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ABSTRACT 

In industrial automation systems, there is usually large volume of data which needs to be 

delivered to right places at the right time. In addition, large number of nodes in the 

automation systems are usually distributed which increases the complexity that there needs 

to be more point-to-point Ethernet-connections in the network. Hence, it is necessary to 

apply data-centric design and reduce the connection complexity. Data Distributed Service for 

Real-Time Systems (DDS) is a data-centric middleware specification adopted by Object 

Management Group (OMG). It uses the Real-Time Publish-Subscribe protocol as its wiring 

protocol and targets for mission- and business-critical systems. The IEC 61499 Standard 

defines an open architecture for the next generation of distributed control and automation 

systems. This thesis presents the structure and key features of DDS and builds a model of 

real-time distributed system based on the IEC 61499 Standard. Then a performance 

evaluation of the DDS communication based on this model is carried out. The traditional 

socket-based communication is also evaluated to act as a reference for the DDS 

communication. The results of the evaluation mostly show that DDS is considered as a good 

solution to reduce the complexity of the Ethernet connections in distributed systems and can 

be applied to some classes of industrial automation systems.  
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NOTATIONS 

Symbol Explanation  

 

OMG  Object Management Group 

IEC  International Electrotechnical Commission 

DDS  Data Distribution Service for Real-Time Systems 

GDS  Global Data Space 

RTPS      Real-Time Publish-Subscribe 

SIFB  Service Interface Function Block 

DDSI  Data Distribution Service Interoperability protocol 

DCPS  Data Centric Publish-Subscribe 

DLRL                Data-Local Reconstruction Layer  

QoS  Quality of Service 

RTT  Round Trip Time 

JMS  Java Messaging Service 

IDL  Interface Definition Language      

PIM   Platform Independent Model  

PSM  Platform Specific Model  
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Chapter 1  

INTRODUCTION 

1.1 Introduction 

In large scale industrial automation and control systems, a large number of controllers 

are usually distributed and connected with each other by an Ethernet-based network. The 

nodes in the network may share control data and interact with each other from different 

network hierarchy, including higher level operator stations. The inter-dependencies between 

these nodes may potentially create a complex architecture of the network in the distributed 

system especially if the point-to-point connection needs to be established. Moreover, most 

industrial automation systems need to be engineered with redundancy schemes, such as hot 

standby.  The software components are duplicated on different nodes when the hot standby is 

used, which further increases the complexity of the network connections in the system. 

Publish-subscribe model shows some appealing properties [1], such as connectionless and 

multicast, that can be used to reduce some of the visible complexity in the software systems.   

DDS [2] is an open specification of data-centric middleware defined by OMG to 

standardize the real-time publish subscribe communication model. This specification is 

designed to address the mission- and business- critical systems and has been widely used in 

both commercial and administrative field, including US Navy, EuroControl, etc. Some 

properties of DDS suggest the possibility to be used in the communication of the industrial 

distributed control systems. 

It is essential to consider the applicability when introducing a new communication 

strategy in industrial distributed control systems. Communication strategy that is applicable 

to an international standard could be widely adopted by different vendors and users. IEC 

61131 [3] and 61499 [4] are international standards for industrial automation. This work will 

focus on IEC 61499. 

The IEC 61499 Standard defines an open architecture for the next generation of 

distributed control and automation systems. This standard provides component model with 

the basic unit function block, which has separate event and data interfaces. Based on function 

block, a system can be assembled by network of function blocks. IEC 61499 also defines some 

special function blocks to provide special services. For example, communication Service 

Interface Function Block (SIFB) is defined to achieve communication between different 

applications [4].  IEC 61499 is already used in quite a few products and there are some tools 

to develop IEC 61499 compliant applications.   

This work would focus on apply DDS to an IEC 61499 compliant model. 

1.2 Objective 

This work focuses on applying DDS in the context of IEC 61499. The specific objectives 

are to: 1) present the structure and key feature of DDS, 2) map node-to-node communication 
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in IEC 61499 to the DDS real-time publish-subscribe model including mapping timing 

requirements to QoS attributes of the publish-subscribe model, and 3) evaluate the 

performance of DDS communication while comparing it with the more traditional socket-

based Ethernet communication. 

1.3 Problem Formulation 

As the industrial distributed control systems are usually large systems consisted of 

thousands of nodes deployed from different location, the communications between the nodes 

in the systems could be very complicated. For example the traditional socket-based Ethernet 

communication requires point-to-point connection, which is complex and the complexity 

could raise deployment risk during integration. It would be very interesting if a solution can 

be found to simplify the connections and at the same time maintain the performance of the 

systems.  

Therefore, this thesis focuses on exploring the communication styles and tries to 

evaluate and find a solution that can simplify the communication and at the same time 

maintain the performance of the system. 

1.4 Outlines 

The outline of this thesis is as follows: Chapter 2 describes the background of DDS and 

IEC61499 Standard. Chapter 3 presents some related work. Chapter 4 explains the mapping 

of IEC 61499 communication to DDS as well as the QoS. Chapter 5 explains the test setups 

and the performance evaluation is given in Chapter 6. In Chapter 7, conclusions will be 

drawn and Chapter 8 discusses about the future work. 
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Chapter 2  

BACKGROUND 

This Chapter gives the background of IEC 61499 Standard and RTPS protocol. As a new 

enabling technology, DDS is introduced in detail including: structure, core entities, key 

features and footprint. 

2.1 Background on IEC61499 Standard 

As an international standard for industrial control and automation systems, IEC 61499 

is consisted of 4 parts. Part 1 is about architecture, which defines the models and provides the 

declaration, configuration, usage and management of function blocks. Part 2 is about 

software tool requirements, which specifies the requirements of software to support IEC 

61499 Standard. Part 3 gives some tutorial information to help users understand and use the 

standard by examples. Part 4 defines the rules for the compliance profile like the 

interoperability and portability [4].   

The IEC 61499 Standard provides reference models for systems, devices, resources, 

applications, function blocks, distribution, managements and operation states.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of IEC 61499 Basic Function Block (see [4])  

Function block is the key definition of IEC61499 Standard, as it is the basic unit of a 

distributed control system. Function block is defined to be a functional unit of software which 

can be connected to other function blocks to make up an application. IEC 61499 defines two 

types of function blocks, basic function block and composite function block. A composite 
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function block is consisted of several other function blocks. Network of function blocks can 

be assembled to be an application and applications can be assembled to a distributed system. 

Figure 1 shows the structure of basic function block. The function block separates event 

and data inputs. When the function blocks are assembled to application, the application can 

have separate event and data flow. However, each event is associated with none or more data. 

Each function block has algorithms that can be triggered by the events and are used to 

compute the output based on the input. These algorithms can be defined by Structural Text, 

C++ or Java, depending on which development tool is used. 

Some special function blocks – Service Interface Function Blocks (SIFBs) are defined to 

provide services. A SIFB is a function block that provides services to an application, which is 

based on a mapping of service to the function block’s event and data input/output. There are 

two types of SIFB: the communications SIFBs are used to define communication while the 

management SIFBs are defined for management of applications and behaviours of functions. 

