
An Extensible CBM Architecture for Naval Fleet Maintenance

Using Open Standards

Sumant Tambe

Real-Time Innovations, Inc.

232, E. Java Dr. Sunnyvale, CA 94089

sumant@rti.com

Abdel-Moez E. Bayoumi, Alex Cao,

Rhea McCaslin, Travis Edwards

Condition-Based Maintenance Center

University of South Carolina, Columbia, SC 29208

bayoumi@sc.edu, caoa@sc.edu, mccaslir@email.sc.edu,

edwardt2@email.sc.edu

ABSTRACT

Condition-based maintenance (CBM) of naval assets

is preferred over scheduled maintenance because

CBM provides a window into the future of each

asset’s performance, and recommends/schedules

service only when needed. In practice, the asset’s

condition indicators must be reduced, transmitted

(off-ship), and mined using shore-based predictive

analytics. Real-Time Innovations (RTI), Inc. in

collaboration with the University of South Carolina

CBM Center is developing a comprehensive, multi-

disciplinary technology platform for advanced

predictive analytics for the Navy’s mechanical,

electrical, and IT assets on-board ships. RTI is

developing an open, extensible, data-centric bus

architecture to integrate shipboard asset monitoring

data with shore-based predictive analysis tools. The

interoperability challenge is addressed using the

Model-Driven Architecture (MDA) by transforming

sensor data to rigorously specified standard data

models. Our MDA process includes open standards

such as the OMG Data Distribution Service (DDS)

and Open System Architecture for Condition-Based

Maintenance (OSA-CBM), both of which have

enjoyed success in the Navy. Furthermore, the Navy’s

Information Assurance (IA) requirements are

implemented using the OMG Secure-DDS standard.

In summary, the technology will improve combat

readiness using a truly interoperable data-bus for

exchanging CBM data from ship-to-shore while

reducing distractions to the sailors, standby inventory

requirements, and decision time for analysts.

Keywords Condition-Based Maintenance (CBM),

Data Distribution Service (DDS), Open System

Architecture for Condition-Based Maintenance

(OSA-CBM)

1. INTRODUCTION
Mission readiness and longevity of the Navy fleet

depends heavily on how well-maintained its

constituent systems are. Maintenance comprises a

major portion of total ownership costs for Navy

systems. Unnecessary maintenance contributes to

inflated ownership costs and reduced readiness of

deployable assets.

Condition-based maintenance (CBM) is a well-known

predictive maintenance technique used in a number of

industrial-scale engineering disciplines including

mechanical, civil, chemical, and electrical, etc. A

CBM approach helps identify components that are

most likely to exhibit faults that require repair or

replacement. Conversely, it also helps identify which

equipment components remain in functional condition

without the need for maintenance.

The US Navy and Department of Defense (DoD), in

general, have embraced [2] CBM due to its ability to

diagnose problems before they occur, improve overall

mission reliability, reduce unnecessary downtime,

and reduce inventory and unnecessary maintenance

procedure costs. CBM differs from scheduled or

preventive maintenance because CBM reduces the

possibility of unplanned downtime when applied

properly. Thus, CBM implies improved mission

readiness and reliability at a reduced cost for the

Navy.

CBM necessarily depends on (1) instrumentation of

equipment, (2) continuous monitoring and collection

of an asset’s condition indicators, and (3) predictive

analytics on the collected data. A key step is to

mailto:sumant@rti.com
mailto:bayoumi@sc.edu
mailto:caoa@sc.edu
mailto:mccaslir@email.sc.edu
mailto:edwardt2@email.sc.edu

continuously monitor the health of a system by

collecting data from sensors, analyzing it using

artificial intelligence techniques, and identifying any

anomalies and/or incipient failures to the

stakeholders. In a Navy ship, the major subsystems

include navigation, electrical, mechanical,

communications, engine, propulsion, and the payload.

Using the myriad variety of onboard sensors, it is now

possible to estimate the overall health of the ship.

Developing and maintaining CBM systems have

become more expensive with the increasing

sophistication of diagnostics and prognostics. With

shrinking defense budgets and the drive to improve

acquisition flexibility, different subsystems in ships

are built by different vendors and are assembled by

integrators. The COTS components must interoperate

with each other as well as the overall CBM system for

effective prognostics. The architecture must not

couple the sensors with the CBM system because

more than one type of CBM system could be

operational concurrently and the sensors and/or the

CBM system may evolve independently as the

providers of those systems may be different. When

the sensors and/or the CBM system do actually

evolve, it is imperative to ensure that existing CBM

dataflows are not disturbed and that the new

capabilities are seamlessly integrated into the overall

system.

Another challenge in achieving full-fledged CBM

capabilities in the US Navy is that the shipboard data

is often isolated [3] from the shore-based analysis

tools. Integrating the shipboard data silos with the

predictive analytics tools on shore is challenging for

several reasons:

1. Incompatible Data Formats: The data collected

by the shipboard sensors must be available to the

analysis tools in a form they understand.

