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ABSTRACT 

Condition-based maintenance (CBM) of naval assets 

is preferred over scheduled maintenance because 

CBM provides a window into the future of each 

asset’s performance, and recommends/schedules 

service only when needed. In practice, the asset’s 

condition indicators must be reduced, transmitted 

(off-ship), and mined using shore-based predictive 

analytics. Real-Time Innovations (RTI), Inc. in 

collaboration with the University of South Carolina 

CBM Center is developing a comprehensive, multi-

disciplinary technology platform for advanced 

predictive analytics for the Navy’s mechanical, 

electrical, and IT assets on-board ships. RTI is 

developing an open, extensible, data-centric bus 

architecture to integrate shipboard asset monitoring 

data with shore-based predictive analysis tools. The 

interoperability challenge is addressed using the 

Model-Driven Architecture (MDA) by transforming 

sensor data to rigorously specified standard data 

models. Our MDA process includes open standards 

such as the OMG Data Distribution Service (DDS) 

and Open System Architecture for Condition-Based 

Maintenance (OSA-CBM), both of which have 

enjoyed success in the Navy. Furthermore, the Navy’s 

Information Assurance (IA) requirements are 

implemented using the OMG Secure-DDS standard. 

In summary, the technology will improve combat 

readiness using a truly interoperable data-bus for 

exchanging CBM data from ship-to-shore while 

reducing distractions to the sailors, standby inventory 

requirements, and decision time for analysts. 

Keywords Condition-Based Maintenance (CBM), 

Data Distribution Service (DDS), Open System 

Architecture for Condition-Based Maintenance 

(OSA-CBM) 

1. INTRODUCTION 
Mission readiness and longevity of the Navy fleet 

depends heavily on how well-maintained its 

constituent systems are. Maintenance comprises a 

major portion of total ownership costs for Navy 

systems. Unnecessary maintenance contributes to 

inflated ownership costs and reduced readiness of 

deployable assets.  

Condition-based maintenance (CBM) is a well-known 

predictive maintenance technique used in a number of 

industrial-scale engineering disciplines including 

mechanical, civil, chemical, and electrical, etc. A 

CBM approach helps identify components that are 

most likely to exhibit faults that require repair or 

replacement. Conversely, it also helps identify which 

equipment components remain in functional condition 

without the need for maintenance.  

The US Navy and Department of Defense (DoD), in 

general, have embraced [2] CBM due to its ability to 

diagnose problems before they occur, improve overall 

mission reliability, reduce unnecessary downtime, 

and reduce inventory and unnecessary maintenance 

procedure costs. CBM differs from scheduled or 

preventive maintenance because CBM reduces the 

possibility of unplanned downtime when applied 

properly. Thus, CBM implies improved mission 

readiness and reliability at a reduced cost for the 

Navy. 

CBM necessarily depends on (1) instrumentation of 

equipment, (2) continuous monitoring and collection 

of an asset’s condition indicators, and (3) predictive 

analytics on the collected data. A key step is to 
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continuously monitor the health of a system by 

collecting data from sensors, analyzing it using 

artificial intelligence techniques, and identifying any 

anomalies and/or incipient failures to the 

stakeholders. In a Navy ship, the major subsystems 

include navigation, electrical, mechanical, 

communications, engine, propulsion, and the payload. 

Using the myriad variety of onboard sensors, it is now 

possible to estimate the overall health of the ship. 

Developing and maintaining CBM systems have 

become more expensive with the increasing 

sophistication of diagnostics and prognostics. With 

shrinking defense budgets and the drive to improve 

acquisition flexibility, different subsystems in ships 

are built by different vendors and are assembled by 

integrators. The COTS components must interoperate 

with each other as well as the overall CBM system for 

effective prognostics. The architecture must not 

couple the sensors with the CBM system because 

more than one type of CBM system could be 

operational concurrently and the sensors and/or the 

CBM system may evolve independently as the 

providers of those systems may be different. When 

the sensors and/or the CBM system do actually 

evolve, it is imperative to ensure that existing CBM 

dataflows are not disturbed and that the new 

capabilities are seamlessly integrated into the overall 

system. 