There are already some IEC 61499 compliant development environments, like Function 

Block Development Kit (FBDK) [5], FBench [6], 4DIAC [7]. Most of them provide 

development of function blocks with separate event- and data-flow in C++ or Java and 

programming of algorithms using C++, Java or Structural Text. However, they still need 

more documentation and flexibility about these tools.  

2.2 Real-Time Publish-Subscribe Protocol 

This section talks about the existing communication styles and addresses the strength of 

Real-Time Publish Subscribe Protocol.  

2.2.1 Existing Communication Styles 

In distributed systems, there are different communication styles according to different 

purpose and requirements. Most of the distributed systems can be viewed as independent 

components but interact with each other using communication styles like client-server, 

publish-subscribe, peer to peer, service oriented style, etc. [8]. 

Client-server style [9]. Information for the client-server style is usually managed and 

exchanged centrally. The communication is usually achieved by request from the client to the 

central server with explicit connection. Figure 2 shows the connection of client-server style. 

 

 

 

 

 

  Figure 2. Client-server style 

Peer-to-peer style [9]. Different from client-server style, peer-to-peer establishes 

connection between clients without central server. Every node in the network can offer and 

consume information. In addition, any node can join or leave the network at any time. Since 

no central server used, it avoids single point of failure. Figure 3 shows the connection of pure 

peer-to-peer style. There is also some combination between peer-to-peer network and client-

server.  
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Figure 3. Pure peer-to-peer style 

Publish-subscribe style [9]. The styles above are both based on explicit connections. 

Alternatively publish-subscribe style uses an implicit invocation mechanism which is a many-

to-many network. The nodes (publishers/subscribers) are associated to each other by run-

time events (topics) and this is called subscription. Many publish-subscribe systems use an 

intermediate broker to realize this subscription. The communication between associated 

publishers and subscribers can happen when this event takes place. Figure 4 shows the 

structure of the publish-subscribe style. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Publish-subscribe with broker  

        All of these communication styles have their own pros and cons when applied to a 

specific field. Sometimes a combination between them could be a fair solution for a particular 

problem. However client/server based socket communication is the most common choice in 

industry; especially the TCP based socket communication, which can establish a reliable 

communication.  

2.2.2 Real-Time Publish Subscribe Protocol 

The Real-Time Publish Subscribe (RTPS) protocol [10] is a part of the Real-Time 

Industrial Ethernet Suite IEC-PAS-62030 approved by IEC. This protocol has been widely 

used in thousands of industrial applications. The RTPS Wire protocol is mainly composed 

with the publish-subscribe protocol and Composite State Transfer (CST) protocol. The 

publish-subscribe protocol transfers data, while the CST transfers state. 
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The RTPS protocol aims to run over connectionless best-effort transport with support of 

multicast such as UDP/IP. It supports the unique requirements of data-distribution systems. 

Compared with traditional publish-subscribe, there are more real-time requirements on it. It 

is specified in both a Platform Independent Model (PIM) and a set of Platform Specific Model 

(PSM), which indicates that RTPS can run on different transport platform. The main features 

of RTPS are listed below: 

• Performance and QoS properties: RTPS properties support RTPS to be run on both 

reliable and best-effort communications. The QoS policies give the users the flexibility to 

specify and control the communication behaviours.   

• Fault tolerance: This property ensures the robustness of the system and avoids single 

points of failure. 

• Extensibility: Some parts of the RTPS protocol can be extended. 

• Plug-and-play connectivity: All the nodes can join or leave the network at any place 

and time.  

• Scalability: Due to the connectionless and dynamic discovery properties, the system 

can easily be scaled to large number of nodes. 

These properties of RTPS perfectly meet the requirements of DDS wire-protocol [10].  

2.3 Background on DDS 

DDS, as a publish-subscribe middleware standard was approved by OMG in 2003 and in 

the past a few years, it has been improved and enhanced. Nowadays, it has already been used 

in both commercial and administrative applications. DDS defines a programming model of 

RTPS protocol for distributed systems and has been implemented by several different 

vendors according to different applications. 

2.3.1 DDS Standard 

The OMG DDS defines a programming model including a wire protocol and a set of 

standard APIs. This standard includes the DDS Interoperability Wire Protocol [10] and DDS 

API [2]. Figure 5 shows the structure OMG DDS standard. The current working version of 

DDSI is 2.1 and the DDS API version is 1.2. However, DDS API Version 1.3 is now under 

revision [11]. 

The DDS Interoperability Wire Protocol Specification (DDSI) defines the 

interoperability protocol for DDS. DDS uses RTPS protocol as an underlying data transport 

protocol and all vendors of DDS follow this wire protocol, which ensures that different 

vendors’ implementations of DDS can interoperate. 

The DDS API standard provides the standard interface between DDS and applications. 

This standard ensures the source code portability between different vendor implementations. 

Currently OMG provides the standard DDS API interface in C, C++ and Java languages. 

Lower level Data-Centric Publish-Subscribe (DCPS) is intended for efficient delivery of 

information. DCPS minimizes the need for data copy and dynamic resource allocation, which 

is predictable and efficient. Actually this layer defines all the activities for DDS 

communication, for example, defining topics, creating publisher/subscriber entities, 

writing/reading data, etc.  

Optional higher-level Data-Local Reconstruction Layer (DLRL) provides more direct 

access to the exchanged data and simpler integration with the local language constructs. 

NDDS from Real-Time Innovations [12] and Splice from Thales Naval Nederland [13] are 
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commercial implementations implemented not only the DCPS, but partially DLRL as well, 

though no standardized interfaces are provided [10]. 

The light-weighted UDP/IP is used as a transport for DDS as it has the following 

characteristics: universal availability, best-effort, connectionless, predictable behaviour, 

scalability and multicast support. Although DDS can also be implemented using other 

transport platform, it is supposed to work best over UDP/IP [10]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. OMG DDS standard structure 

2.3.2 Core Entities of DDS 

Figure 6 shows the global view of a DDS system with 3 domain participants and two 

topics. It shows almost all the important entities of DDS, such as data writer, data reader, 

publisher, subscriber, etc. 

 

 

 

 

 

 

 

 

 

 

Figure 6. OMG DDS global view 
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Global Data Space (GDS) [2]: GDS is an abstraction of data space where all the data can 

be stored. Applications who want to publish or modify the data need to be publisher and who 

want to receive and use the data need to be subscriber. There are different domains in the 

GDS and each domain can be further divided into different partitions logically. Domains 

between themselves are isolated, so an entity (like topic) can only be in one domain, but can 

appear in several partitions. The GDS needs to be fully distributed so as to avoid single points 

of failure for the systems. 

Domain participant [2]: A domain participant is a representation of membership of the 

application in the domain, while a domain is a concept that links all the applications together 

so that they could communicate. Domain participant is the container for all other entities and 

isolates applications from each other when there are multiple applications running on the 

same node. 

Publisher and data writer [2]: A publisher is defined to be an object for data 

distribution which publishes data into the GDS. But publisher itself could not do that, it can 

only publish data using data writer. Data writer is always associated with a publisher. A 

publisher may contain different typed data writers to publish different data types. 