Common Information Model (CIM) [4] is a

general-purpose specification to collect

information about devices. CIM is an XML-based

model. The analysis tools, however, may or may

not understand CIM. They may not even use

XML as data input.

2. Disconnected, Intermittent, and Limited

Connectivity: The communication channel

between the ships and the shore is often limited in

capabilities. For instance, the connection may not

be available all the time, the bandwidth may be

scarce and opportunistic. The monitoring data

must often compete with high-priority mission-

related data streams. Any solution connecting the

shipboard data silos to the shore-based analysis

tools must address the connectivity problem.

3. Data Volume: Shipboard sensors gather large

amount of instantaneous performance and device

condition data. The predictive insights depend on

trends—values that change over time as opposed

to the instantaneous values. Indeed, the statuses

of healthy devices/services do not change until

they start to degrade. Therefore, transporting raw

data to the shore through contested links is quite

inefficient and counterproductive. The data may

be analyzed, reduced, and prioritized before it is

sent off-ship to optimize the usage of available

link capacity. The connectivity solution must

address the data volume challenge through smart

data reduction/compression techniques.

4. Information Assurance: The ship-to-shore data

transport solution must meet the Navy’s

information assurance (IA) requirements. For

instance, not all performance data is relevant to

all Subject Matter Experts (SME) involved in the

process of performing predictive analytics. The

data integration solution must be aware of the

Navy’s access control policies and must enforce

them during ship-to-shore transmission as well as

later during analysis.

In this paper, we present a novel extensible CBM

architecture for Navy fleet maintenance. Our

architecture is based on open standards that are

already deployed in the Navy including the Data

Distribution Service (DDS) and the Open System

Architecture for Condition-Based Maintenance

(OSA-CBM).

Our architecture is designed for a full-fledged CBM

system and it is necessarily “formal”. The data

models and protocols in our architecture are open,

formal (i.e., rigorously defined) and also standardized

so that participant applications can be swapped in/out

conveniently as long as they rely on the open

architecture.

In our architecture, the innovation lies in (1) the

analog sensors for condition detection, (2)

distribution of data from acquisition to prognostics

using standard data models and communication

protocols, and (3) the analysis applications that run

the CBM algorithms to generate alerts and

maintenance recommendations. All protocols and

data formats are open. We show how DDS and OSA-

CBM, which are well-established standards in their

respective domains, are highly compatible together.

Next, we provide a brief overview of CBM and

related standards and technologies.

2. CONDITION-BASED MAINTENANCE
Condition-based maintenance (CBM) is a transition

from a reactive to a proactive maintenance approach.

Maintenance actions are performed based only upon

evidence of need. This differs from traditional

management practices such as failure-based

(corrective maintenance) or time-based (preventive

maintenance) approaches. Implemented in the field,

CBM employs component monitoring equipment to

detect signs of wear and enable targeted maintenance.

Figure 1: Benefits of CBM implementation

When implemented successfully, CBM can lead to an

improvement in performance, productivity, and

overall effectiveness of systems. The benefits of

CBM can be realized through time savings, direct

cost benefits, and/or intangible benefits (Figure 1).

Time savings can be achieved through a reduction in

maintenance man hours, time between failure, and the

time an asset is not operational due to maintenance.

Direct cost benefits are achieved by a reduction of

costs in replacing parts and an increase in cost

avoidance (material and operational). Time savings

and direct cost benefits are both quantitative tangible

metrics that can be measured in dollars or time.

Intangible benefits are qualitative and include an

improvement in sense of safety and an increased

feeling of confidence and morale among users which

lead to better personnel performance. Another

benefit that CBM provides over traditional

maintenance practices is a greater focus on and

understanding of problems that occur in between

scheduled maintenance, which can lead to better

initial design of components.

CBM can be applied to many areas including, but not

limited to aviation, transportation, energy, and civil

structures. Any field with complex mechanical

systems and high operational readiness requirements

is a good candidate for CBM. The goal of CBM is to

reduce the maintenance burden on the sailor, maintain

or enhance safety, extend time between overhaul

(TBO), increase availability and readiness of assets,

and reduce operating and support costs.

CBM at the University of South Carolina

encompasses a wide variety of areas including testing,

natural language processing, diagnostics and

prognostics, signal processing, cost-benefit analysis,

tribology, and modeling and simulation.

2.1 The OSA-CBM Specification
The OSA-CBM specification [10] is an open standard

architecture for moving information in a condition-

based maintenance system. OSA-CBM was

developed in 2001 by an industry led team partially

funded by the Navy through a Dual Use Science and

Technology (DUST) program. OSA-CBM is now

managed and published by the Machine Information

Management Open Systems Alliance (MIMOSA)

standards body. Its goal is to enhance interoperability

between multiple vendors' software components [11].