Another challenge in achieving full-fledged CBM 

capabilities in the US Navy is that the shipboard data 

is often isolated [3] from the shore-based analysis 

tools. Integrating the shipboard data silos with the 

predictive analytics tools on shore is challenging for 

several reasons: 

1. Incompatible Data Formats: The data collected 

by the shipboard sensors must be available to the 

analysis tools in a form they understand. 

Common Information Model (CIM) [4] is a 

general-purpose specification to collect 

information about devices. CIM is an XML-based 

model. The analysis tools, however, may or may 

not understand CIM. They may not even use 

XML as data input.  

2. Disconnected, Intermittent, and Limited 

Connectivity: The communication channel 

between the ships and the shore is often limited in 

capabilities. For instance, the connection may not 

be available all the time, the bandwidth may be 

scarce and opportunistic. The monitoring data 

must often compete with high-priority mission-

related data streams. Any solution connecting the 

shipboard data silos to the shore-based analysis 

tools must address the connectivity problem. 

3. Data Volume: Shipboard sensors gather large 

amount of instantaneous performance and device 

condition data. The predictive insights depend on 

trends—values that change over time as opposed 

to the instantaneous values. Indeed, the statuses 

of healthy devices/services do not change until 

they start to degrade. Therefore, transporting raw 

data to the shore through contested links is quite 

inefficient and counterproductive. The data may 

be analyzed, reduced, and prioritized before it is 

sent off-ship to optimize the usage of available 

link capacity. The connectivity solution must 

address the data volume challenge through smart 

data reduction/compression techniques. 

4. Information Assurance: The ship-to-shore data 

transport solution must meet the Navy’s 

information assurance (IA) requirements. For 

instance, not all performance data is relevant to 

all Subject Matter Experts (SME) involved in the 

process of performing predictive analytics. The 

data integration solution must be aware of the 

Navy’s access control policies and must enforce 

them during ship-to-shore transmission as well as 

later during analysis. 

In this paper, we present a novel extensible CBM 

architecture for Navy fleet maintenance. Our 

architecture is based on open standards that are 

already deployed in the Navy including the Data 

Distribution Service (DDS) and the Open System 

Architecture for Condition-Based Maintenance 

(OSA-CBM).  

Our architecture is designed for a full-fledged CBM 

system and it is necessarily “formal”. The data 

models and protocols in our architecture are open, 

formal (i.e., rigorously defined) and also standardized 

so that participant applications can be swapped in/out 

conveniently as long as they rely on the open 

architecture. 

In our architecture, the innovation lies in (1) the 

analog sensors for condition detection, (2) 

distribution of data from acquisition to prognostics 

using standard data models and communication 

protocols, and (3) the analysis applications that run 

the CBM algorithms to generate alerts and 

maintenance recommendations. All protocols and 



data formats are open. We show how DDS and OSA-

CBM, which are well-established standards in their 

respective domains, are highly compatible together.  

Next, we provide a brief overview of CBM and 

related standards and technologies. 

2. CONDITION-BASED MAINTENANCE 
Condition-based maintenance (CBM) is a transition 

from a reactive to a proactive maintenance approach. 

Maintenance actions are performed based only upon 

evidence of need. This differs from traditional 

management practices such as failure-based 

(corrective maintenance) or time-based (preventive 

maintenance) approaches. Implemented in the field, 

CBM employs component monitoring equipment to 

detect signs of wear and enable targeted maintenance.  

 

Figure 1: Benefits of CBM implementation 

When implemented successfully, CBM can lead to an 

improvement in performance, productivity, and 

overall effectiveness of systems. The benefits of 

CBM can be realized through time savings, direct 

cost benefits, and/or intangible benefits (Figure 1). 

Time savings can be achieved through a reduction in 

maintenance man hours, time between failure, and the 

time an asset is not operational due to maintenance. 

Direct cost benefits are achieved by a reduction of 

costs in replacing parts and an increase in cost 

avoidance (material and operational). Time savings 

and direct cost benefits are both quantitative tangible 

metrics that can be measured in dollars or time. 

