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ABSTRACT

NASA Langley Research Center identified a need for a distributed simulation architecture that enables
collaboration of live, virtual, and constructive nodes across its local area network with extensibility to other
NASA Centers and external partners. One architecture that was prototyped and evaluated employed Data
Distribution Service (DDS) middleware and the GovCloud cloud computing service. The nodes used DDS
to exchange data. GovCloud was added as a potential solution to enable other Centers and external partners
to join the distributed simulation through an existing trusted network, removing the need to establish case-
by-case interconnection security agreements. The prototype architecture was applied to an airspace
simulation of manned and unmanned vehicles exchanging Auto-Dependent Surveillance Broadcast (ADS-
B) messages. Various configurations of nodes were run and evaluated to assess the architecture with respect
to upfront investment to augment a node for the architecture, integration and interoperability of nodes,
performance, and connectivity and security.
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1 INTRODUCTION

In 2013, NASA Langley Research Center (LaRC) launched a strategic initiative called the Comprehensive
Digital Transformation (CDT) “to develop a comprehensive vision for our aerospace disciplines, the future
digital work environment and their combined ability to impact NASA mission needs” (LaRC 2016). One
issue relevant to the CDT mission was enabling the transition of experimental labs at LaRC from self-
contained entities to a paradigm allowing connected partners to conduct research in a distributed but unified
environment. While connected and distributed IT systems were status quo in commercial applications, the
NASA experimental environment was lagging. Part of the problem was simply inertia. An isolated
computer environment is much easier to secure than a connected environment. However, in most cases the
uncertainty of the performance of these technologies in an environment such as that required for LaRC
scientific research was the primary concern. Even if technically feasible, changes to operational
environments require investment in hardware, software, and training. The CDT wanted a design to
demonstrate technical feasibility of a new system in a real facility operating within the current LaRC process
and security environment to assess the cost of such a new paradigm against the potential research benefit.

To better understand the issues of applying new digital paradigms to research and development at LaRC,
the CDT funded a series of deep dive efforts. These deep dives were small, targeted initiatives that could
be accomplished with minimal funding to help inform larger questions. One of those deep dives was the
Distributed Simulation Prototype (DSP) whose focus was networked modeling and simulation and system-
of-systems integration (Glaab and Madden, 2015). LaRC already had experience running distributed

SpringSim-ANSS 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)



Madden and Glaab

simulations using Distributed Interactive Simulation (DIS) and High-Level Architecture (HLA)
implementations (IEEE 2010, IEEE 2012). Therefore, their strengths, limits, and costs to support an
architecture for a broad array of networked modeling and simulation products over local-area network
(LAN) and wide-area network (WAN) topologies were known. DSP would investigate a distributed
simulation architecture using the Distributed Data Service (DDS) specification from the Object
Management Group (OMG 2007) and the GovCloud cloud computing service provided by Amazon Web
Services (Amazon 2016). The result would be a comprehensive comparison of technology costs and
requirements to inform the CDT’s assessment of benefits for the larger LaRC scientific community.

DDS is data-centric, publish-subscribe middleware that DSP used for data exchange between the simulation
nodes. A number of factors generated interest in evaluating DDS. First, DDS is an open specification for
data exchange between real-time applications, and it includes configurable quality of service (QoS). Thus,
DDS was expected to handle the low-latency information needs of live nodes, virtual nodes, and real-time
constructive nodes while not precluding use by nodes running fast-time or asynchronously. Second, the
DDS specification includes an interoperability wire protocol to accomplish interoperation between different
vendor implementations. Thus, an investment in DDS should not require vendor lock-in. Third, there exists
more than one no-cost implementation of DDS. Therefore, any team, internal or external, would not be
required to incur upfront software licensing costs to join the distributed simulation. Finally, DDS includes
peer discovery that permits multiple nodes to form a distributed application at runtime without prior
knowledge of each other embedded in the software. As will be discussed later in this paper, DDS peer
discovery tends to be configuration-free only with simple network topologies, however.