Figure 2: OSA-CBM Functional Blocks

This section provides a short overview of the OSA-

CBM specification. A much more comprehensive

overview of the OSA-CBM specification is presented

in [12][13].

The OSA-CBM architecture is divided into the

interface specification and functional blocks (Figure

2). These specifications are defined using the Unified

Modeling Language (UML) and intended to be

platform independent which can be mapped into

various programming languages and middleware

technologies. Vendors and integrators can implement

the standard using the appropriate technology for

their environment. For example, while aircraft health

management vendors may elect to use a “real-time”

implementation, a vendor developing a portable

maintenance aid may elect to implement the standard

using XML and web services.

OSA-CBM specifies a standard architecture and

framework for implementing condition-based

maintenance systems. It describes the six functional

blocks of CBM systems, as well as the interfaces

between those blocks. The standard provides a means

to integrate many disparate components and eases the

process by specifying the inputs and outputs between

the components. In short, it describes a standardized

information delivery system for condition-based

monitoring. It describes the information that is moved

around and how to move it. It also has built in

metadata to describe the processing that is occurring.

The OSA-CBM data model is based on the concept

and employment of metadata (data about data), i.e.

OSA-CBM data are always identifiable and traceable.

The aim is to have data that supports data-centric

maintenance information management. In fact, OSA-

CBM data can be directly mapped into any OSA-EAI-

compliant relational database maintenance systems

with ease.

There are four primary OSA-CBM data classes:

DataEvent, Configuration, Explanation and

Extensible. DataEvent is the dynamic data related to

condition monitoring events generated by an OSA-

CBM module such as measurements, manipulated or

processed data, etc. The DataEvent class forms a

substantial part of the OSA-CBM data model and our

prototype implementation of OSA-CBM uses

DataEvent and related classes.

2.2 USC’s Experience with the South

Carolina Army National Guard
Since 1998, the University of South Carolina has

collaborated with the South Carolina Army National

Guard (SCARNG) on projects involving the

implementation of CBM in Army rotorcraft fleets.

Specifically, these projects worked with the AH-64,

UH-60, and CH-47, and were aimed at reducing the

Army aviation costs and increasing operational

readiness [5][6][7]. CBM implemented aircraft have

shown an increase in operational readiness resulting

in millions of dollars being saved in operational costs.

One use case study was the cost-benefit analysis of an

on-board vibration monitoring system known as the

Vibration Management Enhancement Program

(VMEP). The objective was to provide annual cost

savings analysis of VMEP implementation and create

a cost-benefit analysis model. The analysis showed a

decrease in operational costs and an increase in

mission capability through a reduction in unscheduled

maintenance for VMEP-equipped aircraft versus non-

VMEP equipped aircraft [8].

Another case study involved the testing of the AH-64

tail rotor gearbox. The aircraft model and component

were chosen based on an analysis of historical data

sources that showed a high number of incidences

involving the gearbox and leaking liquid. The

research at USC led to changes in maintenance

practices in the field along with a reduction in part

costs, unscheduled downtime, and maintenance man

hours [9]. A technical bulletin was released followed

by an IETM update because of the change in

maintenance practice. Tangible benefits of the study

include $2.98M/yr in cost avoidance due to reduced

part demands. This project led to the highest ROI-to-

date (20.2:1) in U.S. Army aviation history.

3. PREVENTIVE PREDICTIVE

MAINTENANCE (PPM) APPROACH
The University of South Carolina is developing an

integrated approach that encapsulates both data-

driven and physics-based modeling techniques in

order to build accurate diagnostic and prognostic

models. This approach, shown in Figure 3, is called

Preventive Predictive Maintenance (PPM) and can be

divided into three phases:

1. Phase I – Measurement

2. Phase II – Physics Modeling

3. Phase III – Integration & Validation

Phase I and Phase II can be implemented

independently and each have their own advantages

and disadvantages.

3.1 Measurement
Phase I can be described as an integrated data-driven

approach based on three distinct data sources: on-

board sensor data, historical asset data, and test data.

3.1.1 On-Board Sensor Data

Health and Usage Monitoring Systems (HUMS)

collect and process on-board sensor data using signal

processing techniques to extract features to calculate

condition indicators (CIs). These CIs are then used as

inputs to the analytical model. Advanced signal

processing techniques such as higher order spectral

analysis and joint time-frequency analysis are

employed to extract additional non-linear features

from the sensor signals that traditional techniques

cannot.

3.1.2 Historical Asset Data

Aircraft data is collected from a variety of sources

(e.g., maintenance records, operator logs, parts

inventory, etc.). These data are collected for different

purposes and reported in different formats. As is,

these qualitative disparate data sources cannot be

combined together with quantitative data (on-board

sensor data) in analytical models. Tools such as

natural language processing are used to convert any

unstructured text data (e.g., maintainer’s notes) into

concepts and types that can be categorized and

analyzed. This will transform the data into a

standardized machine-analyzable form. Data then can

be correlated, integrated, and categorized into a form

that fits the input of an analytical model.