Intangible benefits are qualitative and include an 

improvement in sense of safety and an increased 

feeling of confidence and morale among users which 

lead to better personnel performance.  Another 

benefit that CBM provides over traditional 

maintenance practices is a greater focus on and 

understanding of problems that occur in between 

scheduled maintenance, which can lead to better 

initial design of components. 

CBM can be applied to many areas including, but not 

limited to aviation, transportation, energy, and civil 

structures. Any field with complex mechanical 

systems and high operational readiness requirements 

is a good candidate for CBM. The goal of CBM is to 

reduce the maintenance burden on the sailor, maintain 

or enhance safety, extend time between overhaul 

(TBO), increase availability and readiness of assets, 

and reduce operating and support costs. 

CBM at the University of South Carolina 

encompasses a wide variety of areas including testing, 

natural language processing, diagnostics and 

prognostics, signal processing, cost-benefit analysis, 

tribology, and modeling and simulation. 

2.1 The OSA-CBM Specification 
The OSA-CBM specification [10] is an open standard 

architecture for moving information in a condition- 

based maintenance system. OSA-CBM was 

developed in 2001 by an industry led team partially 

funded by the Navy through a Dual Use Science and 

Technology (DUST) program. OSA-CBM is now 

managed and published by the Machine Information 

Management Open Systems Alliance (MIMOSA) 

standards body. Its goal is to enhance interoperability 

between multiple vendors' software components [11].  

 

Figure 2: OSA-CBM Functional Blocks 

This section provides a short overview of the OSA-

CBM specification. A much more comprehensive 

overview of the OSA-CBM specification is presented 

in [12][13]. 

The OSA-CBM architecture is divided into the 

interface specification and functional blocks (Figure 

2). These specifications are defined using the Unified 

Modeling Language (UML) and intended to be 



platform independent which can be mapped into 

various programming languages and middleware 

technologies. Vendors and integrators can implement 

the standard using the appropriate technology for 

their environment. For example, while aircraft health 

management vendors may elect to use a “real-time” 

implementation, a vendor developing a portable 

maintenance aid may elect to implement the standard 

using XML and web services. 

OSA-CBM specifies a standard architecture and 

framework for implementing condition-based 

maintenance systems. It describes the six functional 

blocks of CBM systems, as well as the interfaces 

between those blocks. The standard provides a means 

to integrate many disparate components and eases the 

process by specifying the inputs and outputs between 

the components. In short, it describes a standardized 

information delivery system for condition-based 

monitoring. It describes the information that is moved 

around and how to move it. It also has built in 

metadata to describe the processing that is occurring. 

The OSA-CBM data model is based on the concept 

and employment of metadata (data about data), i.e. 

OSA-CBM data are always identifiable and traceable. 

The aim is to have data that supports data-centric 

maintenance information management. In fact, OSA-

CBM data can be directly mapped into any OSA-EAI-

compliant relational database maintenance systems 

with ease. 

There are four primary OSA-CBM data classes: 

DataEvent, Configuration, Explanation and 

Extensible. DataEvent is the dynamic data related to 

condition monitoring events generated by an OSA-

CBM module such as measurements, manipulated or 

processed data, etc. The DataEvent class forms a 

substantial part of the OSA-CBM data model and our 

prototype implementation of OSA-CBM uses 

DataEvent and related classes. 

2.2 USC’s Experience with the South 

Carolina Army National Guard 
Since 1998, the University of South Carolina has 

collaborated with the South Carolina Army National 

Guard (SCARNG) on projects involving the 

implementation of CBM in Army rotorcraft fleets. 

Specifically, these projects worked with the AH-64, 

UH-60, and CH-47, and were aimed at reducing the 

Army aviation costs and increasing operational 

readiness [5][6][7]. CBM implemented aircraft have 

shown an increase in operational readiness resulting 

in millions of dollars being saved in operational costs.  

One use case study was the cost-benefit analysis of an 

on-board vibration monitoring system known as the 

Vibration Management Enhancement Program 

(VMEP). The objective was to provide annual cost 

savings analysis of VMEP implementation and create 

a cost-benefit analysis model. The analysis showed a 

decrease in operational costs and an increase in 

mission capability through a reduction in unscheduled 

maintenance for VMEP-equipped aircraft versus non-

VMEP equipped aircraft [8].  