LaRC was also interested in GovCloud as a potential solution to a couple of problems related to distributed
simulation. The first problem was giving external partners, including other NASA Centers, access to the
distributed simulation’s network. Under LaRC’s security rules at the start of the deep dive, each project
with external partners had to establish one or more interconnection security agreements to allow the
bidirectional flow of the distributed simulation traffic through the LaRC firewall. The distributed simulation
therefore had to be configurable to communicate through a firewall and, often, over a private WAN or the
open Internet. GovCloud, on the other hand, is a trusted network that appears as an extension of the LaRC
LAN (LaRCNet). Moreover, having a standard technology for connecting with external partners could
streamline the process for the interconnection security agreements and possibly allow fixed-duration
renewable agreements for external partners who regularly collaborate with LaRC on a variety of projects.
The second problem was providing every team the ability to increase system-of-systems simulations to real-
world scales without increasing contention for NASA’s high-performance computing (HPC) resources.
With GovCloud, teams can increase the number of virtual machines running simulation nodes, paying only
for the time those additional virtual machines are needed and used.

To assess the DSP architecture, LaRC developed 27 goals that described LaRC’s ideal architecture (Glaab
and Madden 2015). Those goals fell into five broad categories:

e upfront investment including direct costs and staff training to add distributed capability
e development or augmentation of nodes and node maintainability

e integration and interoperability of nodes

e performance

e connectivity and security

A few examples of these goals are listed below:

Allows nodes to be written in any ubiquitous computing language at use in NASA
Scalable to any number of nodes, configurable at run-time

Allows a node to join at any time

Can operate and isolate multiple distributed simulations simultaneously
Publishers not coupled to subscribers and vice-versa
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The assessment results were then used to generate findings to inform future planning and decisions. This
paper highlights the distributed simulation configurations in which DSP was exercised and selected findings
of the project regarding that application of DDS and cloud computing to distributed simulation at LaRC.

2 THE DISTRIBUTED SIMULATION PROTOTYPE

The Distributed Simulation Prototype was initially conceived as a pair of executables, an aircraft simulation
and a simulation manager. The aircraft simulation was pre-existing software from the Langley Standard
Real-time Simulation in C++ (Leslie et al. 1998) with augmentation to incorporate DDS for distributed
communications. The aircraft simulation published Auto-Dependent Surveillance-Broadcast (ADS-B)
reports (RTCA 2002) and execution-control responses, and it subscribed to both ADS-B reports and
execution-control commands. The execution-control topics were used to remotely control and synchronize
mode transitions among the participating simulation nodes. The control topics included transitions to reset,
trim (dynamic equilibrium calculations), hold (freeze), and operate modes. Multiple copies of the aircraft
simulation would be run in DSP scenarios with one copy per simulation node. The simulation manager was
new software with a simple terminal interface that allowed a user command mode transitions in the
distributed simulation and was also capable of dumping the DDS traffic to screen. Thus, the simulation
manager published execution-control commands, and it subscribed to execution-control responses and
ADS-B reports. Only one instance of the simulation manager ran in DSP scenarios. Both executables
utilized OpenSplice DDS Community Edition Version 6.4. OpenSplice was chosen because it is has a
license-free version, and, in prior developer experience, it appeared to be a mature, full-featured, and low-
latency implementation.

Figure 1 depicts the runtime environment for the DSP scenarios. The computing platforms for running
simulation nodes were the real-time servers in the Simulation Development and Analysis Branch (SDAB),
the development desktops in SDAB, and the NASA Cloud (i.e., NASA’s account within GovCloud). The
SDAB desktops were utilized in DSP scenarios because they reside in a separate subnet of the LaRC LAN
(LaRCNet) from the real-time servers and could therefore emulate the issues that different labs at the Center
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Figure 1: DSP Runtime Environment.
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may encounter in trying to establish and maintain communication. Within this environment, the following
configurations were run:

e Two or more aircraft simulations exchange ADS-B messages under control of the simulation
manager with each executable running on a different real-time server. In this configuration, all
nodes are on the same subnet.

e Two or more aircraft simulations exchange ADS-B messages across real-time servers and are
controlled by a simulation manager on a developer desktop. In this configuration, the simulation
manager is on a different subnet from the aircraft simulations.

e One aircraft simulation on a real-time server exchanges ADS-B messages with a second aircraft
simulation on a developer desktop. The simulation manager, running on a cloud instance, controls
both aircraft simulations. In this configuration, each aircraft simulation runs on a different subnet
and both communicate with the simulation manager running in GovCloud.