3.1.3 Testing Data

Testing is used to characterize or refine

diagnostic/prognostic algorithms and to understand

the physics or root causes of faults. The testing of

faulted versus unfaulted components allows the

definition of boundaries separating normal operating

condition with abnormal conditions. Moreover, fault

testing allows validation and refinement of existing

diagnostic/prognostic algorithms. More specifically,

seeded fault testing allows the examination of

possible fault progression and severity in a controlled

reproducible environment. Test data from fault testing

and failure modes, along with the qualitative data

gained from inspections or tear down analysis is used

to correlate prognostic algorithms with faults and

degree of severity. This enhances understanding of

the underlying problem related to physical parameters

(e.g., gear failure). This iterative process produces

fault-correlated algorithms based on historical

knowledge and failure modes.

3.1.4 Integrated Dataset

These three distinct datasets allow comprehensive

predictive models (classification, segmentation,

association, etc.) to be created from statistical and

machine learning techniques. Health indicators can

then be created from built diagnostic models. The

integrated dataset would be a comprehensive

description of the asset and contain both normal and

abnormal operating conditions. Currently, most

condition-based maintenance implementations focus

solely on sensor data and do not consider other

sources of data like logistics. It is believed that

logistics data contains useful information that has not

yet been used for modelling purposes. In essence,

latent relationships exist between on-board sensor

data and logistics data that can be uncovered in an

integrated dataset.

3.2 Physics Modeling
Phase II is a physics-based approach. In order to

monitor the health of components and detect failures,

an understanding of the physics of the failure

mechanisms is needed. This requires the correlation

of system data with component usage. Historically,

these correlations were developed based on costly

instrumentation, physical tests and empirical

relationships. A theoretical framework based on

component, subsystem, and integrated system models

can be used to effectively understand the physics of

failure modes. This knowledge will help to determine

root causes of failures and the optimal locations for

sensor placement.

The data from the model’s responses from applied

inputs is used for the development of prognostic

algorithms that are sensitive to specific faults and

failure modes. Model inputs can be velocity, forces,

heat source, cracks etc. Model response would be in

terms of stress, strain, temperature, etc. These

models would encapsulate the dynamic, acoustic,

material (stress, strain), and thermal response of

component and subsystem models and relate them to

the overall system model. The advantage of this

approach is that it allows the emulation of faults and

failure mechanisms that are not practical to create in a

field or test environment.

Health
Indicators

Overall
Integrated
Diagnostic

Model

Simulated
Development

of Health
Indicators

Predictive Analytics Using
Design, Manufacturing &

Materials Behavior Theories

CORRELATIONS &
IMPLEMENTATION

Predictive Tools

CIVibration

CIWear

CIBearing

CITemperature

CIStress/Load

Extracted Features

D
ata Fu

sio
n

/Sign
al

P
ro

cessin
g

Logistics

HUMS

RotoSense

Thermocouple

...

Data Sources

Overall
Integrated

Models

RUL
Health

Condition
...Design

Models

Dynamic

Acoustic

Materials
Behavior

Fatigue

Thermal

Stress
Analysis

Other

Temperature

Force

Crack
Propagation

Acoustic
Emission

…

Algorithms’ Response

D
ata Fu

sio
n

/Sign
al

P
ro

cessin
g

Predictive Analytics Using
On-Board Sensing, Test
Stand & Historical Data

© QMT, LLC. All Rights Reserved© 2014 QMT, LLC. All Rights Reserved

Figure 3: University of South Carolina's Preventive Predictive Maintenance Approach

In addition, data fusion of different simulation models

would take into account potential model interactions

yielding a richer source of information than a single

model by itself. An integrated model can ascertain the

effect that a fault has on the functionality of the

various elements of the system. More importantly, it

allows us to correlate theoretical analysis with testing

data allowing us to refine the numerical model and

modify the test setup.

3.3 Integration & Validation
Phase III involves the correlation and integration of

these two approaches. The integrated system model

will greatly enhance the development of predictive

tools while also helping to support and inform the

historical and test data collected. Simulation data

supplements historical aircraft data not feasibly

obtainable and allows exploration of various failure

modes and root causes. Conversely, the reliability and

robustness of the modeling and simulation capability

of the proposed algorithm can be demonstrated and

correlated with sensor data from historical or test

data. The integration of the two parts allows for

predictive tools to be created for remaining useful

life, health condition, and component design. This is a

direct outcome of the PPM approach. The intersection

of design, models and simulations, and real world

systems is where new tools are being developed to

predict health, life, and performance of components,

subsystems, and complete systems.