Another case study involved the testing of the AH-64 

tail rotor gearbox. The aircraft model and component 

were chosen based on an analysis of historical data 

sources that showed a high number of incidences 

involving the gearbox and leaking liquid. The 

research at USC led to changes in maintenance 

practices in the field along with a reduction in part 

costs, unscheduled downtime, and maintenance man 

hours [9]. A technical bulletin was released followed 

by an IETM update because of the change in 

maintenance practice. Tangible benefits of the study 

include $2.98M/yr in cost avoidance due to reduced 

part demands. This project led to the highest ROI-to-

date (20.2:1) in U.S. Army aviation history. 

3. PREVENTIVE PREDICTIVE 

MAINTENANCE (PPM) APPROACH 
The University of South Carolina is developing an 

integrated approach that encapsulates both data-

driven and physics-based modeling techniques in 

order to build accurate diagnostic and prognostic 

models. This approach, shown in Figure 3, is called 

Preventive Predictive Maintenance (PPM) and can be 

divided into three phases:  

1. Phase I – Measurement 

2. Phase II – Physics Modeling 

3. Phase III – Integration & Validation 

Phase I and Phase II can be implemented 

independently and each have their own advantages 

and disadvantages. 

3.1 Measurement 
Phase I can be described as an integrated data-driven 

approach based on three distinct data sources: on-

board sensor data, historical asset data, and test data. 



3.1.1 On-Board Sensor Data 

Health and Usage Monitoring Systems (HUMS) 

collect and process on-board sensor data using signal 

processing techniques to extract features to calculate 

condition indicators (CIs). These CIs are then used as 

inputs to the analytical model. Advanced signal 

processing techniques such as higher order spectral 

analysis and joint time-frequency analysis are 

employed to extract additional non-linear features 

from the sensor signals that traditional techniques 

cannot. 

3.1.2 Historical Asset Data 

Aircraft data is collected from a variety of sources 

(e.g., maintenance records, operator logs, parts 

inventory, etc.). These data are collected for different 

purposes and reported in different formats. As is, 

these qualitative disparate data sources cannot be 

combined together with quantitative data (on-board 

sensor data) in analytical models. Tools such as 

natural language processing are used to convert any 

unstructured text data (e.g., maintainer’s notes) into 

concepts and types that can be categorized and 

analyzed. This will transform the data into a 

standardized machine-analyzable form. Data then can 

be correlated, integrated, and categorized into a form 

that fits the input of an analytical model. 

3.1.3 Testing Data 

Testing is used to characterize or refine 

diagnostic/prognostic algorithms and to understand 

the physics or root causes of faults. The testing of 

faulted versus unfaulted components allows the 

definition of boundaries separating normal operating 

condition with abnormal conditions. Moreover, fault 

testing allows validation and refinement of existing 

diagnostic/prognostic algorithms. More specifically, 

seeded fault testing allows the examination of 

possible fault progression and severity in a controlled 

reproducible environment. Test data from fault testing 

and failure modes, along with the qualitative data 

gained from inspections or tear down analysis is used 

to correlate prognostic algorithms with faults and 

degree of severity. This enhances understanding of 

the underlying problem related to physical parameters 

(e.g., gear failure). This iterative process produces 

fault-correlated algorithms based on historical 

knowledge and failure modes. 

3.1.4 Integrated Dataset 

These three distinct datasets allow comprehensive 

predictive models (classification, segmentation, 

association, etc.) to be created from statistical and 

machine learning techniques. Health indicators can 

then be created from built diagnostic models. The 

integrated dataset would be a comprehensive 

description of the asset and contain both normal and 

abnormal operating conditions. Currently, most 

condition-based maintenance implementations focus 

solely on sensor data and do not consider other 

sources of data like logistics. It is believed that 

logistics data contains useful information that has not 

yet been used for modelling purposes. In essence, 

latent relationships exist between on-board sensor 

data and logistics data that can be uncovered in an 

integrated dataset. 

