
DDS Based High Fidelity Flight Simulator

Shupeng Zheng, Jingfeng He, Jun Jin, Junwei Han
School of Mechatronics Engineering

Harbin Institute of Technology
Harbin, China

e-mail: hitzsp@163.com

Abstract—The real-time distributed computing environment
and reusable software architecture are important factors that
affect the fidelity of flight simulation. We accomplished a
flight simulator based on DDS (Data Distribution Service for
Real-time Systems) middleware and structural software
architecture and proved its high fidelity as a flight training
device. According to the analysis of flight simulator’s
functional blocks, we developed the real-time distributed
computing environment which utilized DDS middleware
through Ethernet and decreased the communication latency
among functional blocks. Furthermore, we proposed the
structural software architecture on the basis of layered and
component-based design pattern to facilitate the higher
simulation components’ reuse and replacement. The real-time
communication procedures among simulation components are
also described in this paper. The validation method and the
contrasting simulation results are presented finally to show the
feasible design based on DDS to carry out flight simulation
with low communication latency and high quality.

Keywords-DDS; distributed computing; software
architecture; flight simulation

I. INTRODUCTION
The aim of flight simulation is to produce and control

animated images, sound reproduction, and device feedback
in a manner as realistic and responsive as the real flight, and
chasing this ideal has constantly pushed the flight simulator
study forward in many different ways. Individual simulators
have adopted techniques such as multi-processor systems,
high performance graphics cards and distributed sensors and
actuators to approach the desired objective.

Increasingly, flight simulator consists of many different
high performance processing sub-system units that need to
communicate in real time. And as flight simulator gets larger
and more distributed the performance issues of latency and
system bottlenecks are becoming ever more important in
maintaining the simulation experience. A further issue is the
critical need to ensure better simulation models in
application software can be reused effectively across various
types of flight simulator. The combination of these vital but
difficult issues is driving the need for more formalized
software architecture and a growing move towards
commercial off the shelf (COTS) middleware adoption [1].

High level architecture (HLA) [2] has emerged as a
widely adopted middleware standard for simulator-to-
simulator connectivity and data sharing. But, unfortunately,

the HLA wasn’t designed to provide the speed and detailed
control of real-time performance required by flight simulator
that need consistently low latencies [3]. However, there is
another middleware standard that provides a much better fit
for the real-time requirements of flight simulator. The OMG
Data Distribution Service (DDS) [4] is a data oriented
middleware optimized for hard real time systems with the
low latency and quality of service capabilities to provide the
required speed and level of control of real-time performance
built in.

Considering advantages of developing flight simulator
based on DDS, we built an experimental Boeing 737-800
flight simulator. The simulation models and executable code
in the simulator are designed as components with well-
defined, source-level language independent interfaces which
communicate through the DDS middleware on a PC cluster,
thus composed a man-in-the-loop real-time distributed flight
simulation system. By this means, the flight simulator
becomes ease of maintenance, ease of development, and
ease of reusability while the fidelity of the simulator is
improved. This paper describes our work and shows the
character of DDS based flight simulator.

II. CORE FEATURES OF DDS
At the core of DDS is the DCPS (Data Centric

Publish/Subscribe) model, whose specification defines
standard interfaces that enable applications running on
heterogeneous platforms to write/read data to/from a global
data space in a distributed real-time system. Applications
that want to share information with others can use this global
data space to declare their intent to publish data that is
categorized into one or more topics of interest to
participants. Similarly, applications that want to access
topics of interest can also use this data space to declare their
intent to become subscribers. The underlying DDS
middleware propagates data samples written by publishers
into the global data space, where it is disseminated to
interested subscribers [5]. The DCPS model decouples the
declaration of information access intent from the
information access itself, thereby enabling the DDS
middleware to support and optimize QoS enabled
communication. As shown in Fig. 1, a canonical DCPS
model is comprised of the following elements that provide
functionalities for a DDS application to publish/subscribe to
data samples of interest.

2009 WASE International Conference on Information Engineering

978-0-7695-3679-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIE.2009.61

548

Figure 1. Architecture of DDS

DataWriter and Publisher: A DataWriter is the actual
object used to send data samples, and is always associated
with a particular Topic. A publisher is used as a factory to
create and manage a group of DataWriters with similar
behavior or QoS policies.