Subscriber and data reader [2]: A subscriber is defined to be an object to receive data 

from the GDS. It could not directly access the data as well, so it has to receive data via data 

reader. Data reader is always associated with a subscriber. A subscriber may have many 

different data readers. 

Topics [2]: A topic is defined to be the object to associate publishers and subscribers and 

it is usually consisted of a unique name, a data type and a set of QoS. Only when a subscriber 

is subscribed to the same topic that a publisher has published, the message can be written by 

the data writer or read by the data reader. Besides, another requirement is that the QoS of the 

publisher and subscriber needs to be compatible.  

QoS [2]: Every entity of the DDS has a set of QoS, so the endpoints of the 

communication can only communicate when they have compatible QoS configuration. DDS 

provides a rich set of QoS policies, ranging from data availability, data delivery, data 

timeliness to resources and configuration.   

Overall, DDS is designed to be scalable and configurable with a rich set of QoS for real-

time distributed systems. 

2.3.3 Key Features of DDS 

As a networking middleware, DDS provides a model for sending and receiving messages, 

events and commands in the network. The key features [10] are presented as below: 

Data-centric middleware. DDS is a data-centric middleware and a fully distributed GDS 

is adopted to store the data. Thus DDS could improve the communication time and avoid 

single point of failure. 

Connectionless. DDS utilizes the real-time publish-subscribe protocol, which is 

connectionless. Thus there is no need to establish point-to-point connection in the network. 

Compared with traditional point-to-point connection, DDS requires low cost to integrate a 

large system. 

Automatically discovery. With DDS, the nodes in the network are anonymous to each 

other, so they can join or leave the network at any time. Subscribers for the application can 

subscribe to a topic at anytime and anywhere.  

Explicit model. For applications it is not necessary to know the communication 

mechanism of the DDS, as DDS will handle message packing, delivery, unpacking, etc.  



 

9 

Interoperability. DDS is a standard model with interoperability and the interoperability 

is achieved via the standard DDS API, the RTPS wire protocol and the QoS. The RTPS wire 

protocol is essential to the interoperability of DDS as it specifies the important aspects of 

DDS, including dynamic discovery, platform independence, etc. The standard DDS API 

ensures the portability between DDS middleware and the application, while the QoS provides 

different configurations of QoS to fulfill different requirements [14]. Over all, these three 

aspects define all the necessary parts of the standard and ensure the interoperable 

implementation of DDS. With this feature, the users can easily choose different 

implementation from different vendors. 

Rich set of QoS policies. DDS provides a rich set of QoS, with which users can specify 

and control the behavior of the communication. The QoS policies can be configured to all 

DDS entities like publisher, subscriber, data writer, data reader, topic and so on.  The DDS 

communication can only be established when the QoS configurations are compatible between 

the publisher and subscriber. In fact, the QoS policy follows the subscriber-requested, 

publisher-offered pattern. Table 1 shows the supported QoS policies. These QoS parameters 

show concerns to different aspects of DDS, including data delivery, data availability, data 

timeliness, configuration and resources. 

Table 1. Supported QoS polices (see [2]) 

QoS Policy Meaning Concerns  RxO Changeable  

USER_DATA User data not known by middleware, 

but distributed by built-in topics 

DP, DR, DW No Yes 

TOPIC_DATA Topic  

GROUP_DATA Publisher, 

Subscriber 

DURABILITY Defines whether to keep the data 

samples for late-joining data reader 

or not. 

Topic, DR, 

DW 

Yes No 

DURABILITY_ 

SERVICE 

Configuration of the durability 

service 

Topic, DW No  No 

LIFESPAN The maximum valid duration of  an 

data instance 

Topic, DW N/A Yes 

HISTORY Determines whether to deliver the 

most recent value or all the 

intermediate changes 

Topic, DR, 

DW 

No No 

DEADLINE Write or receive a new sample at 

least once every deadline period 

Topic, DR, 

DW 

Yes  Yes 

LATENCY_ 

BUDGET 

Specifies the maximum acceptable 

delay that the from the data written 

until received by data reader 

Topic, DR, 

DW 

Yes Yes 

TRANSPORT_ 

PRIORITY 

Hint to set the priority of the 

underlying transport 

Topic, DW N/A Yes 

OWNERSHIP Decides whether and how multiple 

data writers are allowed to modify an 

Topic, DR, 

DW 

Yes  No 
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instance. 

OWNERSHIP_ 

STRENGTH 

Specifies the value of the strength to 

arbitrate which data writer to modify 

the instance. 

DW N/A  Yes 

LIVELINENESS Determines whether an entity is still 

active 

Topic, DR, 

DW 

Yes No 

PRESENTATION Specifies how to present the change 

of instance to subscribers 

Publisher, 

subscriber 

Yes No 

PARTITION Logical partition of the topics Publisher, 

Subscriber 

No Yes 

RELIABILITY  Specify the level of reliability Topic, DR, 

DW 

Yes No 

DISTINATION_ 

ORDER 

Determines the logical order of the 

changes made to the instance 

Topic, DR, 

DW 

Yes  No 

RESOURCE_ 

LIMITS 

Specifies the resource available to be 

consumed 

Topic, DR, 

DW 

No No 

TIME_BASED_ 

FILTER 

To specify the interest of a particular 

subset of the data instances 

DR N/A  Yes   

 

       These QoS parameters mainly focus on the following aspects: data availability, data 

delivery, data timeliness, resources and configuration.   

2.3.4 Footprint of DDS Implementations        

There are quite a few DDS implementations from different vendors. Among them are 

Real-Time Innovation (RTI), PrismTech [15] and Twin Oaks [16], who have implemented 

DDS and used it for commercial purposes. PrismTech also offers an open source version of 

their implementation, OpenSplice DDS Community, which will be used in the performance 

evaluation of this paper. 

DDS has been implemented with different size due to different purpose. CoreDX is a 

light-weighted version from Twin Oaks Computing, which is available for embedded space. It 

is developed directly with native Operating System interfaces using C language, which can 

reduce latency. Also due to its modular design, the DDS feature can be reconfigured by the 

user according to the requirements. Thus the library can be measured in kilobytes. 

CoreDX requires only small runtime memory as it is able to run on a single Intel 

Pentium CPU with 640 KB memory. An application with 1 domain participant, 6 topics, 6 

data writers and 4 data readers requires less than 100 KB heap memory [17]. Thus it is able to 

run on embedded platforms. 

Connext DDS from RTI is a full implementation of DDS standard and it can be run on 

multithreaded operating systems like Windows, Linux, VxWorks, etc. It requires 250 MB disk 

and 256 MB memory [18]. Also it has a subset ConnextMicro, of which the source code is 

around 130 KB and 20.000 lines. Therefore it is possible for it to run on many single-chip, 

32-bit microcontrollers [19].  

PrismTech provides one commercial and one open source version both with full 

implementation of OMG DDS.  The open-source version Opensplice DDS Community 5.4.1 
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support Windows CE 6.0 armv4i platform and VxWorks 5.5.1 Pentium target hosted on 

WindowsXP [20]. For this implementation, it requires at least 2 MB of shared memory. 
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Chapter 3  

RELATED WORK 

This Chapter presents related work on DDS and IEC 61499 Standard. 

