

How to Remotely Monitor Systems with Time Series and DDS

Brett Murphy, Senior Director Market Development, Industrial IoT, RTI Kyoungho An, Senior Research Engineer, RTI

About the Viewer Panel

Technical problems?

- Click on the "Question Mark Symbol" on the upper right hand corner of your screen, where you will be directed
 to a list of system checks
- Send a question from the "<u>Ask a Question</u>" window. Individual technical questions will be answered in the "<u>Answered Questions</u>" on the left hand side of your screen

Slides:

- Click the four pronged arrow button at the top right corner of the slides to view an expanded window
 - Slides should change automatically
- Click on "<u>Download Webcast Slides</u>" under "<u>Event Resources</u>" for a PDF of all slides
 - Warning: The PDF will be a large file

Archive:

- Within 7 days, an archive with Q&A will be posted
- We will send an email to registered attendees with hyperlink
- Can also access from <u>www.controleng.com</u> home page

Speakers

Presenter: Brett Murphy, Senior Director of Market Development, IIoT, RTI

Presenter: Kyoungho An, Senior Research Engineer, RTI

Moderator: Mark Hoske, Content Manager, Control Engineering and CFE Media & Technology

Industrial IoT Systems run on RTI

Autonomous Vehicles/Transportation

Energy Aerospace & Defense

Software connectivity framework that delivers system resiliency, security, performance, scale and interoperability.

Foundational to over 1,200 systems.

Digital Transformation Maturity Matrix

Connext DDS Enables Advanced IIoT Systems

Impact	Major business transformation	Ride Hailing Platforms (e.g. Uber, LYFT)	Connected Supply Chain Building Information Management (BIM)	Autonomous Vehicle Fleet Systems
Business	New revenue streams, customer experience	Servitization (e.g. R-R) Predictive Maintenance Drone Inspections	Facilities Management (FM) Connected Vehicle Drone delivery	Smart Traffic Management Distribution Grid Management
	Efficiency, cost savings	Preventive Maintenance Energy Monitoring Performance Monitoring Asset Management Operations Analytics	Energy Management Asset Performance Management Remote Servicing/Operations SCADA/HMI MES/PES	'Lights-out' Production Remote Service and Repair HVAC Control
		Monitoring, reporting	Control	Autonomy

Connext 6: Platform for Distributed System Connectivity

Data Routing

Vata Persistence

Data Queuing

Recording & Replay

System Administration

System Introspection

System Manitoring

Database Integration

Web Integration

Spreadsheet Integration

3rd Party Integrations

Layered Databus for Edge to Cloud

- Widely used across advanced Industrial IoT systems
- Resilient, secure, fast, scalable

Connext DDS Resilience

- DDS controls the 6.8 GW Grand Coulee Dam
 - Largest power plant in North America
 - Fastest-responding major power source on the Western Grid
 - Requires 24x7 operation

- Connext DDS met the challenges
 - Extreme availability
 - Wide area communications
 - Multi-level routing
 - High security

Fault tolerance protecting against even minimal downtime

Connext DDS Security: A Demanding Test

- USS Secure cybersecurity testbed
 - Collaboration between the NSA, DoD, Navy, Naval Research, John Hopkins Univ APL, RTI
- Objectives
 - Immunize against cyberattack and to rapidly recover when impacted
 - Determine the best cyber-defense technologies without impacting real-time performance
- Results
 - Thumbs Up for RTI Connext DDS Security

Data secured end-to-end and access managed per user and application

Connext DDS Security: Unique Capabilities

- Beyond endpoint and network security, Connext uses DDS Security to secure the data streams individually
 - Better protects against malicious insider attacks and segregates data by user and application
- Connext provides seamless end-to-end data communication security
 - Works over any network and even between apps on one compute node
- Connext allows you to balance performance and security in the system

Connext DDS Performance

- The NASA Kennedy launch control is the world's largest single-system SCADA
- It combines 400k data points, at 500k msgs/sec

Low-latency, high throughput data comms

Connext DDS Scale

 Raytheon uses RTI middleware to control the new Zumwalt DDG 1000 destroyer The system connects hundreds of computers, 1,500 teams building thousands of applications, and more than 10m publish-subscribe pairs

Widely shared data and many applications integrated

Connext DDS Interoperability

- Open DDS
 Connectivity
 Standard
- Supports Data Models
- Provides Data Centric Modularity

IIoT Connectivity Stack Model

Semantic Interoperability (data context)

Syntactic Interoperability (data structures)

Technical Interoperability (bytes)

Open standards: software and device modularity, interchange and portability

Integration of RTI Connext DDS and InfluxDB

Telegraf Plugin for Connext DDS enables monitoring architecture with DDS and InfluxDB

Why did RTI decide to use the InfluxDB stack?