4. Overview of Data Distribution Service
Data Distribution Service (DDS) is the first open

international middleware standard addressing

publish-subscribe communications for distributed,

real-time and embedded systems. The DDS API and

several other satellite technical specifications, such as

DDS Wire Interoperability specification, Extensible

and Dynamic Topic Types (X-Types) specification,

modern language bindings for C++ and Java are

standardized by the Object Management Group

(OMG)—an internationally recognized standards

body most widely known for UML and CORBA.

The core DDS specification defines a data-centric

publish-subscribe architecture (see Figure 4) for

connecting anonymous information providers with

information consumers. DDS promotes loose

coupling between system components. The

information consumers and providers are decoupled

with respect to time (i.e., they may not be present at

the same time), space (i.e., they may be anywhere),

flow (i.e., information providers must offer equivalent

or better quality-of-service (QoS) than required by the

consumers), behavior (i.e., business logic

independent), platforms, and programming languages.

Figure 4: DDS Data Bus

A data provider publishes typed data-flows, identified

by names called “topics”. The coupling is expressed

only in terms of topic name, datatype schema, and the

required and offered QoS attributes of consumers and

producers respectively. DDS allows fine control over

data delivery by means of standard QoS policies, such

as durability, reliability, history, deadline, time-based

filtering, liveliness, transport priority, resource limits,

and more.

Below we provide an overview of select DDS

concepts used in our approach.

1. Data-Centric Architecture: DDS facilitates data-

centric architecture where applications share a

global data space governed by schemas specified

using the XTypes2 standard. Each point-to-point

dataflow is described using a structured datatype

(e.g., an Interface Definition Language struct). The

datatype could be keyed on one or more fields.

Each key identifies an instance (similar to a

primary key in a database table) and DDS provides

mechanisms to control the lifecycle of instances.

Instance lifecycle supports CRUD (create, read,

update, delete) operations. Complex delivery

models can be associated with dataflows by simply

configuring the topic QoS.

2. DataWriter and DataReader: DataWriter and

DataReader are end-points applications use to

write and read typed data messages (samples) from

the global data space. DDS ensures that the end-

points are compatible with respect to the topic

name, datatype, and the QoS. Creating a

DataReader with a known topic and datatype

implicitly creates a subscription, which may or

may not match with a DataWriter depending upon

the QoS.

3. Data Caching: DDS is not just a messaging

middleware, although it can be configured to

behave like that. DDS, DataReader in particular,

provides caching of samples and different APIs to

traverse the cached data samples so that

applications need not make copies. DDS

distinguishes between read and take, where read

keeps the data in middleware cache until it is

removed by either calling take or overwritten by

subsequent samples. Resource limits QoS prevents

middleware caches from growing out of bounds.

The DataReader cache can be queried using

specific instances as well as iterate over all the

instances observed by the system. Finally, query

conditions provide a powerful mechanism to write

SQL-like expression on the datatype members and

retrieve samples that satisfy the predicate.

4. Content-Filtered Topics: It specifies a refined

subscription that filters samples that do not match

an application-specified predicate. The predicate is

a string encoded SQL-like expression based on the

fields of the datatype. The query expression and

the parameters may change dynamically. Filtering

of samples could take place before publication or

upon reception.

5. DDS Quality-of-Service: The DDS standard

supports 22 different QoS policies to control

various aspects of data delivery including

reliability, persistence, deadline, resource usage,

fault-tolerance, etc. We describe the significance

of QoS policies used in our solution below:

6. Reliability: It controls the reliability of the

dataflow between each pair of DataWriters and

DataReaders. BEST_EFFORT and RELIABLE are

two possible alternatives. BEST_EFFORT

reliability minimizes cpu/memory resource

consumption. RELIABLE, on the other hand, uses

an ack/nack based protocol to provide a spectrum

of reliability guarantees from strict (fully reliable)

to BEST_EFFORT. The reliability can be tuned

using the History QoS policy.

5. Integrating DDS and PPM in an Extensible

CBM Architecture
Figure 5 shows our proposed architecture for

combining PPM and DDS to develop an extensible

architecture for Navy CBM applications. Data

acquisition and health assessment applications are

OSA-CBM compliant and they communicate using

DDS instead of other integration technologies, such

as Web Services or relational databases. Of course,

the communication between the applications is data-

centric, thanks to DDS.

The key benefit of using DDS is that the application

integration problem is substantially simplified due to

the bus architecture. A DDS application requires only

one additional connection to the global data space to

enable communication with all the existing

applications. The middleware ensures that the

applications that use compatible topic name, topic

type, and QoS discover each other automatically and

begin exchanging data. Point-to-point integration

technologies such as Simple Object Access Protocol

(SOAP) and sockets on the other hand would require

one connection for each existing application that it

exchanges data with. Therefore, to communicate with

N applications, N point-to-point links are necessary.

Furthermore, point-to-point communication makes

independent evolution of applications extremely

difficult. When the data provider application evolves,

it cannot communicate with older versions of

consumer applications unless the data model

differences are explicitly addressed at application-

level. With each new version of the application the

problem of data model differences exacerbates, which

increases development, testing costs, and time to

market.