Partway through the DSP project, additional Langley projects chose to implement DDS, and one of those
projects also implemented a scalable, national-airspace simulation in GovCloud called Shadow Mode
Assessment using Realistic Technologies for the National Airspace System (SMART-NAS) (Palopo et al.
2015). This created an opportunity to demonstrate DDS and cloud computing with an expanded set of assets
including live and virtual nodes. Figure 2 displays the runtime environment for this expanded
demonstration. In this environment, the aircraft simulation from DSP operated on one or two of LaRC’s
high fidelity simulators; the simulation manager was not used in this environment. The other participants
in the demonstration were SMART-NAS running in GovCloud, the Cirrus SR-22 Surrogate Unmanned
Aerial System (UAS) in flight, and the ground control station for the Airborne Subscale Transport Aircraft
Research (AirSTAR) UAS being driven by a simulation of AirSTAR. (The lead time for approval to fly
AirSTAR prevented use of the live vehicle for the demonstration.) The Data Generator shown in the
diagram supported development of the demonstration by mimicking the Cirrus SR-22 data. The Cirrus SR-
22 ground station, SMART-NAS, and the SDAB simulators all communicated directly over DDS. The
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Figure 2: SMART NAS Demonstration Environment.
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AirSTAR ground station, on the other hand, sat behind a firewall whose configuration could not be changed,
due to security restrictions, to support DDS communication with multiple peers. Therefore, the AirSTAR
ground station communicated with an SDAB real-time server that acted as a bridge for DDS publications
and subscriptions. In this demonstration environment, all participants also used OpenSplice DDS 6.4.

3  RESULTS

3.1 Upfront Investment

The sponsors of this research effort, the CDT, wanted an estimate of the investment required to transition
an autonomous Langley lab environment to one that could operate as part of a distributed research
environment. This cost was to include not only required procurement, but also the implementation time to
inform developer difficulty and LaRC process hurdles. The DSP development team had prior experience in
the implementation of wholly new technologies which may have facilitated their task, but they also had to
build their own expertise without prior similar Langley initiatives to leverage to offset any unfair advantage.
The delay and expense incurred by the Langley processes (primarily GovCloud access and firewall
changes) should be similar for any LaRC lab, though.

Four developers working part-time on DSP completed the run-time environment in four months for a total
effort of 1073 staff hours. The cloud computing expenses were the only direct costs incurred outside of
charged hours. An abundance of DDS overviews and tutorials including the OpenSplice Tutorial were
effective in providing a short learning curve for the staff to adopt DDS (OMG 2016b, PrismTech 2014b).
One advantage that the DSP run-time environment had at the start was that the existing aircraft simulation
already had a distributed simulation capability utilizing a data model developed for HLA that was
transmitted via a TCP/IP stream. DDS utilizes Interface Definition Language (IDL) to define the
application’s data model. Because IDL has syntax similar to the C++ language utilized by the simulation,
it was simple to translate the existing data model into IDL. OpenSplice then provides a program, idlpp,
that generates the C++ source code that implements the DDS support for the data model. To complete the
DDS augmentation of the aircraft simulation, the development team simply replaced the code that managed
the TCP/IP connection with code that managed a DDS connection. The data going into or out of this
connection component remained the same to the rest of the simulation whether the connection was TCP/IP
or DDS. The connection code was also developed so that it could be reused in the simulation manager,
reducing its development effort. Initial testing on the SDAB real-time servers also went very smoothly
using the default OpenSplice configuration file. Additional research, debugging, and configuration did not
become necessary until attempts were made to expand communications outside of the subnet containing
the SDAB real-time servers. The next section addresses this in more detail.

3.2 Connectivity

Results related to connectivity issues illustrate the importance of in-house prototype testing to inform the
larger investment decisions. Configuration choices for the Langley network impacted the ability to use one
of the nice features of DDS — peer-to-peer discovery — which was not evident from the literature study.
Security restrictions on the LaRC firewall also necessitated work-around solutions that increased the
complexity of the final system as well as the implementation time. If this type of system is to be used across
the Center by many labs, the benefits and costs of changes to the LaRC network will have to be weighed
against the time and effort required by each lab environment to implement the same type of work-around.