- Telegraf uses push-based metric collection, which is a better fit for DDS (event-based based pub/sub model)
- Many out-of-the-box plugins for system monitoring
- Mature and widely adopted open source technology with commercial offering/support

DDS and InfluxDB

DDS Terminology

Mapping of DDS and InfluxDB concepts

DDS is fully distributed and supports decoupled publish/subscribe communications

DDS is data-centric and supports content-based filtering

DDS can control data flows and resource usage

Volatility

Infrastructure

Quality of Service	Quality of service		
DURABILITY	USER_DATA		
HISTORY	TOPIC_DATA		
READER DATA LIFECYCLE	GROUP_DATA		
WRITER DATA LIFECYCLE	PARTITION		
LIFESPAN	PRESENTATION		
ENTITY FACTORY	DESTINATION ORDER		
RESOURCE LIMITS	OWNERSHIP		
RELIABILITY	OWNERSHIP STRENGTH		
TIME BASED FILTER	LIVELINESS		
DEADLINE	LATENCY BUDGET		
CONTENT FILTERS	TRANSPORT PRIORITY		

Presentation

Redundancy

Transport

DDS supports reliable delivery on top of UDP and multicast

DDS can deliver historical data for late joiners

Telegraf has many out-of-the-box input plugins and plugin APIs to easily extend

InfluxDB supports built-in time-series functions

InfluxDB integrates visualization tools such as Grafana and Chronograf

Telegraf Plugin for RTI Connext DDS

Telegraf Plugin for Connext DDS enables monitoring architecture with DDS and InfluxDB

How is the plugin implemented?

We used RTI Go Connector for developing Telegraf plugins

- RTI Go Connector is simplified API for DDS in Golang
 - Built on top of DDS C API
 - Very few methods
 - Experimental products developed by the RTI research team
 - Free!

https://github.com/rticommunity/rticonnextdds-connector-go

The DDS consumer input plugin is developed as a service input plugin

```
type ServiceInput interface {
  Input
  // Start the ServiceInput.
  Start(Accumulator) error
  // Stop stops the services and closes any necessary channels and connections
  Stop()
```

Initially, it creates DDS entities and a service thread

```
func (d *DDSConsumer) Start(acc telegraf.Accumulator) error {
   // Create a RTI Connector
   d.connector, err = rti.NewConnector(d.ParticipantConfig, d.ConfigFilePath)
   // Get a DDS reader
   d.reader, err = d.connector.GetInput(d.ReaderConfig)
   // Start a thread for processing DDS samples
   go d.process()
```

A service thread reads and processes DDS data samples

```
// Take DDS samples from a DataReader and ingest them to Telegraf outputs
func (d *DDSConsumer) process() {
        for {
                d.connector.Wait(-1) // Wait until a new DDS sample arrives
                d.reader.Take()
                                        // Take DDS samples
                numOfSamples := d.reader.Samples.GetLength()
                for i := 0; i < numOfSamples; i++ { // Iterate the DDS samples
                                json, err := d.reader.Samples.GetJSON(i) // Return a DDS sample
in JSON
                                metrics, err := d.parser.Parse(json) // Parse the JSON object
                                // Add metrics to an output plugin
```

How to use the plugin?

Creating an XML configuration file

```
<dds>
<!-- Data Types -->
<types>
    <struct name="ShapeType" extensibility="extensible">
        <member name="color" stringMaxLength="128" id="0" type="string" key="true"/>
        <member name="x" id="1" type="long"/>
        <member name="y" id="2" type="long"/>
        <member name="shapesize" id="3" type="long"/>
    </struct>
</types>
```

Creating an XML configuration file

Creating an XML configuration file

```
<!-- Participant library -->

<domain_participant_library name="MyParticipantLibrary">

<domain_participant name="Zero" domain_ref="MyDomainLibrary::MyDomain">

<subscriber name="MySubscriber">

<data_reader name="MySquareReader" topic_ref="Square"/>

</subscriber>

</domain_participant>

</domain_participant_library>

</dds>
```

Creating a TOML configuration file

```
[[inputs.dds_consumer]]
# XML configuration file path
config_path = "example_configs/ShapeExample.xml"

# Configuration name for DDS Participant from a description in XML
participant_config = "MyParticipantLibrary::Zero"

# Configuration name for DDS DataReader from a description in XML
reader_config = "MySubscriber::MySquareReader"
```

Creating a TOML configuration file

```
# Tag key is an array of keys that should be added as tags.
tag_keys = ["color"]

# Override the base name of the measurement
name_override = "shapes"

# Data format to consume.
data_format = "json"
```

Demo

Shapes Demo

- Telegraf Input Plugin for RTI Connext DDS
 - Delivering historical data for late joiners
 - Content-based filtering

Thank you!

rti.com
Free trial of Connext DDS

rtisoftware

@rti_software

connextpodcast

@rti_software

rti.com/blog

Submitting Questions, Exit Survey and Archive

Questions?

Type your question in the "Ask a Question" box on the Webcast Console and click "Send." We will get to as many questions as we have time for. Questions that are for today's presenters will be answered verbally during the Q&A session.

Exit Survey:

Please take a moment to answer a few questions on our exit survey that will pop up on your screen at the conclusion of the webcast. We use the answers to help make improvements to our webcast program.

Archive:

- Within 7 days, an archive with Q&A will be posted
- We will send an email to registered attendees with hyperlink
- Can also access from the <u>controleng.com</u> home page

Speakers

Presenter: Brett Murphy, Senior Director of Market Development, IIoT, RTI

Presenter: Kyoungho An, Senior Research Engineer, RTI

Moderator: Mark Hoske, Content Manager, Control Engineering and CFE Media & Technology

How to Remotely Monitor Systems with Time Series and DDS

Brett Murphy, Senior Director Market Development, Industrial IoT, RTI Kyoungho An, Senior Research Engineer, RTI