5.1 Modeling OSA-CBM Data in DDS
In our architecture, the producer and consumer

applications continue to use the OSA-CBM compliant

XML data format for sharing information. The global

data space captures the OSA-CBM data model using

DDS X-Types [14]. Having the model captured in X-

Types allows the model and/or the applications to

evolve without disrupting the applications that do not

evolve.

Figure 5: Data Bus Architecture for Condition-Based Maintenance using DDS and OSA-CBM

For efficiency, XML-based CBM data must be

converted into the data representation used by the

global data space, which is binary. The conversion is

achieved using an adapter that converts the OSA-

CBM compliant XML data into its equivalent X-

Types data representation (and vice versa). The

adaptation is semantically equivalent because both

data representations are obtained from the common

OSA-CBM data model.

There are two possible approaches to implement

OSA-CBM to X-Types transformation.

5.1.1 Gateway Approach

A gateway is an adapter process (perhaps

implemented using the RTI Routing Service), which

provides a pluggable framework to develop protocol

and data-format bridges. A pair of gateway instances

would mediate the communication between two

applications and transform the incoming XML

messages over say, TCP protocol, to equivalent DDS-

XTypes samples over UDP, which is the most

commonly used communication protocol in DDS

deployments. A reverse transformation is performed

at the receiving side to convert DDS samples back to

XML.

The key thing to note here in this approach is the

applications are oblivious to the intermediate

transformation. No changes are necessary to the

OSA-CBM compliant sensors and/or applications.

The OSA-CBM compliant applications are oblivious

to the fact that they are communicating over DDS

while they reap the benefits of it.

5.1.2 Code Generation Approach

Second approach uses direct mapping of the OSA-

CBM types to DDS-XTypes using some sort of code

generation. MIMOSA bundles standardized

eXtensible Schema Definitions (XSD) for the OSA-

CBM specification. The set of XSD files describe

hundreds of types that encapsulate information at

various functional blocks of the OSA-CBM

specification. A code generator would accept the

XSD files as input and would produce C/C++/Java

code that captures the OSA-CBM types using the

idioms of the target language.

Even though the second approach is theoretically

straightforward, there are practical limitations. As of

this writing, we are not aware of any DDS

implementation that supports the OSA-CBM XSD

out-of-the-box. We have, therefore, invented a novel

approach to map the OSA-CBM XSD to DDS-

XTypes indirectly, which we describe next.

5.2 RefleX: Reflection-based Type Modeling

for DDS-XTypes
RefleX [17] is short for Reflection for DDS-XTypes.

The crux of this C++ library is to create DDS-XTypes

compliant type representations directly from native

C++ types. RefleX is declarative (i.e., it is not a

reflection API). There is no separate code generation

step involved (other than compilation). The RefleX

library accepts application-level datatypes, no matter

how complex, and maps them to equivalent DDS

topic types.

The application-level datatypes are generated using

COTS XML data-binding tools. (e.g., Code Synthesis

XSD [15], JAXB [16]). The benefit of using the

existing COTS code generation tools is that

significant efforts have been put into developing

robust code generators that are compliant to the XSD

standard. As a consequence, OSA-CBM XSD is

handled extremely well.

As RefleX is a C++ library, our evaluation is limited

to the C++ language only. A similar approach is also

conceivable in Java, which natively support reflection

capabilities. C++, on the other hand, does not support

reflection and therefore, programmers must provide

some additional information declaratively so that the

RefleX library can transform native C++ structured

types to DDS-XTypes representation. We developed

the RTI_ADAPT_STRUCT macro to simplify the

task.

Listing 1 shows a code snippet that adapts

osacbm::DataEvent, osacbm::DADataEvent,

and osacbm::DADataSeq C++ classes to DDS-

XTypes. The classes are related by inheritance

relationship as shown on the right in Listing 1. The

classes are mapped to equivalent struct and

valuetypes in DDS-XTypes at program

compilation time. The RTI_ADAPT_STRUCT macro

does not affect the original source code of the classes.

The macro is only additive.

As long as the above code snippet is available during

program compilation, DDS DataWriter and

DataReader can be used directly with the

aforementioned types and instances thereof. No IDL

or separate code generation step is necessary.

The source code for the RefleX library can be

downloaded from [17].