3.2 Physics Modeling 
Phase II is a physics-based approach. In order to 

monitor the health of components and detect failures, 

an understanding of the physics of the failure 

mechanisms is needed. This requires the correlation 

of system data with component usage. Historically, 

these correlations were developed based on costly 

instrumentation, physical tests and empirical 

relationships. A theoretical framework based on 

component, subsystem, and integrated system models 

can be used to effectively understand the physics of 

failure modes. This knowledge will help to determine 

root causes of failures and the optimal locations for 

sensor placement.  

The data from the model’s responses from applied 

inputs is used for the development of prognostic 

algorithms that are sensitive to specific faults and 

failure modes. Model inputs can be velocity, forces, 

heat source, cracks etc. Model response would be in 

terms of stress, strain, temperature, etc.  These 

models would encapsulate the dynamic, acoustic, 

material (stress, strain), and thermal response of 

component and subsystem models and relate them to 

the overall system model. The advantage of this 

approach is that it allows the emulation of faults and 

failure mechanisms that are not practical to create in a 

field or test environment. 
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Figure 3:  University of South Carolina's Preventive Predictive Maintenance Approach

In addition, data fusion of different simulation models 

would take into account potential model interactions 

yielding a richer source of information than a single 

model by itself. An integrated model can ascertain the 

effect that a fault has on the functionality of the 

various elements of the system. More importantly, it 

allows us to correlate theoretical analysis with testing 

data allowing us to refine the numerical model and 

modify the test setup. 

3.3 Integration & Validation 
Phase III involves the correlation and integration of 

these two approaches. The integrated system model 

will greatly enhance the development of predictive 

tools while also helping to support and inform the 

historical and test data collected. Simulation data 

supplements historical aircraft data not feasibly 

obtainable and allows exploration of various failure 

modes and root causes. Conversely, the reliability and 

robustness of the modeling and simulation capability 

of the proposed algorithm can be demonstrated and 

correlated with sensor data from historical or test 

data. The integration of the two parts allows for 

predictive tools to be created for remaining useful 

life, health condition, and component design. This is a 

direct outcome of the PPM approach. The intersection 

of design, models and simulations, and real world 

systems is where new tools are being developed to 

predict health, life, and performance of components, 

subsystems, and complete systems. 

4. Overview of Data Distribution Service  
Data Distribution Service (DDS) is the first open 

international middleware standard addressing 

publish-subscribe communications for distributed, 

real-time and embedded systems. The DDS API and 

several other satellite technical specifications, such as 

DDS Wire Interoperability specification, Extensible 

and Dynamic Topic Types (X-Types) specification, 

modern language bindings for C++ and Java are 

standardized by the Object Management Group 

(OMG)—an internationally recognized standards 

body most widely known for UML and CORBA.  

The core DDS specification defines a data-centric 

publish-subscribe architecture (see Figure 4) for 

connecting anonymous information providers with 

information consumers. DDS promotes loose 

coupling between system components. The 

information consumers and providers are decoupled 

with respect to time (i.e., they may not be present at 

the same time), space (i.e., they may be anywhere), 

flow (i.e., information providers must offer equivalent 

or better quality-of-service (QoS) than required by the 

consumers), behavior (i.e., business logic 

independent), platforms, and programming languages.  



 

Figure 4:  DDS Data Bus

A data provider publishes typed data-flows, identified 

by names called “topics”. The coupling is expressed 

only in terms of topic name, datatype schema, and the 

required and offered QoS attributes of consumers and 

producers respectively. DDS allows fine control over 

data delivery by means of standard QoS policies, such 

as durability, reliability, history, deadline, time-based 

filtering, liveliness, transport priority, resource limits, 

and more. 

Below we provide an overview of select DDS 

concepts used in our approach. 

1. Data-Centric Architecture: DDS facilitates data-

centric architecture where applications share a 

global data space governed by schemas specified 

using the XTypes2 standard. Each point-to-point 

dataflow is described using a structured datatype 

(e.g., an Interface Definition Language struct). The 

datatype could be keyed on one or more fields. 

Each key identifies an instance (similar to a 

primary key in a database table) and DDS provides 

mechanisms to control the lifecycle of instances. 

