.php

http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.omg.org/spec/DDS/1.2/
http://www.jcp.org/en/jsr/detail?id=914
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45499
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=45499
http://www.oasis-open.org/committees/wsn/
http://www.oasis-open.org/committees/wsn/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://soapatterns.org/state_repository.php
http://www.soaprinciples.com/service_discoverability.php
http://www.soaprinciples.com/service_statelessness.php
http://www.soaprinciples.com/standardized_service_contract.php

	Architecture Overview
	Integration Principles
	Summary
	Appendix: Technology Evaluation
	Resources
	Specifications
	Additional Resources