Schmidt and Hag first introduced the key features of OMG DDS [2] standard and then 

introduced the implementation of Opensplice DDS. They also introduced the use cases of 

Opensplice DDS in TACTICOS combat management system built on top of Opensplice DDS 

and it is also selected as the publish/subscribe middleware for distributing flight data plans 

in next generation European Flight Data Processor – CoFlight [21]. That indicates that OMG 

DDS is mature and has already been used in the defense system and flight control system. 

This thesis tries to explore the possibility of applying this middleware in industrial 

automation systems. 

Castellote not only introduced the main aspects of the DDS model, but also described the 

relationship between DDS and other OMG specifications like the Notification Service and the 

High-Level Architecture (HLA) [22]. This thesis will focus on the performance evaluation and 

application DDS to IEC 61499 Standard. 

Guesmi et al. presented an implementation of DDS-based middleware for real-time 

control systems. They provided a new scheduling strategy as a solution for data distribution. 

This strategy consists of an algorithm for determining scheduling parameters and a real-time 

scheduler based on DDS QoS policies such as deadline, transport priorities. This 

implementation used real-time network (CAN) as transport. Together with the EDF 

scheduling strategy, this implementation is adapted with soft real-time network [23]. Rekik 

and Hasnaoui presented a detailed implementation of DDS API on a CAN bus transport. This 

implementation could use CAN bus to send a number of sensor data samples in one message 

and the connectionless DDS property is well suited for complex distributed system [24]. 

Agirre et al. suggested an additional layer on top of the DDS middleware, to provide 

application management functionalities with QoS support for real-time distributed systems. 

These application managements include application deployment, maintenance, execution 

control, final un-installation. Besides, this layer also provides QoS reconfiguration and fault 

tolerance [25]. Though this additional layer has the advantage to ease the application 

managements, however it further raises the use complexity of the DDS middleware. Also the 

manually deployment of the executable code currently does not support remote software 

updating. 

Joshi compares Java Message Service (JMS) with DDS and provides a mapping between 

JMS and DDS. Both JMS and DDS are publish-subscribe model based middleware with a 

standard API, so the user experience of both middleware are similar. However, DDS is 

targeted for real-time systems while JMS is targeted for enterprise systems. In addition, they 

use different paradigms. JMS uses autonomous message as data model while DDS uses data-

object. JMS uses destination (acts as “mini-broker”) to manage the message delivery while 

DDS just needs endpoints matching. JMS is reliable and always tries to receive 

acknowledgement while DDS does not. So JMS is best for TCP based transport and DDS is 
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based for UDP based best-effort transport. JMS and DDS have much difference, but they can 

be used at the same application when necessary [26]. Even though both of JMS and DDS use 

publish-subscribe model, they are developed for different purpose with different paradigms. 

In this project, DDS is used alone. 

Thramboulidis et al. proposed an IEC-compliant field device model for distributed 

control applications. The architecture of this device model is consisted with three layers: 

Application Execution (AE) layer is used for deployment and execution of the application’s 

implementation model; Industrial Process-Control Protocol (IPCP) layer and Mechanical 

process Interface (MPI) layer which provides the communication infrastructure for the IEC-

compliant device and for application to interfacing with controlled mechanical process 

respectively. Besides, they also presented a reference implementation on top of Real-Time 

CORBA Object Request Broker [27]. However, they did modifications to the service interface 

function blocks. Further, Real-Time CORBA and DDS are both OMG middleware 

specifications, they are designed with different mechanisms for different purposes. In 

addition, DDS provides some features that CORBA does not, for example, the rich set of QoS 

provided by DDS middleware. This work will mainly focus on the DDS. 

Etxeberria et al. suggested using DDS-based Ethernet communication as backbone of 

the industrial control network, in which most of cases fieldbuses like CAN or Profibus are 

used as transport. They suggested mapping industrial communication elements like alarms, 

events, sample values and request service into DDS QoS elements [28]. However, they did 

not provide any use case and evaluation of the mapping, nor did these mapping follow any 

international standard. 

Perez et al. presented guidelines to implement SIFBs of IEC61499 Standard utilizing 

OPC (Object Linking and Embedding (OLE) for Process Control) standard. With SIFBs, 

IEC61499 application can easily use the widely used OPC industrial communication standard 

[29].  Although addressing different standard, their work indicates integrating SIFBs with 

certain communication standard could be achieved. 

Calvo et al. presented guidelines to build communication SIFBs based on the OMG DDS 

middleware. They suggested first using IEC 61499 tool (4DIAC, for example) to define SIFB 

interfaces; then developing the algorithms for the services; finally compiling and deploying 

the SIFB to an application [30]. However, in their work, they did not present any 

performance evaluation and applicability of the technology. 

Moreover, in the thesis a detailed mapping between the DDS [2] data model and the IEC 

61499 standard [4] is given. Besides, the real-time requirements are mapped to DDS QoS 

attributes.  

http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://en.wikipedia.org/wiki/Process_Control
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Chapter 4  

MAPPING 

This Chapter presents the mapping of RTPS to IEC 61499 Standard, the mapping of IEC 

61499 interface to DDS topic and the mapping of IEC 61499 real-time system requirements 

to DDS QoS. 

4.1 Mapping RTPS to IEC 61499 

In order to utilize RTPS in IEC 61499 compliant applications, a mapping between IEC 

61499 and the RTPS specification is proposed. 

As a new standard of distributed and control systems, IEC 61499 defines a model of 

function block, application and system. The applications and systems are all based on the 

basic unit, function block. A special function block, communications SIFB, is defined to 

provide the service of communications. So the communication between applications can be 

modelled by the communication SIFBs. Figure 7 shows a typical IEC 61499 application model 

connected by communication SIFB.  

A communication SIFB has almost the same structure as the basic function block with 

event and data interfaces. The algorithm of the SIFB can be implemented according to the 

requirements. 

 

 

 

 

 

 

 

 

Figure 7. Typical IEC 61499 application model (BFB: Basic 
Function Block) 

The RTPS protocol is proposed to be a connection between applications and could be 

used to handle communications. In the context of IEC 61499, the communication SIFB needs 

to be replaced or combined with the RTPS protocol. So the RTPS could be implemented 

within the SIFB and Figure 8 shows the applications connected by a RTPS-based SIFB. As 

shown in Figure 8, the applications are not directly connected since the RTPS is 

connectionless. Instead, publisher and subscriber applications communicate by subscriptions 

to the same topic in the global data space. 
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In this model, the communication of the events and data are achieved via creating 

publisher/subscriber/topic and publishing/subscribing data. Just as the normal publish-

subscribe model, the publisher and subscriber need to associated to the same topic and then 

then they can get access to the message. 

 

 

 

 

 

 

 

 

 

Figure 8. IEC 61499 application model with RTPS SIFBs 

4.2 Mapping the IEC 61499 Interface Declaration to the DDS Topic Declaration 

Since in Figure 8, a general mapping of the RTPS to IEC 61499 Standard is presented, 

now the focus is on how to achieve the event and data communication. The purpose of the 

communication in an IEC 61499 compliant system is to transfer data or events and the events 

are usually associated with some data. Meanwhile, the underlying of the data-centric DDS 

middleware is a data model, which is usually a specified data structure, topic. So a mapping 

between the DDS topic and the IEC 61499 interface is proposed. 