In the initial testing among the SDAB real-time servers, any number of nodes could join the distributed
simulation at any time during its execution without any user configuration. This configuration-free, peer-
to-peer discovery is designed into DDS. However, the first attempt to add one of the developer desktops as
a node resulted in the failure of that node to make a connection. That failure led the developers to research
how DDS accomplishes peer discovery and also how LaRC configures LaRCNet.
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DDS peer discovery relies on Simple Participant Discovery Protocol (SPDP) messages that are sent using
a multicast address (PrismTech 2014a). Thus, two peers will discover each other only if they succeed in
exchanging SPDP messages. The routers on L aRCNet are configured to contain standard multicast
addresses within a subnet and to add all machines in that subnet to the associated multicast group. Thus,
only machines within the same subnet will accomplish configuration-free discovery. Routers could be
configured to bind multiple subnets into a multicast group. However, there are network security and
maintenance concerns associated with such an approach, and changing the network configuration for a
pathfinder project like DSP would not be realistic. Fortunately, OpenSplice DDS does support unicast
delivery of SPDP messages. In the OpenSplice DDS configuration file, the developer can list the machines
to contact directly during peer discover. Discovery succeeds between two machines if each machine lists
the other as a unicast peer. With OpenSplice DDS 6.4, the project was unable to reliably connect nodes
when enabling both multicast and unicast discovery. Reliable connectivity occurred only when the nodes
were configured for only multicast or only unicast. Therefore, when including nodes outside the local
subnet, the configuration file was configured for unicast discovery only and listed all of the potential
participating nodes. OpenSplice DDS does not require that all the nodes on the list connect to begin
exchanging data. Data exchange begins once two nodes on the list connect, and a distributed simulation
can operate with any subset of nodes on the list. However, a node cannot connect and participate in the
distributed simulation unless it appears on the list. Managing and deploying node lists does incur some
overhead that increases with the number of participating nodes. Moreover, it is another element of pre-
coordination among partners that hampers agility in adding new nodes. Nevertheless, it retains the
convenience of having run-time configuration of participants for the distributed simulation.

When the run-time environment was further expanded to include a node in GovCloud, further research and
configuration became necessary because, at the time, LaRCNet put the GovCloud addresses on the other
side of the LaRCNet firewall. Therefore, to establish connectivity between LaRCNet and GovCloud peers
required firewall rules that would allow the DDS traffic to traverse the firewall. The DDS Interoperability
(DDSI) wire protocol defaults to sending DDS traffic using User Datagram Protocol (UDP) over a range
of ports whose size is, in part, dependent on the number of participant nodes. Establishing connectivity to
GovCloud was a simple matter of opening enough UDP ports between LaRCNet and GovCloud. This range
did differ from the DDSI default that starts with a base port number of 7400 but OpenSplice does provide
the option of setting the base port in its configuration file. All participants, of course, were required to use
this same base port setting. However, once the ports were open in the firewall and all participants had the
new base port set, connections between nodes were established without problems.

Another firewall presented a challenge during preparations for connecting to the SMART-NAS
demonstration environment. The AirSTAR ground station sat behind a firewall whose security plan did not
permit the opening of UDP ports. Only Transmission Control Protocol (TCP) connections were permitted
through Network Address Translation (NAT). OpenSplice does provide an option for using TCP instead of
UDP for DDS traffic. However, in practice, only a single node-to-node connection could be reliably
established using TCP over this firewall configuration, and the TCP option was exclusive to the UDP
option. Therefore, a direct DDS connection could not be established between the AirSTAR ground station
and all participants in the SMART-NAS demonstration. To get around this, the project developed a program
to act as a DDS bridge for the AirSTAR ground station. This program ran on an SDAB real-time server and
would establish the DDS peer connections with the other participating nodes. The program would also
establish a non-DDS TCP connection with the AirSTAR ground station. The program would read data from
the AirSTAR ground station and publish the data as DDS topic samples; likewise, the program would
extract traffic data from DDS subscriptions and forward it to the AirSTAR ground station.