Instance lifecycle supports CRUD (create, read, 

update, delete) operations. Complex delivery 

models can be associated with dataflows by simply 

configuring the topic QoS. 

2. DataWriter and DataReader: DataWriter and 

DataReader are end-points applications use to 

write and read typed data messages (samples) from 

the global data space. DDS ensures that the end-

points are compatible with respect to the topic 

name, datatype, and the QoS. Creating a 

DataReader with a known topic and datatype 

implicitly creates a subscription, which may or 

may not match with a DataWriter depending upon 

the QoS. 

3. Data Caching: DDS is not just a messaging 

middleware, although it can be configured to 

behave like that. DDS, DataReader in particular, 

provides caching of samples and different APIs to 

traverse the cached data samples so that 

applications need not make copies. DDS 

distinguishes between read and take, where read 

keeps the data in middleware cache until it is 

removed by either calling take or overwritten by 

subsequent samples. Resource limits QoS prevents 

middleware caches from growing out of bounds. 

The DataReader cache can be queried using 

specific instances as well as iterate over all the 

instances observed by the system. Finally, query 

conditions provide a powerful mechanism to write 

SQL-like expression on the datatype members and 

retrieve samples that satisfy the predicate.  

4. Content-Filtered Topics: It specifies a refined 

subscription that filters samples that do not match 

an application-specified predicate. The predicate is 

a string encoded SQL-like expression based on the 

fields of the datatype. The query expression and 

the parameters may change dynamically. Filtering 

of samples could take place before publication or 

upon reception.  

5. DDS Quality-of-Service: The DDS standard 

supports 22 different QoS policies to control 

various aspects of data delivery including 

reliability, persistence, deadline, resource usage, 

fault-tolerance, etc. We describe the significance 

of QoS policies used in our solution below: 



6. Reliability: It controls the reliability of the 

dataflow between each pair of DataWriters and 

DataReaders. BEST_EFFORT and RELIABLE are 

two possible alternatives. BEST_EFFORT 

reliability minimizes cpu/memory resource 

consumption. RELIABLE, on the other hand, uses 

an ack/nack based protocol to provide a spectrum 

of reliability guarantees from strict (fully reliable) 

to BEST_EFFORT. The reliability can be tuned 

using the History QoS policy. 

5. Integrating DDS and PPM in an Extensible 

CBM Architecture  
Figure 5 shows our proposed architecture for 

combining PPM and DDS to develop an extensible 

architecture for Navy CBM applications. Data 

acquisition and health assessment applications are 

OSA-CBM compliant and they communicate using 

DDS instead of other integration technologies, such 

as Web Services or relational databases. Of course, 

the communication between the applications is data-

centric, thanks to DDS.  

The key benefit of using DDS is that the application 

integration problem is substantially simplified due to 

the bus architecture. A DDS application requires only 

one additional connection to the global data space to 

enable communication with all the existing 

applications. The middleware ensures that the 

applications that use compatible topic name, topic 

type, and QoS discover each other automatically and 

begin exchanging data. Point-to-point integration 

technologies such as Simple Object Access Protocol 

(SOAP) and sockets on the other hand would require 

one connection for each existing application that it 

exchanges data with. Therefore, to communicate with 

N applications, N point-to-point links are necessary. 

Furthermore, point-to-point communication makes 

independent evolution of applications extremely 

difficult. When the data provider application evolves, 

it cannot communicate with older versions of 

consumer applications unless the data model 

differences are explicitly addressed at application-

level. With each new version of the application the 

problem of data model differences exacerbates, which 

increases development, testing costs, and time to 

market.  

5.1 Modeling OSA-CBM Data in DDS 
In our architecture, the producer and consumer 

applications continue to use the OSA-CBM compliant 

XML data format for sharing information. The global 

data space captures the OSA-CBM data model using 

DDS X-Types [14]. Having the model captured in X-

Types allows the model and/or the applications to 

evolve without disrupting the applications that do not 

evolve. 