The detailed mapping of the IEC 61499 interface declaration to the DDS topic 

declaration can be explained in an example in Figure 9. The application (networks of BFBs) 

has separate event and data flows, so the event output of the application is translated into a 

topic name while the data outputs associated with the event are translated into a topic type 

(data structure). This mapping ensures that the event and its associated data can be 

transferred at the same time.  

 

 

 

 

 

 

 

 

Figure 9. Mapping event and data inputs into DDS topic 

Figure 9 shows an application with two event inputs EventA and EventB. Event A is 

associated with two data inputs Input1 and Input2 while EventB is associated with only one 
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data input, Input3. In this case, two topic names and two topic types need to be declared. 

Event A and EventB are the topic names and the topic types. The data inputs, Input1 and 

Input2, consists a data structure as topic type.  Sometimes in order to utilize the key of DDS 

topic, an extra data type (int tId) can be inserted to the structure. The topic types are usually 

defined as an OMG IDL structure.  

DInsA and DinsB in Figure 9 are instances of the topic types EventA and EventB, which 

are the data objects that make the publisher and subscriber of the EventA associated. 

The data and event inputs of the function block in Figure 9 can be structured as the 

model below: 

FUNCTION_BLOCK my_SIFB 

EVENT_INPUT 

  EventA : EVENT WITH Input1, Input2; 

  EventB : EVENT WITH Input3; 

END_EVENT 

VAR_INPUT 

  Input1 : INT; 

  Input2 : INT; 

  Input3 : BYTE; 

END_VAR 

The two OMG IDL structures, EventA and EventB shown below, are mapped from the 

data and event inputs of the IEC 61499 function block. The extra field tID is defined to be 

used as key in case the key is defined. The pragma directives clause is used to define the key. 

For the OMG IDL structure Event A, the key is not defined, but the key is defined for EventB 

since the pragma directive specifies the keylist to be tID. The topic could be with multiple 

instances if the key is defined and the specific data writer can modify the specific data 

instance by referring to the key. 

struct EventA { 

int tID; 

integer Input1; 

integer Input2: 

}; 

#pragma keylist EventA  

 

struct EventB { 

int tID; 

char Input3; 

}; 

#pragma keylist tID EventB  
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4.3 Mapping Temporal Requirements on IEC 61499 Communication to DDS QoS 

Since IEC 61499 is an open standard for the next generation of distributed control and 

automation systems, systems compliant to this standard usually have real-time requirements. 

Meanwhile, DDS as a middleware based on RTPS protocol provides some real-time 

properties. An important feature of DDS is that it provides a rich set of QoS policies, which 

can be used to specify the real-time behavior of the communication. Among the rich set of 

QoS elements, the transport priority, deadline and latency budget QoS are particularly 

important to achieve real time performance. 

The transport priority of DDS is a hint and the DDS specification defines the transport 

priority to be a 32-bit long integer. Any value within the 32 bit could be a transport priority 

and the policy is the higher value, the higher priority. So assume an event e of an application 

is transferred to another application with latency requirement-         . If the policy to 

assign priorities to the events is the lower latency requirements the higher the priority and 

assume the highest priority value is the maximum value of the 32-bit long integer, the 

transport priorities can be assigned to the events by using the following formula: 

                                    

Here         is the maximum value of the 32-bit long integer and                   is 

the priority to be assigned to the event based on the real-time requirements. Assuming that 

         is in the unit of microsecond, then, there may be approximately 73 million different 

priorities. However, this is based on the absolute value of the long integer. For some of the 

DDS implementation vendors, they may treat the value at a specific range as just one 

transport priority. 

Most industrial control and automation systems require that the messages should be 

delivered to the right place without missing the deadlines. DDS provides deadline QoS policy 

to monitor the temporal performance of data delivery. This policy is very useful when a data 

instance has to be updated periodically. When the application is assigned with a deadline, it 

can be notified when the deadline is missed by means of listeners or conditions.  

Latency budget QoS policy defines the maximum acceptable delay of messages delivery 

and is a hint for the application to decide the “urgency” of the data communication to the 

middleware. This QoS policy helps to optimize internal operations and maximize the 

throughput. The default value of latency budget is zero, which indicates that the message 

should be delivered with a minimum latency.  When the latency budget is defined by user 

with a specific value, then the DDS might automatically wrap several messages into one 

packet. This maximizes the throughput at the cost of possibly larger latency and there could 

be less network traffic in the network.  
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Chapter 5  

TEST SETUP 

Based on the mapping in Chapter 4, a set of tests are carried out to evaluate the 

performance and the applicability to the industrial automation system. This chapter first 

explains the main metrics to be measured and calculated in this project and then explains all 

the test setups. 

5.1 Test Metrics 

For real-time systems, the latency and jitter are considered to be the most important two 

performance metrics. Also in the network communications, they are essential to represent 

the communication efficiency and stability. So in this work, the focus is on the end-to-end 

latency and jitter as well. 

Latency in this work is defined to be the duration since a message is written by a data 

writer until it is received by a data reader. Latency is mainly decided by the transmitting 

protocol, transmitting distance, network bandwidth and the load on the network. The 

implementation of the middleware might also cause some overhead during the 

communication.  

In real-time systems, the worst case performance is a very important evaluation. 

However, it is very difficult to measure the worst-case. An approximated solution is to pick 

the worst in a large volume of samples, which is adopted in this work. The worst case latency 

here is defined to be the largest value measured in 1.000.000 latency samples. 

Jitter is defined to be the time difference in two consecutive measurements, including 

the average and maximum jitter. The average jitter is calculated by average the latencies of 

sending 1.000.000 messages and the maximum jitter is the biggest one among them.  

In the test, the distribution of the latency samples is also calculated. 

5.2 Test Setup 

The tests mainly focus on the performance of the DDS communication and the latency 

and jitter are the main metrics used to evaluate the performance. As a reference to the 

evaluation, the same setup is applied to a client-server based socket communication in each 

test. Several different scenarios are presented to evaluate the performance.  

In order to model the real-time systems, all the tests are carried out on a network of 

work stations with real-time Linux Operating System (OS). These machines are running 

Ubuntu 11.10 and patched with the real-time kernel patch RT-29. After recompiling the 

kernel of the OS, all the nodes run over full pre-emptive Linux environments. An Ethernet 

switch is used to connect all these nodes to realize Ethernet communication. To simplify the 

evaluation, all the nodes have 1 Gbps Ethernet network adapters. 



 

19 

DDS is becoming more popular and there are quite a number of implementations 

targeted on different operating systems on the market. However, in this project, the open 

source version Opensplice DDS Community 5.4.1 for Linux from PrismTech is adopted. 

Considering the IEC 61499 compliant development tools, there are already quite a few 

available, but most of them lack documentations. So no IEC 61499 IDE is used; instead the 

function blocks are directly implemented with C++ classes. GCC compiler is used to compile 

the executable code. 