DataReader and Publisher: A DataReader is the actual
object used to receive data samples, and is always associated
with a particular Topic. A subscriber is used as a factory to
create and manage data readers.

Topic: A Topic consists of a data type and a name, and it
connects a DataWriter with a DataReader. Data samples
start flowing only when the Topic associated with a
DataWriter matches the Topic associated with a DataReader.

Fig. 2 shows DDS capabilities that make it better suited
than other standard middleware platforms. Fig. 2 (A) shows
that DDS has fewer layers in its architecture which
significantly reduces latency and jitter. The ability to specify
quality of service parameters for each individual node or
data flow is an important feature of DDS. There are Over 20
QoS categories which are supported by DDS, Fig. 2 (B)
shows some DDS supplied QoS properties, such as the depth
of the ‘history’ included in updates, the maximum latency of
data delivery, the degree and scope of coherency for
information updates, the reliability of data delivery, etc.

These properties can be configured at various levels of
granularity (i.e., Topic, Publishers, DataWriter, Subscribers,
and DataReader), thereby allowing application developers to
construct customized contracts based on the specific QoS
requirements of individual entities. The DDS middleware is
responsible for determining whether QoS parameters offered
by a publisher are compatible with those required by a
subscriber, allowing data distribution only when
compatibility is satisfied.

(a) Fewer layers in DDS (b) DDS QoS policies

Figure 2. Optimizations and QoS Capabilities of DDS

III. DDS BASED FLIGHT SIMULATOR SET-UP
Based on the DDS middleware used through Ethernet,

we developed the flight simulator with six relevant sub-
systems which run on the separate host computers. As

indicated in Fig. 3, control loading system acquires pilot
inputs and gives the force feedback to the pilot, flight system
calculates the aircraft movements, avionics system
incorporates the instruments and display logic, visual cueing
system drives the image generator to reproduce the flight
environment, and audio cueing system reproduces sound
information. The instructor station is in charge of the
pedagogical aspects of flight simulation. By using DDS
middleware, each component of the sub-system publishes
and subscribes data as indicated by arrows. The
representative data elements distributed among components
are elevator and rudder position (1a), aileron displacement
(1b), flight training instruction (2) and aircraft state (3), etc.

Ethernet

DDS

control loading system visual cueing system

flight system avionics system

stick &

aero landing ...
dynamic gear ND PFD...

elevator rudder... visual

IG

data
acqui-

instructor station

...

audio cueing system

throttle

1a, 1b

1a, 1b 3

3 3

33 2

sition

DDS DDS

DDS DDS DDS

Figure 3. DDS based flight simulator set-up

IV. SIMULATOR CONSTRUCTION
According to the set-up of flight simulator, we utilize the

layered and component-based design patterns to construct a
component based software architecture for flight simulator.
For the sake of convenience to reveal the architecture and
prepare for the next section to implement subsystem, we
choose the flight system on this typical route to describe the
building process.

Fig. 4 describes the function blocks of the flight system
which are enclosed in the dash frame. The flight system is
mainly composed of equation of motion, aerodynamic block,
landing gear block, weight block and atmosphere block, etc.
After received the rudder, flap position, landing gear
position, and C.G. position from environment models, it will
execute simulation computing following the instruction from
instructor station and output the computing results to cueing
systems. Wang Xinren [6] described the detailed
mathematical model for each function block. In the
following sections, the software architecture, data model and
DDS based communication method for the flight system will
be described in detail.

Flight
control

Hydraulic
system

Engine

Fuel

IOS

Aerod-
ynamic

Equation
of

motion

Landing
gear

Weight

Turbulence

Atmosphere

Ice

aerodynamic

landing forceflight parameters
aerodynamic

data
rudder

thrust

weight
C.G. position

inertia

instruction

temperature

ice weight

brake pressure
turning angle Avionics

Visual

Engine

Navigation
Force

feedback

flap, landing gear
position

 pressure

force
moment

flight
state

flight parameters

Figure 4. Function blocks of the flight system

549

A. Software Architecture
Flight simulator typically comprises tens of thousands of

lines of code for the simplest training simulation, even over
millions of lines of code for complex, high fidelity training
simulation. In order to decrease the software development
difficulty and achieve function block re-use, we proposed
the structural software architecture on the basis of
component technology. Fig. 5 shows the four main elements
within the software architecture on the flight system
simulation node: flight simulation components, the
container, DDS middleware services, and the real-time
scheduler.