 

Figure 5: Data Bus Architecture for Condition-Based Maintenance using DDS and OSA-CBM



For efficiency, XML-based CBM data must be 

converted into the data representation used by the 

global data space, which is binary. The conversion is 

achieved using an adapter that converts the OSA-

CBM compliant XML data into its equivalent X-

Types data representation (and vice versa). The 

adaptation is semantically equivalent because both 

data representations are obtained from the common 

OSA-CBM data model.  

There are two possible approaches to implement 

OSA-CBM to X-Types transformation.  

5.1.1 Gateway Approach 

A gateway is an adapter process (perhaps 

implemented using the RTI Routing Service), which 

provides a pluggable framework to develop protocol 

and data-format bridges. A pair of gateway instances 

would mediate the communication between two 

applications and transform the incoming XML 

messages over say, TCP protocol, to equivalent DDS-

XTypes samples over UDP, which is the most 

commonly used communication protocol in DDS 

deployments. A reverse transformation is performed 

at the receiving side to convert DDS samples back to 

XML.  

The key thing to note here in this approach is the 

applications are oblivious to the intermediate 

transformation. No changes are necessary to the 

OSA-CBM compliant sensors and/or applications. 

The OSA-CBM compliant applications are oblivious 

to the fact that they are communicating over DDS 

while they reap the benefits of it. 

5.1.2 Code Generation Approach 

Second approach uses direct mapping of the OSA-

CBM types to DDS-XTypes using some sort of code 

generation. MIMOSA bundles standardized 

eXtensible Schema Definitions (XSD) for the OSA-

CBM specification. The set of XSD files describe 

hundreds of types that encapsulate information at 

various functional blocks of the OSA-CBM 

specification. A code generator would accept the 

XSD files as input and would produce C/C++/Java 

code that captures the OSA-CBM types using the 

idioms of the target language.  

Even though the second approach is theoretically 

straightforward, there are practical limitations. As of 

this writing, we are not aware of any DDS 

implementation that supports the OSA-CBM XSD 

out-of-the-box. We have, therefore, invented a novel 

approach to map the OSA-CBM XSD to DDS-

XTypes indirectly, which we describe next. 

5.2 RefleX: Reflection-based Type Modeling 

for DDS-XTypes 
RefleX [17] is short for Reflection for DDS-XTypes. 

The crux of this C++ library is to create DDS-XTypes 

compliant type representations directly from native 

C++ types. RefleX is declarative (i.e., it is not a 

reflection API). There is no separate code generation 

step involved (other than compilation). The RefleX 

library accepts application-level datatypes, no matter 

how complex, and maps them to equivalent DDS 

topic types. 

The application-level datatypes are generated using 

COTS XML data-binding tools. (e.g., Code Synthesis 

XSD [15], JAXB [16]). The benefit of using the 

existing COTS code generation tools is that 

significant efforts have been put into developing 

robust code generators that are compliant to the XSD 

standard. As a consequence, OSA-CBM XSD is 

handled extremely well. 

As RefleX is a C++ library, our evaluation is limited 

to the C++ language only. A similar approach is also 

conceivable in Java, which natively support reflection 

capabilities. C++, on the other hand, does not support 

reflection and therefore, programmers must provide 

some additional information declaratively so that the 

RefleX library can transform native C++ structured 

types to DDS-XTypes representation. We developed 

the RTI_ADAPT_STRUCT macro to simplify the 

task.  

Listing 1 shows a code snippet that adapts 

osacbm::DataEvent, osacbm::DADataEvent, 

and osacbm::DADataSeq C++ classes to DDS-

XTypes. The classes are related by inheritance 

relationship as shown on the right in Listing 1. The 

classes are mapped to equivalent struct and 

valuetypes in DDS-XTypes at program 

compilation time.  The RTI_ADAPT_STRUCT macro 

does not affect the original source code of the classes. 

The macro is only additive.  

As long as the above code snippet is available during 

program compilation, DDS DataWriter and 

DataReader can be used directly with the 

aforementioned types and instances thereof. No IDL 

or separate code generation step is necessary.  

The source code for the RefleX library can be 

downloaded from [17].  