Two different setups are used in the tests. One is to connect two nodes with an Ethernet 

switch, which constructs an exclusive network to measure the end-to-end performance. The 

other setup connects four nodes (two of them are used for generating extra network traffic) in 

the network to evaluate the scalability of the distributed system. In both setups, the 

applications are configured with different QoS policies to evaluate different aspects of the 

communication. 

5.2.1 Network without Extra Load 

The first setup utilizes two nodes and connects them with an Ethernet switch as Figure 

10 shows. This network setup is an exclusive network since no other nodes generate any extra 

load in this network. 

 

Figure 10 test with 2 nodes 

        Though no IEC 61499 compliant IDE is used, the implementation still tries to be 

compliant to IEC 61499 standard. In Chapter 4, the IEC 61499 SIFB interface is mapped to 

the DDS topic declaration and in Figure 9 an example shows how the mapping is achieved. So 

hereby the DDS based SIFB is implemented using a C++ class, named iec2dds. In the 

implementation, the features of function block are compliant with IEC 61499. The public 

fields and methods are declared as:   

Class iec2dds 

{ 

Public: 

 TopicName            topicName; 

 TopicQos            Qos; 

Public: 

bool createPublisher(char* topicName, TopicQos tQos); 

bool createSubscriber(char* topicName,TopicQos tQos); 

bool read(Msg *dataIn); 

bool write(Msg dataOut); 

} 

In order to simplify the DDS SIFB interfaces, all the entities that needed for DDS as 

internal fields are declared by the two public methods, createPublisher() and 
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createSubscriber(). These two methods also set the QoS policies for these internal entities.  

CreatePublisher() method has two parameters, topicName and tQos; and it configures the 

QoS policies for both the publisher and data writer. CreateSubscriber() method configures 

the QoS  policies for the subscriber and data reader. Reading and writing messages are 

achieved by the two methods, read() and write(). Since read() method needs to pass a 

message to the application, it has one pointer as parameter. The application can contain 

multiple publishers and subscribers. 

 

 

 

 

 

 

 

 

 

 

Figure 11. DDS Network communication 

Figure 11 shows the detail view of the setup. In the setup, application at node A only 

contains one event (EventIn) which is associated with two data inputs (userID and message). 

So an OMG IDL structure is defined as below to represent the event and data inputs. 

struct Message 

{ 

 long userID; 

long message[LENGTH]; 

} 

In this IDL structure, the filed message is defined as an array so that the message length 

can be easily changed in the test to evaluate how the performance changes when sending 

messages with different lengths. This IDL structure Message serves as the topic type and 

many topic instances can be based on this type. 

 Defined a topic “A”, publisher at Node A and subscriber at Node B need to be associated 

to the same topic A and then they can communicate. Publisher at Node A writes an instance 

Aw_msg while subscriber at Node B reads the instance Aw_msg, of which the elapsed time of 

this process is just defined as the latency. The line arrows show the one-way message flow 

and together with the dashed arrows make up a round trip of the message. The latency in the 

test is not directly measured since it needs synchronization of two nodes. An easier way 

adopted is to measure the round trip time of the message at Node A. A time stamp 

preWriteTime is put before publisher at Node A writes the message and another time stamp 

afterReadTime after the subscriber reads the message. So the round trip time can be easily 

calculated by the following formula: 
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In this measurement, Node B just receives and forwards the message. Though there 

might be overhead by the implantation of read and write methods of DDS, they are 

minimized. 

A client-server socket communication is also established between the two nodes to act as 

a reference. The message structure and length used in the socket communication is the same 

as that of DDS. 

5.2.2 Network with Extra Network Load 

Figure 12 shows a network of four nodes connected by an Ethernet switch. Two more 

nodes (C and D) are added to the network to model extra network traffic only between them. 

The configurations of Node A and Node B are not changed as Figure 11 shows. This setup is 

intended to evaluate how the network load would affect the communication performance 

(measured in Node A).  

 

 

 

Figure 8. Four-node network with switch. 

 

 

 

 

Figure 12. Network with 4 nodes 

Both setups in figure 11 and figure 12 are applied to different configuration of DDS QoS. 

The main elements of this QoS set being looked into are reliability, transport priority and 

latency budget, which are the key factors of real-time communication.  

Reliability: The reliability QoS is consisted with 2 elements, reliable and best-effort 

reliability QoS. Reliable QoS ensures that every message can be sent to the destination by 

certain acknowledgement and resending mechanism. Under best-effort reliability QoS 

configuration, the missing message will not be retransferred by the application. 

Transport priority:  Transport priority QoS assigns each topic a priority in which DDS 

can prioritize the data produced by a data writer. This Qos policy is considered to be a hint to 

the DDS to   control the priorities of the underlying transport means. A higher value 

represents a higher priority and the full range of the type is supported. By default the 

transport priority is set to zero. The Transport Priority Qos policy is applicable to both topic 

and data writer entities. After enabling of the concerning Entities, this Qos policy may be 

changed by using the set_qos operation. 

Latency budget: Latency budget Specifies the maximum acceptable additional delay to 

the typical transport delay from the time the data is written until the data is delivered to the 

data reader and the application is notified of this fact. This Qos policy provides a means for 

the application to indicate to the DDS the “urgency” of the data-communication. By having a 

non-zero duration, the DDS can optimize its internal operation. The default value of the 

duration is zero, indicating that the delay should be minimized. 
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Table 2 shows all the tests to be performed during this project. Different combinations of 

QoS elements and different number of nodes in the network are presented. In the table the 

number N represents different number of transport priority and different values of latency 

budget. 

Table 2. Tests 

Number of Nodes Communication QoS(DDS) 

2 DDS 

Reliability Transport priority Latency budget 

Reliable 

0 0 

N 0 

0 N 

Best-effort 0 0 

Socket - - - 

4 DDS 
Reliability Transport priority Latency budget 

Reliable 0 0 

Socket - - - 
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Chapter 6  

RESULTS AND ANALYSIS 

In the test, mainly the round trip times are measured to evaluate the latency. Each of the 

Round Trip Time (RTT) value is the average of 1.000.000 iterations. Jitter is calculated to 

evaluate the stability of the communication. 

6.1 Results without Extra Networking Load 

In this setup, the main focus is on the evaluation and analysis of the DDS 

communication based on different configuration of QoS. 

Table 3 illustrates the average RTTs and latencies of transferring messages between the 

nodes A and B utilizing DDS and client-server based socket. The DDS QoS uses all default 

value except the reliability QoS which is configured to be reliable to ensure that all messages 

will eventually be delivered to the data reader. Besides, the DDS uses waitset (a DDS event 

handling mechanism that blocks a thread until a new message arrives) to read messages. 