3.3 Latency

OpenSplice provides numerous source code examples to demonstrate how developers can interface with
the DDS application programming interface (API). One of these examples generates a pair of executables
called ping and pong, and they are conveniently written to report round-trip latency. The ping executable
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sends a topic sample, and the pong executable echoes the sample back. The ping executable measures
round-trip latency as the difference in the system times recorded when it sent the sample and when it
received the echo. The ping executable generates statistics for 20 blocks of 100 published samples by
default. The project used ping-pong to measure latency of node-to-node connections for the three types of
connections in the DSP run-time environment. The results are shown in Table 1.

Table 1: Data Transfer Latency Using DDS.

Connection Type Latency (us)

Same subnet 200 to 300
Across subnets ~700
LaRCNet to GovCloud ~115,000

The results show that the contribution of the DDS middleware to latency appears secondary to the network’s
contribution. This is especially true for the LaRCNet-to-GovCloud communication which represents data
being exchanged between LaRC’s East Coast computers and GovCloud’s West Coast data center. The
latency for the same-subnet and across-subnet exchanges are good enough to support nodes with low-
latency coupling such as human-machine interaction. These would be more challenging for LaRCNet to
GovCloud exchanges; however, this latency remains good for loosely coupled system-of-systems
simulation such as the asynchronous exchange of ADS-B messages used for the DSP and SMART-NAS
scenarios. Additionally, the round-trip latency also affects the time it takes for nodes to discover peers.
There was no noticeable delay in peer discovery between nodes within LaRCNet. However, peer discovery
between a LaRCNet node and a GovCloud node was both noticeable and variable; observed times to
establish a connection range from a few seconds to as long as two minutes.

Measuring round-trip latency of the CDT programs is more challenging. Unlike ping-pong which responds
to receipt of new data, the two CDT simulations perform read and publish operations periodically within a
cyclic execution frame of 20 milliseconds; furthermore, the execution frames are not synchronized between
the CDT simulations. Variability and uncertainty in publication time, read time, and time differences in the
system clocks among the nodes prevents precise computation of end-to-end round trip latency. However,
DDS generates publication and reception timestamps for each sample. If these timestamps were echoed
back to the publisher using a new topic, then the DDS timestamps of the “echo” topic samples can be used
with the echoed timestamps published in those samples to estimate round trip latency. This estimate only
covers the round-trip latency within the DDS middleware and omits the time to transfer data between the
application and DDS. However, profiling of the CDT simulations indicates that this omission may be as
small as 2 microseconds/sample. The DDS timestamp estimation method was incorporated into a variant
of the CDT simulation and run with the same-subnet and across-subnet scenarios. (The CDT simulations
were not built to run in GovCloud, precluding that scenario.) Additionally, the scenarios were run with
different traffic loads of 2, 8, and 68 vehicles split evenly between each simulation execution. In each of
these cases, each simulation bursts its vehicle traffic in a single frame twice per second. In the last case,
each simulation publishes 34 samples with a total size of 29,376 bytes each burst. Table 2 shows the
resulting mean and standard deviation of the estimated latency from arun of each scenario; each run
recorded latency estimates from at least 7200 publication bursts. The differences in mean round-trip latency
between same-subnet scenarios and across-subnet are less dramatic than for the ping-pong program.
However, the standard deviation of the round trip latency does become substantially higher when one
crosses subnets. The data also shows that round-trip latency increases with traffic load but the increases
shown are proportional to the expected increase in placement of the data on the network. For example, an
ideal gigabit connection would take approximately 300 ps to place the 34 vehicle data burst of the 68 vehicle
scenario onto the network (assuming a UDP packet for each sample and 180 bytes for DDS overhead). In
either case, the latency remains low enough to support low-latency coupling in a distributed application.
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Table 2: Latency (us) Estimated in CDT Simulations with Different Traffic Loads.