RTI_ADAPT_STRUCT(

 osacbm::DataEvent,

 (osacbm::DataEvent::alertStatus_optional, alertStatus())

 (osacbm::DataEvent::confid_optional, confid())

 (unsigned_int, id())

 (osacbm::DataEvent::sequenceNum_optional, sequenceNum())

 (osacbm::DataEvent::site_optional, site())

 (osacbm::DataEvent::time_optional, time())

);

RTI_ADAPT_VALUETYPE(

 osacbm::DADataEvent,

 osacbm::DataEvent,

 (osacbm::DADataEvent::dataStatus_optional, dataStatus())

 (osacbm::DADataEvent::numAlerts_sequence, numAlerts())

);

RTI_ADAPT_VALUETYPE(

 osacbm::DADataSeq,

 osacbm::DADataEvent,

 (osacbm::DADataSeq::values_sequence, values())

 (osacbm::DADataSeq::valuesList_optional, valuesList())

 (osacbm::DADataSeq::valuesBinary_optional, valuesBinary())

 (osacbm::DADataSeq::xAxisDeltas_sequence, xAxisDeltas())

 (osacbm::DADataSeq::xAxisDeltasList_optional, xAxisDeltasList())

 (osacbm::DADataSeq::xAxisDeltasBinary_optional, xAxisDeltasBinary())

 (osacbm::DADataSeq::xAxisStart_optional, xAxisStart())

);

Listing 1: Left: Adaptation of Select OSA-CBM Types to DDS-XTypes. Right: Inheritance Relationship

6. RELATED WORK
Sreenuch et al. [12][13] describe an application of

data distribution service for implementing the Open

System Architecture Condition-Based Maintenance

(OSA-CBM) standard for Integrated Vehicle Health

Management (IVHM). The authors argue that the

primary benefit of using the publish/subscribe

architecture is to abstract the message transport from

the software components and allows them to be

decoupled. Furthermore, deployments can be done

rapidly. Our research not only support this prior

research but also goes a step further by demonstrating

the use of DDS-XTypes to create an extensible data

model and distributed architecture for CBM. The

novelty of our approach lies in extensibility and the

normalized data model for sharing CBM data.

Software Health Management (SHM) [18] is an

emerging discipline that applies the principles and

techniques of system health management and

maintenance to software systems. SHM is a

promising approach to providing fault-tolerance in

real-time systems because it not only provides for

fault detection and recovery but also effective means

for fault diagnostics and reasoning, which can help

make effective and predictable fault mitigation and

recovery decisions.

Towards that end, previous work [19] outlined a

software intensive approach for avionics sensor

health management using probabilistic belief

networks. We leveraged our extensible DDS data-bus

architecture not unlike the one presented in this

paper. The key difference being that in [19] we used a

custom data-model for data acquisition and

distribution of health assessment results. This paper

uses the standard OSA-CBM data model.

Our future work includes exploring novel middleware

adaptation techniques, such as GRAFT [20] and

SafeMAT [21] for distributed resource monitoring,

safe failure isolation, adaptive failover decisions, and

subsystem diagnostics in an end-to-end CBM

solution.

7. CONCLUSION
Condition-based maintenance (CBM) is a transition

from a reactive to a proactive maintenance approach

and has shown its effectiveness in a number of

engineering domains. University of South Carolina

CBM Center has developed and successfully

demonstrated a number of advanced CBM techniques

over the last 15 years. Implementing these CBM

techniques for fleet maintenance in Navy must

overcome additional challenges due to limited

connectivity, data volume, and incompatibilities in

data sharing.

We described an extensible standards-based solution

to address the key architectural challenges. Our

solution relies on DDS and OSA-CBM standards,

both of which have enjoyed success in the Navy. We

presented two approaches to implement the OSA-

CBM data model using DDS. We discussed practical

techniques to combine truly interdisciplinary research

and reap the benefits for the Navy.

8. AUTHOR BIO
Sumant Tambe, Ph.D. is a Principal Research

Engineer at Real-Time Innovations, Inc. Dr. Tambe’s

research interests include distributed real-time

embedded systems, model-driven engineering, multi-

paradigm software design, functional reactive

programming, and modern C++. He has served as

Principal Investigator on multiple SBIR research

projects funded by a number of government agencies.

Abdel-Moez E. Bayoumi, Ph.D., is a Professor, an

Associate Dean, and the Director of the Condition-

Based Maintenance Center at the University of South

Carolina. He has published 3 book chapters, over 100

papers and has over 17 years of experience in CBM.

He received his Ph.D. degree from North Carolina

State University in 1982.

Alex Cao is a Research Engineer with the Condition-

Based Maintenance Center at the University of South

Carolina. He has been working with the team for 3

years and is working with sensors, algorithms, data

analytics, and high performance computing applied to

CBM. He received his Master’s degree from the

University of Michigan in 2002.

Rhea McCaslin is a Graduate Research Assistant at

the University of South Carolina with the Condition-

Based Maintenance Center. She has been with the

team for three years and is working on natural

language processing and data analytics of CBM data.

She will receive her Master’s degree in Computer

Engineering from the University of South Carolina in

2015.

Travis Edwards is a Graduate Research Assistant at

the University of South Carolina with the Condition-

Based Maintenance Center. He has been with the

team for over three years and currently manages

multiple projects dealing with the AH-64 and the

sustainability of the rotorcraft fleet. He will receive

his Master’s degree in Mechanical Engineering from

the University of South Carolina in 2015.