 

RTI_ADAPT_STRUCT( 

  osacbm::DataEvent, 

 (osacbm::DataEvent::alertStatus_optional,  alertStatus()) 

 (osacbm::DataEvent::confid_optional,       confid()) 

 (unsigned_int,                             id()) 

 (osacbm::DataEvent::sequenceNum_optional,  sequenceNum()) 

 (osacbm::DataEvent::site_optional,         site()) 

 (osacbm::DataEvent::time_optional,         time()) 

); 

 

RTI_ADAPT_VALUETYPE( 

  osacbm::DADataEvent, 

  osacbm::DataEvent, 

 (osacbm::DADataEvent::dataStatus_optional, dataStatus()) 

 (osacbm::DADataEvent::numAlerts_sequence,  numAlerts()) 

); 

 

RTI_ADAPT_VALUETYPE( 

  osacbm::DADataSeq,  

  osacbm::DADataEvent, 

 (osacbm::DADataSeq::values_sequence,            values()) 

 (osacbm::DADataSeq::valuesList_optional,        valuesList()) 

 (osacbm::DADataSeq::valuesBinary_optional,      valuesBinary()) 

 (osacbm::DADataSeq::xAxisDeltas_sequence,       xAxisDeltas()) 

 (osacbm::DADataSeq::xAxisDeltasList_optional,   xAxisDeltasList()) 

 (osacbm::DADataSeq::xAxisDeltasBinary_optional, xAxisDeltasBinary()) 

 (osacbm::DADataSeq::xAxisStart_optional,        xAxisStart()) 

); 

 

 

 

Listing 1:  Left: Adaptation of Select OSA-CBM Types to DDS-XTypes. Right: Inheritance Relationship

6. RELATED WORK 
Sreenuch et al. [12][13] describe an application of 

data distribution service for implementing the Open 

System Architecture Condition-Based Maintenance 

(OSA-CBM) standard for Integrated Vehicle Health 

Management (IVHM). The authors argue that the 

primary benefit of using the publish/subscribe 

architecture is to abstract the message transport from 

the software components and allows them to be 

decoupled. Furthermore, deployments can be done 

rapidly. Our research not only support this prior 

research but also goes a step further by demonstrating 

the use of DDS-XTypes to create an extensible data 

model and distributed architecture for CBM. The 

novelty of our approach lies in extensibility and the 

normalized data model for sharing CBM data. 

Software Health Management (SHM) [18] is an 

emerging discipline that applies the principles and 

techniques of system health management and 

maintenance to software systems. SHM is a 

promising approach to providing fault-tolerance in 

real-time systems because it not only provides for 

fault detection and recovery but also effective means 

for fault diagnostics and reasoning, which can help 

make effective and predictable fault mitigation and 

recovery decisions.  

Towards that end, previous work [19] outlined a 

software intensive approach for avionics sensor 

health management using probabilistic belief 

networks. We leveraged our extensible DDS data-bus 

architecture not unlike the one presented in this 

paper. The key difference being that in [19] we used a 

custom data-model for data acquisition and 

distribution of health assessment results. This paper 

uses the standard OSA-CBM data model. 

Our future work includes exploring novel middleware 

adaptation techniques, such as GRAFT [20] and 

SafeMAT [21] for distributed resource monitoring, 

safe failure isolation, adaptive failover decisions, and 



subsystem diagnostics in an end-to-end CBM 

solution. 

7. CONCLUSION 
Condition-based maintenance (CBM) is a transition 

from a reactive to a proactive maintenance approach 

and has shown its effectiveness in a number of 

engineering domains. University of South Carolina 

CBM Center has developed and successfully 

demonstrated a number of advanced CBM techniques 

over the last 15 years. Implementing these CBM 

techniques for fleet maintenance in Navy must 

overcome additional challenges due to limited 

connectivity, data volume, and incompatibilities in 

data sharing.  

We described an extensible standards-based solution 

to address the key architectural challenges. Our 

solution relies on DDS and OSA-CBM standards, 

both of which have enjoyed success in the Navy. We 

presented two approaches to implement the OSA-

CBM data model using DDS. We discussed practical 

techniques to combine truly interdisciplinary research 

and reap the benefits for the Navy. 
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