2 Vehicles 8 Vehicles 68 Vehicles
Connection Type Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Same subnet 505 32 516 26 803 116
Across subnets 574 101 610 112 1006 192

3.4 Project Isolation and Data Security

Since DSP was a pathfinder for technologies to enable a general distributed system-of-systems modeling
capability within LaRC, both the ability to concurrently support multiple projects and to control access to
published data were important goals. DDS provides domains that enable different groups to communicate
using DDS over the same network without interference. A domain is a simple numeric identifier for the
group that a node intends to join as a participant. A node joining one domain sees no traffic from nodes that
have joined other domains; domains offer complete isolation from each other. Thus, different distributed
simulations can run simultaneously without interference if each simulation is associated with a unique
domain ID. The DDS specification assumes that an application can join only one domain and this limitation
exists in most license-free implementations of DDS. However, some of the commercial implementations
do provide multi-domain connectivity features so that a node can bridge multiple domains. Within a
domain, a group can further compartmentalize into subgroups using partitions. Partitions differ from
domains in a number of ways. First, a node can publish or subscribe to more than one partition. Second,
each node within the domain will continue to receive traffic for all the partitions in the domain; if a node
does not participate in a partition, then all the data received from that partition is simply unsubscribed data
and dropped. Third, partitions cannot define topics with the same name since topic definitions are global to
the domain. Finally, a partition has a string name rather than a numeric identifier. The SMART-NAS
runtime environment did use a partition to differentiate its traffic from other traffic that participating nodes
might publish that were not part of the SMART-NAS data model.

Domains and partitions provide application-level isolation and compartmentalization. However, neither of
these features provide data security. In fact, DDS vendors provide tools that allow a user to join any domain
and view all of its traffic. The OMG has a working group that is drafting a security specification for DDS
that maintains interoperability for supporting implementations. The current draft specification addresses
authentication, access control, encryption, and digital signatures (OMG 2016A). However, built-in security
can currently be found only as proprietary extensions in paid implementations of DDS. Nevertheless,
projects can also establish security using networking technologies like IP Security (IPSec) or DDS can
simply be used as a conduit to exchange encrypted data payloads. Neither DSP nor SMART-NAS explored
data security for DDS traffic.

3.5 Platform Support and Vendor Interoperability

Among the DSP evaluation goals was support for programming languages and operating systems ubiquitous
within LaRC. For programming languages, this included C, C++, Java, and MATLAB. For operating
systems, this included Linux, Windows, and Mac OS X. There does exist DDS implementations that cover
all of these languages and operating systems (RTI 2016). But not all implementations support all languages
and operating systems. For example, OpenSplice DDS doesn’t support the MATLAB language or Mac OS
X. Thus, if the DSP architecture were to be deployed, then vendor interoperability would be a necessity.
DDS includes an interoperability specification (DDSI) to assure interoperability among those vendors who
support it. This specification provides for run-time interoperability. However, it does require that topics be
identically defined by nodes when using different vendors. DDS relies on the use of the OMG Interface
Description Language (IDL) specification to define topics and relies on associated specifications for
mapping IDL to programming languages. However, the IDL specifications do not address all the needs for
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generating DDS topic source code, and there exists some ambiguity into how IDL maps to DDS topics.
Thus, each vendor has added proprietary extensions to IDL in support of DDS topic generation.
Consequently, one or more IDL files must be written and maintained to support multiple vendors, and
experimentation is necessary to verify that the auto-generated source code defines identical topics. This is
less than ideal but workable.

The DSP project team performed some ad-hoc verification of interoperability between different languages
(C++ and Java), operating systems (Linux and Windows), and different vendors (OpenSplice DDS and RTI
Connext DDS). However, incorporating these assessments into the DSP runtime environment remains
future work.