Table 3. Round Trip Times and latencies of reliable DDS and 
socket communication 

 

 

 

 

 

 

 

 

 

 

 

 

        In Chapter 5, the measurement of RTT is explained. Since the one-way latency is half the 

round trip time, when the RTT is measured the latency can be easily calculated by the simple 

formula: 

                        

Figure 13 plots the average latency values against the message sizes. A small circle in the 

figure represents one latency value of the DDS communication, while a star represents one 

latency value of the client-server socket communication. The lines connecting these points 

Message (bytes) 8 16 32 64 128 256 

DDS 
(µs) 

RTT 294 302 302 313 315 318 

Latency 147 151 151 156.5 157.5 159 

Socket 
(µs) 

RTT 162 162 163 162 164 169 

Latency 81 81 81.5 81 82 84.5 

Message (bytes) 512 1024 2048 4096 8192 16384 

DDS 
(µs) 

RTT 322 365 411 767 1475 2930 

Latency 161 182.5 205.5 383.5 737.5 1465 

Socket 
(µs) 

RTT 170 196 236 290 362 490 

Latency 85 98 118 145 181 245 
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are just for illustration and comparison. From Figure 13, it is easy to see that the DDS 

communication latency is larger than the client-server based socket communication. 

Moreover, the DDS communication latency is more sensitive to the increase of the message 

size since the DDS communication latency increases sharply when message size increases 

from      to     bytes. 

However, both the DDS and client-server based socket communication latencies do not 

change much when the message size increases from    to     bytes. The reason for that could 

be each of the messages fits in one Ethernet frame (the maximum Ethernet frame is around 

1500 bytes) and needs to transfer only once. Thus when the message size increases to a value 

larger than the maximum Ethernet frame, one message might need to be sent in several times. 

This will largely increase the latency. 

 

Figure 13. Latencies of reliable DDS and socket communication 
(Note: lines connecting points are only used for illustration) 

Table 3 shows that when sending a message of size 1024 bytes, the DDS takes 182.5 µs, 

while the socket communication takes 98 µs. Obviously, socket communication is much 

faster than the DDS as it only takes half the time the DDS takes to send a message.  However, 

the DDS can still send 5479 messages of 1024 bytes in one second, which can meet the 

requirements of some industrial distributed systems that do not require extreme fast 

message transport. 

Table 4. Jitter of reliable DDS and socket communication 
sending 1024-byte message 

Jitter Minimum  Maximum  Average  

DDS(µs) 0 7970 73.776 

Socket(µs) 0 221 18.791 
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Table 4 gives the minimum, maximum and average jitter of the DDS and socket 

communication when messages with size of 1024 bytes are sent.  The maximum jitter of the 

DDS communication is quite large, 7970 µs, which is 20 times more than the average RTT. 

But the maximum jitter of the socket communication is 221 µs, which is less than three times 

the RTT. So the socket communication is more stable than the DDS communication.  

    Table 5. Worst case latency of reliable DDS and socket 
communication 

 

 

 

 

 

 

 

 

 

 

Table 5 gives the worst case latencies of DDS and socket communication. The worst case 

latency is defined as the maximum latency during the 1.000.000 iterations. As shown in the 

table, the worst-case DDS latency is much larger than the worst-case latency of socket 

communication.  This in a large extent describes the reliability of socket communication is 

better than DDS. 

DDS provides 3 different methods, polling, listener and waitsets to read messages. 

Waitsets blocks a thread until an event (in this case, message arriving) occurs. Table 6 and 

Figure 14 compare the waitsets and polling methods. It is shown in the table that when 

polling is used to receive a message the latency could be around 30 µs less than that of 

waitsets when the message size is at the range of    to     bytes, which is rather fast. But 

polling keeps CPU checking the arrival of message and does nothing else, so it is not efficient 

for industrial applications. 

Table 6. Latencies of reliable DDS communication utilizing 
polling and waitset to read message 

 

 

 

 

 

 

 

 

Message (bytes) 8 16 32 64 128 256 

Worst -
Case DDS 

(µs) 

RTT 14347 13806 16720 12363 13624 16251 

Latency 7273.5 6403 8360 6181.5 6412 8125.5 

Worst-case 
Socket (µs) 

RTT 158 184 1007 162 165 193 

Latency 79 92 503.5 81 83.5 96.5 

Message (bytes) 512 1024 2048 4096 8192 16384 

Worst-case 
DDS (µs) 

RTT 12453 14933 14888 17527 19928 14600 

Latency 6226.5 7466.5 7444 8763.5 9964 7300 

Worst –
case 

Socket (µs) 

RTT 194 228 286 4178 2210 1546 

Latency 92 114 143 2089 1105 773 

Message (bytes) 8 16 32 64 128 256 

 

DDS Latency 

(µs) 

Waitsets 147 151 151 156.5 157.5 159 

Polling 108 114 115.5 117 117.5 123 

Message (bytes) 512 1024 2048 4096 8192 16384 

 

DDS Latency 

(µs) 

Waitsets 161 182.5 205.5 383.5 737.5 1465 

Polling 128.5 141 195.5 375.5 730.5 1453 
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As the message size increases, the waitsets latency gradually gets close to polling and 

finally could work at the same latency. The reason could be that the waitsets implementation 

overhead becomes not so obvious when it compares to larger communication latency. 

 

 

Figure 14. Latencies of reliable DDS communication utilizing 
polling and waitsets to read message   (Note: lines connecting 
points are only used for illustration) 

In order to evaluate how the reliability QoS would affect the DDS communication. Table 
7 gives a comparison of the latencies between best-effort transport and reliable DDS 
communication. 

Table 7. Latencies of reliable and best-effort DDS 
communication 

Message size 
(bytes) 

8 16 32 64 128 256 

Reliable QoS 

Latency  (µs) 
147 151 151 156.5 157.5 159 

Best-effort 

Latency  (µs) 
140 140.5 142 143.5 147.5 150 

Message (bytes) 512 1024 2048 4096 8192 16384 

Reliable QoS 

Latency  (µs) 
161 182.5 205.5 383.5 737.5 1465 

Best-effort 
Latency  (µs) 

157 175 195.5 377 734 1463 
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Figure 15 plots the comparison of the average latency of the best-effort and reliable DDS 

communication. Though not so obviously, the figure shows that the best-effort transport is a 

little faster with lower latency, since the reliable mechanism could cause more overhead to 

the latency. 

 

Figure 15. DDS latencies of reliable QoS and best-effort QoS 
communication (Note: lines connecting points are only used for 
illustration) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Distribution of the DDS latency values 
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Figure 17. Socket latency values distribution 

Figure 16 and Figure 17 show the distribution of the DDS latency values from 1.000.000 

samples. The Socket communication latency values mostly located at the range of 62.5 to 

112.5 µs and the DDS latency values are mostly in the range of 100 to 400 µs. As shown in 

Figure 16, the latency distribution of DDS is very close to normal distribution. 

 

Figure 18. Curve fitting of DDS and socket latency normal 
distribution 
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Figure 18 shows the curve fitting of the DDS and socket latency normal distribution of 
1.000.000 iterations transferring messages of 1024 bytes. According to the calculation, the 
standard deviation of the DDS latency is 109.207 µs, which takes up 59.8% of the average 
latency 182.6510 µs. The standard deviation of the socket latency is 10.184 µs, which takes up 
10.3% of the average latency 99.135 µs. Hence considering both the value of the standard 
deviation and the percentage the standard deviation takes up its own latency, client-server 
based socket communication shows less variation of latency compared to the DDS 
communication. 

 

   

 

 

 

 

Figure 19. Publishers and Subscribers with different transport priorities 

   Figure 19 shows the scenario that communication happens between two nodes with 
topics of different transport priorities. Though the transport priority QoS is a hint to the 
transport, it still tries to follow the rule that the higher priority message could preempt the 
lower priority message. 