Components manage the simulation algorithms and data
flows that control the process. Components are strongly
encapsulated objects that provide language-independent,
opaque interfaces. Each component has three interfaces:
input, update and output, separately carries out parameter
input, executes simulation algorithm at a particular rate and
parameter inputs.

The container is the real-time running environment for
components. It provides PortConnector object to facilitate
communication among components or outer simulation
nodes. Besides that, a real-time scheduler is included in the
container which controlles the application level threads, the
container level thread and middleware level threads execute
with appropriate priorities. The desired real-time behavior of
simulation components can be achieved by static priority
scheduling algorithm.

The DDS middleware will provide class libraries from
which the container communication objects can be created.
Publisher, DataWriter, Subscriber and DataReader are DDS
service brokers in the container which publish or subscribe
data for components.

output

update
input

PortConnector
writecomp

write

Publisher
suspend_publictions

resume_publictions

DataReader
read

readsub

Subscriber
notify_datareaders

PortConnector
readcomp

input update

output

writecomp
PortConnector

writepub

readcomp

DDS middleware

scheduler

component

container

...

DataWriter

AeroDynamic LandingGear

Figure 5. Flight system simulation software architecture

B. Data Models
According to the software architecture for the flight

system simulation, we should at first model the
publishing/subscribing data among simulation components.
Data models are described by OMG IDL to achieve the good
platform independence. For example, aerodynamic
component in the flight system needs to input rudder angle,
aileron angle, elevator angle and angle of stabilizer settings

from control loading system, so the designed Aero_Con
topic is as follows:

module FlightSys{
typedef double Aileron_Angle[2];
typedef double Elevator_Angle[2];
struct Aero_Con{
 long nodeID;
double dRudder_Angle;
 Aileron_Angle dAileron_Angle;
 Elevator_Angle dElevator_Angle;
 double dStabilizer_Angle;
};
#pragma keylist AeroRudAngl nodeID
};

C. Implementation of Real-time Communication among
Components
After finished the definition of system’s data model, the

control loading system follows the next five steps to publish
Aero_Con topic, the sequence diagram for topic publication
is illustrated by Fig. 6:

1) Register data types to the DDS middle:
FltSys_Aero_ConTypeSupport_register_type(Domain-

Participant domain, string type_name);
2) Create publisher:
DomainParticipant_create_publisher(PublisherQos qos,

PublisherListener a_listener);
3) Create topic:
DomainParticipant_create_topic(string topic_name,

string type_name, TopicQos qos, TopicListener a_listener);
4) Create DataWriter:
Publisher_create_datawriter(Topic a_topic,

DataWriterQos qos, DataWriterListener a_listener);
5) Write data samples to the topic:
DataWriter_write(Data instance_data);

Control
loading DomainParticipant

Publisher

create_publisher

create_action

create_topic

create_datawriter

write

“ notify_data”

DataWriter

Topic

Figure 6. Sequence diagram for topic publication

Accordingly, the aerodynamic component follows the
next three steps to subscribe Aero_Con topic, the sequence
diagram for topic subscription is illustrated by Fig. 7:

1) Create subscriber:
DomainParticipant_create_subscriber(SubscriberQos

qos, SubscriberListener a_listener);
2) Create DataReader:
Subscriber_create_datareader(TopicDescription a_topic,

DataReaderQos qos, DataReaderListener a_listener);
3) Read data samples from the topic:

550

DataReader_take(DataSeq data_values);
AeroDynamic DomainParticipant

Subscriber

create_subscriber

create_action

DataReader

DataReaderListener

create_action

create_action

set_listener

data_available
“ notify_data”

“ make_available”

Figure 7. Sequence diagram for topic subscription

V. EXPERIMENTS AND PERFORMANCE VERIFICATION
The communication latency from control loading system

to flight system is measured by sending a timestamp
together with the data flow and calculating the difference in
time between this time stamp and the time the topic sample
is received. We choosed thirteen topics which are subscribed
from the control loading system as test objects and
employed OpenSplice Ver 3.4 [7] as the DDS middle. The
comparing communication latency test result with HLA
middle-DMSO RTI1.3 NG [8] is showed in Fig. 8. It can
figure out from the result that the DDS based
communication latency between above-mentioned sub-
systems is stabilized around 100μs which is much lower
than HLA.