3.6 Time Management

Time management is the one set of goals were the DSP architecture lacks support. DDS does not provide
time management services. Therefore, the runtime environments had to develop their own time
management or rely on other services like Network Time Protocol (NTP). The simulation manager in the
DSP run-time environment could command a simulated coordinated universal time (UTC) for the
participating nodes to set upon entry to OPERATE mode. This ensured that that the ‘time of applicability’
reported in ADS-B messages would be based on the same simulated UTC start time. The DSP run-time
environment could also rely on the local system clock as the source for the initial simulated UTC time for
each node. This, however, relied on the nodes being in agreement on system time to better than + 15 seconds
since validity criteria for ADS-B messages required that the time of applicability in the message be within
30 seconds of current time on the recipient. The LaRCNet nodes in the DSP runtime environment are
configured to use NTP with a common time server to set their system clocks. Therefore, these nodes all
agreed to well within a second. System time in GovCloud also matched the LaRCNet time server to within
a second. Therefore, system time among DSP nodes did match well enough for the ADS-B simulation.
Similarly, SMART-NAS publications included timestamps derived from the local system clocks of each
node. It too had to rely on the LaRCNet nodes setting their system clocks using NTP and on agreement
among the LaRCNet node time servers and GovCloud system time.

In addition to lack of clock synchronization, the DSP architecture provides no time step synchronization
among nodes. In other words, the DSP architecture has no mechanism to synchronize the simulation start
among the nodes and the advancement of time in agreed upon steps among the nodes. To work around this,
the simulation manager in DSP included a rudimentary mechanism to synchronize simulation start by
commanding a system time at which all nodes should enter OPERATE mode. This mechanism relied on
the local system time of the nodes being in agreement to within sub-second accuracy, which was
accomplished using NTP with a common time server for the LaRCNet nodes. However, this could not
necessarily be guaranteed between the LaRCNet nodes and GovCloud. This is one of the reasons why
GovCloud hosted only the simulation manager and not an aircraft simulation. Furthermore, DSP did not
attempt to command or monitor time advancement after simulation start. It relied on each node accurately
advancing time. In other words, neither node would experience local clock drift or a local frame overrun
that would cause a substantial lead or lag relative to the other nodes for the duration of a simulation run.
For DSP, the typical simulation run was 30 minutes or less. The SMART-NAS runtime environment also
utilized no time step synchronization. Because the SMART-NAS demonstration used wall-clock time to
tag state data, nodes could join and begin operation at any time. Furthermore, like DSP, the SMART-NAS
demonstration still relied on the ability of constructive and virtual nodes to locally maintain accurate time
advancement after they entered operation.

As another consequence of lacking time management, DDS is also unable to guarantee deadlines for
synchronous communications or provide time-triggered communications. For example, DDS does include
a LATENCY_BUDGET quality of service (QoS) policy setting that allows the application to specify “the
maximum acceptable delay from the time the data is written until the data is inserted in the receiver's
application-cache and the receiving application is notified of the fact” (OMG 2014). However, the DDS
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specification then states, “This policy is a hint to the Service, not something that must be monitored or
enforced. The Service is not required to track or alert the user of any violation” (OMG 2014). In fact, the
specification only requires that an implementation compares the policy setting between the publisher and
its subscribers to assure the values are compatible. It is up to each implementation whether the policy setting
has other effects such as influencing internal prioritization of traffic. Whether the system can reliably meet
the latency budget is often left to the designers of the node applications and the network. In general, DDS,
at best, provides real-time compatible publication and subscription services whose actual end-to-end
performance often relies on the design and configuration of the underlying network. There is no requirement
in the DDS specification for implementations to manipulate network parameters, like the differentiated
services field in the IP header, to improve real-time performance or manipulate network QoS.

Without time management, the DSP architecture cannot support distributed simulations with low-latency,
cause-and-effect coupling between nodes, which is a common trait among many traditional distributed
simulations. Time management services could be built on top of DDS. However, to involve diverse
partners from government, academia, and industry would require development of a standard for time
management over DDS.

4 CONCLUSIONS

LaRC funded the Distributed Simulation Prototype (DSP) project to perform a deep dive in applying
Distributed Data Service (DDS) middleware and cloud computing to the problem of networked modeling
and simulation and of system-of-systems integration. This deep dive evaluated the resulting distributed
computing architecture against a set of goals covering upfront investment, integration, interoperability,
connectivity, security, and performance. Many aspects of these goals were demonstrated in a runtime
environment that included aircraft simulation nodes communicating via ADS-B messages and a simulation
manager to synchronize simulated UTC clocks and to synchronize mode transitions among the participating
nodes. Additional assessment with a collection of live aircraft, virtual aircraft simulators, and constructive
air traffic was possible through collaboration with NASA’s SMART-NAS project.