Table 8 shows the latency results when two topics are assigned with the same or 
different transport priorities. At first, both topics are assigned to the same transport 
priority 1 and the communication latencies are 520 µs and 519 µs respectively, almost the 
same. Later Topic2 is assigned a priority 5 while that of the Topic1 remains 1. The latencies 
of Topic1 and Topic2 are 534 µs and 500 µs respectively, so the Topic2 has lower latency. 
So the transport priority QoS could help the users to better control which message should 
be deliver first. 

Table 8. DDS Latency with different transport priorities 

Transport Priority TP1=TP2=1 TP1=1, TP2=5 

Topic1 Latency (µs) 520 534 - 

Topic2 Latency (µs) 519 - 500 

Latency budget QoS is another important DDS QoS to optimize the network throughput. 
Table 9 shows the difference of RTT, jitter and standard deviation when different latency 
budget QoS is set to the DDS communication. Again, the test focuses on sending messages 
with 1024 bytes data. Since the average RTT of sending a 1024-bye message is no more 
than 400 µs, the average latency would be less than 200 µs. Thus the deadline could be set 
to 200 µs. Usually the average latency should be between one-third to half of the deadline. 
In this test, the latency budget is set to be 100 µs, half of the deadline. 

When the latency budget is set to 100 µs, the middleware will automatically optimize the 
throughput and possibly wrap several messages into one package. When the latency budget 
is set to zero, the middleware should send the message with minimum delay. So it is shown 
in the table that when the latency budget is set to zero, the average round trip time, average 
jitter and standard deviation of the RTT are all smaller than those when the latency budget 
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is set to 100 µs. This QoS policy provides a trade-off between latency and throughput of the 
network communication, so the users could decide which aspect is more important 
according to the system requirements. 

Table 9. Round trip time, jitter, standard deviation of reliable 
DDS communication with latency budget 0 and 100 

      Message 
(1024bytes) 

RTT (µs) Jitter (µs) Standard 
deviation 
(of RTT) Average Worstcase Average Maximum 

DDS(latency 
budget=0) 

353 11719 58.047 11722 166.836 

DDS(latency 
budget=100) 

365 11983 76.152 11531 202.396 

6.2 Results with Networking Load 

Below are the results of the DDS and socket communication with networking load. In 
this experiment, two additional nodes are introduced into the network to generate extra 
networking traffic. The purpose of this setup is to simulate and evaluate the performance 
of DDS in real application with extra network traffic. 

The two nodes used for generating networking load also have 1 Gbps Ethernet and they 
are intended to generate as much traffic as possible. In order to monitor the network traffic 
under Linux, the software IPTraf is used in Node C to get the statistics of extra traffic in the 
network. Applications on Node C and Node D are associated with a topic and keep writing 
and reading messages to each other. According to the IPTraf statistics, Node C and Node D 
generate 96.902 Mbps extra load when DDS communication is used. For reference, this 
setup is also applied to socket communication, Node C and D use client-server style to 
generate the network load and, according to the statistic, the generated network load is 
94.242 Mbps. So the extra loads are almost the same over the network and then it is fair to 
compare the performance of the two situations. 

Table 10. Round trip time, jitter, standard deviation of reliable 
DDS and socket communication with and without network load 

Message 

(1024bytes) 

RTT (µs) Jitter (µs) 
Standard 
deviation 

(of RTT) Average Worstcase Average Maximum 

DDS (without load) 353 11719 58.047 11722 166.836 

DDS (with load) 348 11641 59.863 11290 167.643 

Socket (without load) 195 364 12.465 180 16.600 

Socket (with load) 222 424 16.016 211 24.739 

As shown in Table 10, the round trip time of DDS without networking load is even larger 
than DDS communication with networking load. That actually indicates that the DDS is of 
less variance when there is heavy load on the network. Inserting nodes into the network, 
the performance of the whole network will not be degraded. In contrast, with socket 
communication, the RTT becomes smaller when there is extra network traffic compares to 
the RTT when there is no extra traffic in the network. That indicates if there are more loads 
and traffic in the network, the socket communication performance is likely to be degraded. 

 The jitter of DDS communication in both situation remains almost the same, which 
means the DDS communication is relatively stable. For socket communication, when there 
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is more traffic in the network, the jitter turns out to be larger. So the client-server socket 
based communication is significantly affected by the increased network load. 

Overall, socket based communication has better performance than DDS does. However, 
the evaluation indicates that in the heavily loaded system, DDS turns out to be with less 
performance variance. 

6.3 Integration Complexity 

In the normal communications, it is necessary to establish a point-to-point connection 
between applications or subsystems. Suppose a network with n nodes, it needs         
connections to make sure each node can directly communicate with all the other nodes.  
This is very costly. In the test, for example, socket needs to be established between nodes 
so that they can communicate.  To establish this connection, it is necessary to offer the IP 
address, port, etc. It could be very complicated when the system is consisted with 
thousands of applications. 

As a middleware, DDS is a normalized model and all the applications or subsystems 
interact with it. Applications do not directly communicate with each other. In this case, any 
application only needs to be associated to the middleware once and make the complexity 
increase in a linear way [31]. For example, in the test, applications are not directly 
connected to each other, but they communicate through subscription to a topic in the 
distributed domain. 

So DDS is a good solution to reduce the complexity of the point-to-point connections in 
large-scale distributed systems. 
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Chapter 7  

CONCLUSIONS 

The RTPS protocol provides appealing properties that could be used to realize the 

communication in real-time distributed control systems. Its connectionless feature makes it 

possible to reduce the complexity of the point-to-point connections between the software 

components in large-scale distributed control systems. DDS, as a specification of real-time 

publish-subscribe middleware, has been implemented and used in both commercial and 

administrative field. 

This thesis first shows how the standard for next generation of distributed control and 

automation systems, IEC 61499, can be mapped to the DDS model. It maps the event and 

data interfaces of the IEC 61499 to the DDS topic declaration. Moreover, a mapping of the 

real-time requirements to the DDS QoS is presented. 

Later, a performance evaluation of this mapping is presented and it shows how these 

DDS QoS policies would affect the performance of the distributed systems. A reference of 

point-to-point socket based connection is also evaluated to compare with the performance of 

DDS. 

Finally, the thesis discusses why the DDS has the potential to reduce the complexity of 

the connections in large distributed control systems. 
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Chapter 8  

FUTURE WORK 

Although DDS has already been used in both commercial and administrative fields, 

there is still a lack of formal analytical model. In the future work, it could be a very 

interesting research direction to build an analytical model for DDS based on the QoS. 

In the thesis, a comparison of DDS and socket communication has been presented. DDS 

has good features to reduce the complexity of the connections. To make it more practical and 

obvious, DDS will be used in an industrial distributed control system to check how it would 

perform in an industrial application.  

As the low level transports in industrial distributed systems are usually fieldbus, like 

CAN or Profibus. So it could be very promising if the RTPS can be used to engineer the whole 

industrial network including both the low level transport and higher level possibly Ethernet 

based nodes. In addition, a performance evaluation based on such system would worth the 

efforts. 
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