0

100

200

300

400

500

600

700

800

900

4 10 17 21 23 32 34 47 93 97 103 204 312
Data size (byte)

Co
m

m
un

ic
at

io
n

la
te

nc
y

(µ
s)

DDS based

HLA based

Figure 8. Communication latency between control loading system and

flight system

Fig. 9 is a typical simulation about a normal taking off
under some special conditions. The input commands are
generated by a qualification test program which complies
with Airplane Simulator Qualification [9].

Figure 9. Elevator angle vs. A/C altitude during taking off

This figure describes a pilot pulled the wheel at 35th
second to make the elevator to a negative degree, and then
the pitch angle increasing, the aircraft began climbing. In
this process, the simulation conformed to the flight test
strictly. It indicated that the states of the A/C are in the
tolerance defined by the Airplane Simulator Qualification.
Other simulations such as cruise, landing and so on all had
the same good performance and all conformed to the flight
tests. Hence, the flight simulator had enough fidelity as a
training device.

VI. CONCLUSION
In this paper, the real-time distributed computing

environment and reusable software architecture for the flight
simulator based on DDS are presented. The communication
latency and typical flight’s taking off simulation results
under some special conditions are testified to prove the
design methods improve the fidelity of flight simulator. The
real-time distributed computing environment design based
on DDS decreases the communication latency between flight
simulator’s sub-systems and speeds up the construction of
flight simulator. And the reusable simulation architecture is
intended to ease the modification of the simulator as better
models become available or additional elements are included
in the future, such as adding various wind models, more
malfunction models and logic functional models.
Meanwhile, the flexibility of this simulation architecture
may afford help for flight dynamic and control analysis task.
The methods simultaneously provide an efficient
construction route for other real-time distributed simulation
systems.

REFERENCES

[1] Morris, A. Terry, “COTS Score: An Acceptance Methodology for
COTS Software”, Proc. Digital Avionics Systems Conf, IEEE Press,
2000, pp. 4B2/1-4B2/8 vol.1, doi:10.1109/DASC.2000.886948.

[2] Simulation Interoperability Standards Committee (SISC) of the IEEE
Computer Society, IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)-IEEE Std 1516-2000,1516.1-
2000,1516.2-2000, Institute of Electrical and Electronics Engineers,
Inc., New York, 2000.

[3] A.J.J. Lemmers, P.J. Kuiper and F.R. Verhage, “Performance of a
Component-based Flight Simulator Architecture Using the HLA
Paradigm”, AIAA Modeling and Simulation Technologies
Conference and Exhibit, Monterey, California, USA, AIAA 2002-
4476, 2002.

[4] OMG, “Data Distribution Service for Real-time Systems
Specification”, OMG, www.omg.org/docs/formal/07-01-01, 2007.

[5] Gerardo Pardo-Castellote, “OMG Data Distribution Service:
Architectural Overview”, Proc. Distributed Computing Systems
Workshops, IEEE Press, 2003, pp. 200-206, doi:
10.1109/ICDCSW.2003.1203555.

[6] Wang Xinren, Jia Rongzhen, Peng Xiaoyuan, and Feng Qin, Flight
Real-time Simulation System and Technology, Press of Beihang
University, Beijing, 2003.

[7] PrismTech Limited., DDS Version 3.4 C++ Reference Guide,
PrismTech Solutions Americas, Inc., MA, USA, 2008.

[8] SAIC, RTI-NG 1.3 V3.2 Release Notes, Science Applications
International Corp, 2000.

[9] Federal Aviation Authority, Airplane Simulator Qualification,
Advisory Circular (AC) 120-40C, 1995.

551