The DSP project established its demonstration prototype in four months with a modest investment of 1073
staff hours. No software licensing costs were incurred because the project used the community edition of
OpenSplice DDS. Using the demonstration prototype, the team succeeded in establishing connections
among simulation nodes in the same LaRCNet subnet, across LaRCNet subnets, and between LaRCNet
and GovCloud. Connectivity within a subnet was configuration-free, allowing any number of nodes to
connect without prior coordination. However, because DDS relies on multicast messages for peer discovery
and LaRCNet contains standard multicast addresses within a subnet, connectivity across subnets or between
LaRCNet and GovCloud required configuration files that limited OpenSplice DDS to unicast discovery
using a list of all participating nodes. Connecting to GovCloud also required new LaRCNet firewall rules
that allowed UDP packets to pass through a range of ports used by DDS. Measurement of latency for DDS
communication between nodes indicated that the network is the primary contributor to latency; the
contribution of the DDS middleware to latency is secondary. Roundtrip latency between nodes within
LaRCNet was within a millisecond, which is low enough to support low-latency interactions between nodes
such as man-machine interfaces. Because LaRCNet and GovCloud are hosted on opposite coasts of the
U.S., round-trip latency between nodes hosted in each exceeded 100 milliseconds. Thus, GovCloud is best
used for loosely-coupled, system-of-systems simulation such as the asynchronous exchange of ADS-B
messages among aircraft in a next-generation airspace system.

To support LaRC needs for a future campus-wide distributed simulation capability, a DSP-like architecture
would also need to support isolation of simultaneous projects, data access control and security, multiple
programming languages, multiple operating systems, and time management. DDS provides numbered
domains as an isolation mechanism. All DDS traffic within a domain is only exchanged between the
participants in that domain. However, data access control and security remains a specification extension
under development. Currently, access control and security features appear only in paid implementations of
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DDS as proprietary extensions and may not be interoperable. DDS implementations do exist for many
popular computing languages and operating systems including those at LaRC. However, not every
implementation supports the same set of computing languages and operating systems. Thus, vendor
interoperability becomes important to realize a general capability to integrate distributed simulation nodes.
DDS does specify an interoperability wire protocol (DDSI) that enables run-time interoperability among
vendors. However, it relies on assuring that topics are identically defined for each DDS implementation.
Although the DDS specification relies on OMG IDL to define DDS topics that can be translated to various
computing languages, ambiguities in the specification has led to differing vendor extensions to IDL for
auto-generation of DDS topic code. Thus, a project must craft one or more IDL files for multi-vendor
support and often needs to run experiments to assure that the generated topic definitions are equivalent.

In addition to lack of security features, DDS also lacks time management features for synchronizing clocks
(system and simulated) and progression of simulated time (i.e., synchronizing time steps). DSP developers
were left to construct their own time management features or operate their nodes using wall-clock time on
systems that synchronize their system clocks to compatible time servers using NTP. In the latter case, the
distributed simulation also trusts that nodes will not exhibit a lead or lag in time progression due to clock
drift or missed deadlines. Lack of time management also hampers DDS from monitoring or guaranteeing
communication deadlines defined by maximum latency or by periodicity. Such detection or guarantees are
left to the designers of the network and application. As a result, the DSP architecture has incomplete support
for traditional distributed simulations that exhibit low-latency, cause-and-effect coupling. This deficiency
would be best solved by development of a standard for time management services over DDS.

Partway through the DSP project, NASA’s SMART-NAS project also decided to employ DDS middleware
and cloud computing to create a national airspace simulation. The project conducted a demonstration that
successfully extended this technology to a distributed combination of live, virtual, and constructive
simulation nodes with DSP providing the virtual nodes. However, this demonstration fit well within the
limitations of this architecture. It operated using wall-clock time with the assumption that all nodes had
previous synchronized their system clocks to compatible time servers. It’s reliance on asynchronous
exchange of aircraft state data with timestamps also permitted nodes to join at any time without
synchronizing time steps, but also assumed that nodes would maintain the pace of simulated time with
respect to wall-clock time for the duration of the run.
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