9. REFERENCES
[1] Rowden, Tom. "Littoral Combat Ship: All Head

Full!" Proceedings Magazine. January 2013.: Vol.

139/1/1, 319.

[2] Steven W. Butcher. “Assessment of Condition-

Based Maintenance in the Department of

Defense”: LG903B1, August 2000

[3] Navy SBIR 2014.1 Solicitation - Topic N141-030

“Sense and Respond Technology Enabling

Condition Based Maintenance (CBM)”

http://www.navysbir.com/n14_1/N141-030.htm

[4] Distributed Management Task Force Common

Information Model.

http://www.dmtf.org/standards/cim

[5] Giurgiutiu, V., Grant, L., Grabill, P., Wroblewski,

D., "Helicopter Health Monitoring and Failure

Prevention through Vibration Monitoring

Enhancement Program", International Journal of

Condition Monitoring and Diagnostic

Engineering Management, UK, 4(4), 2001, pp.

33-40.

[6] Bayoumi, A., Eisner, L., "Transforming the US

Army through the Implementation of Condition

Based Maintenance", Journal of Army Aviation,

May 2007.

[7] Bayoumi, A., Goodman, N., Shah, R., Blechertas,

V., "Mechanical Diagnosis and Prognosis of

Military Aircraft: Integration of Wear, Vibration

Time-Frequency Analysis and Temperature into

Diagnosis Algorithms", Proc. Of Advanced

Materials For Application In Acoustics And

Vibration, Cairo, Egypt, 2009.

[8] Bayoumi, A., Ranson, W., Eisner, L., Grant, L.E.,

"Cost and effectiveness analysis of the AH-64

and UH-60 on-board vibrations monitoring

http://www.navysbir.com/n14_1/N141-030.htm
http://www.dmtf.org/standards/cim

system", Aerospace Conference, 2005 IEEE,

5(12), 2005, pp 3921-3940.

[9] Goodman, N., Bayoumi, A., Blechertas, V., Shah,

R., Shin, Y., “CBM Component Testing at the

University of South Carolina: AH-64 Tail Rotor

Gearbox Studies,” Proceedings of AHS

International Specialists’ Meeting on Condition

Based Maintenance, Huntsville, AL, 2009.

[10] MIMOSA, OSA-CBM UML Specification 3.3.1

Release, Machine Information Management Open

System Alliance, Tuscaloosa, AI, 2010

[11] M. Tiemann, An objective definition of open

standards, Computer Standards & Interfaces 28

(5) (2006) 495–507.

[12] T. Sreenuch, A. Tsourdos, I. K. Jennions,

“Distributed embedded condition monitoring

systems based on OSA-CBM standard”, Elsevier

Journal in Computer Standards & Interfaces

Volume 35 Issue 2, February, 2013, Pages 238-

246

[13] Tarapong Sreenuch, Antonios Tsourdos, Ian

Jennions, and Peter Silson, “Application of the

Data Distribution Service for Implementing OSA-

CBM Standard”, Infotech@Aerospace 2011.

[14] Extensible and Dynamic Topic Types, OMG

document formal/2012-11-10,

http://www.omg.org/spec/DDS-XTypes/1.0/

[15] Code Synthesis XSD,

www.codesynthesis.com/products/xsd/

[16] Java Architecture for XML Binding (JAXB),

http://www.oracle.com/technetwork/articles/javas

e/index-140168.html

[17] RTI RefleX Library,

http://rticommunity.github.io/rticonnextdds-

reflex/

[18] A. Srivastava and J. Schumann, “The case for

software health management,” in Space Mission

Challenges for Information Technology (SMCIT),

2011 IEEE Fourth International Conference on.

IEEE, 2011, pp. 3–9.

[19] Sumant Tambe, Fernando Garcia Aranda, Joe

Schlesselman, “An Extensible Architecture for

Avionics Sensor Health Assessment Using Data

Distribution Service”, In the Proceedings of the

AIAA Infotech@Aerospace 2013 Conference,

Boston

[20] Sumant Tambe, Akshay Dabholkar, and

Aniruddha Gokhale, “Fault-tolerance for

Component-based Systems - An Automated

Middleware Specialization Approach” In the

proceedings of International Symposium on

Object/component/service-oriented Real-time

distributed Computing (ISORC 2009)

[21] Akshay Dabholkar, Abhishek Dubey, Aniruddha

Gokhale, Gabor Karsai, Nagbhushan Mahadevan,

“Reliable Distributed Real-Time and Embedded

Systems through Safe Middleware Adaptation”,

In the 31st Symposium on Reliable Distributed

Systems (SRDS), 2012, 362-371

http://www.omg.org/spec/DDS-XTypes/1.0/
http://www.codesynthesis.com/products/xsd/
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://rticommunity.github.io/rticonnextdds-reflex/
http://rticommunity.github.io/rticonnextdds-reflex/

