
A Comprehensive Performance Evaluation of
Different Kubernetes CNI Plugins for Edge-based
and Containerized Publish/Subscribe Applications

Zhuangwei Kang
Vanderbilt University

Nashville, Tennessee
zhuangwei.kang@vanderbilt.edu

Kyoungho An
Real-Time Innovations
Sunnyvale, California

kyoungho@rti.com

Aniruddha Gokhale
Vanderbilt University

Nashville, Tennessee
a.gokhale@vanderbilt.edu

Paul Pazandak
Real-Time Innovations
Sunnyvale, California

paul@rti.com

Abstract—The growing number of data- and latency-sensitive
Internet of Things (IoT) applications is posing significant chal-
lenges for the edge and cloud deployment of publish/subscribe
services, which are required by these applications. Two indepen-
dently developed technologies show promise in addressing these
challenges. First, Kubernetes (K8s) provides a de-facto standard
for container orchestration that can manage and scale distributed
applications in the cloud. Second, OMG’s Data Distribution
Service (DDS), a standardized real-time, data-centric and peer-to-
peer publish/subscribe middleware, is being used in thousands
of critical systems around the world. However, the feasibility
of running DDS applications within K8s for latency-sensitive
edge computing, and specifically the performance overhead of
K8s’ network virtualization on DDS applications is not yet
well-understood. To address this, in this paper we evaluate the
performance overhead of several container network interface
(CNI) plugins including Flannel, WeaveNet and Kube-Router
installed on a hybrid (ARM+AMD) edge/cloud K8s cluster. The
paper reports results from a comprehensive set of experiments
conducted to measure and analyze the performance (throughput,
latency, and CPU/memory usage) of containerized DDS applica-
tions from the perspectives of virtualization overhead, reliability
(DDS Reliable and BestEffort QoS), transport mechanisms (UDP
unicast and multicast), and security. The insights derived from
this study provide concrete guidance to developers of DDS-based
applications in choosing the right virtual network plugin and
configurations when hosting their real-time IoT applications in
real-world containerized environments.

Index Terms—Kubernetes, Container Networking, Data Dis-
tribution Service, Pub/Sub, Performance Evaluation

I. INTRODUCTION

There is a growing trend towards deploying large-scale,
data- and latency-sensitive Internet of Things (IoT) applica-
tions in number of industrial sectors, such as manufacturing,
healthcare, energy and transportation. These applications must
collect, store, and analyze fast-moving data streams generated
by sensors in the cloud/edge service layers for real-time
control and monitoring. Moreover, as the scale and complexity
of such industrial IoT applications increases, completing an
operation may require communication between multiple (po-
tentially heterogeneous) sensors and cloud/edge services, and
require (sub)millisecond-level decisions to streaming events.

The Object Management Group (OMG) Data Distribution
Service (DDS) is an open standards-based middleware de-

signed to support the data dissemination needs of real-time
applications. DDS abstracts the underlying logic of data dis-
tribution and management to simplify the development of real-
time publish/subscribe (pub/sub) applications. The publish-
subscribe design of DDS enables decoupled communications
between applications in time and space, so applications can
dynamically join and leave any time from anywhere without
breaking the system. DDS also supports a fully distributed
peer-to-peer communication model and uses a binary wire for-
mat protocol. This helps it to meet performance and reliability
requirements for mission-critical real-time applications.

Although DDS addresses the need for real-time and reliable
information dissemination, the large scale of IoT applications
and the heterogeneity of the deployment environment com-
prising a continuum from edge to cloud resources makes this
deployment complicated. It is in this context that container-
ization technologies, such as Docker and Kubernetes, show
promise. Containers enable lightweight encapsulation of func-
tional modules, such as DDS’ pub/sub capabilities, and offer
resource isolation thereby allowing distributed applications
and services to be easily deployed, scaled, and operated across
distributed and heterogeneous platforms.

Managing a cluster of containers across distributed re-
sources is supported by technologies, such as Kubernetes
(K8s). K8s is the de-facto standard for orchestrating con-
tainerized workloads. With K8s, it is easy to deploy, update,
scale, and self-heal distributed applications. For these reasons,
there is growing demand in industry to use K8s to manage
distributed and real-time applications.

Despite the promise of K8s, two fundamental gaps remain
unresolved in deploying industrial strength IoT pub/sub appli-
cations across the edge/cloud continuum. First, the feasibil-
ity of deploying K8s-managed, containerized DDS pub/sub
services for large-scale IoT applications that are deployed
across the edge-to-cloud resources remains to be investigated.
Second, K8s supports several container network interface
(CNI) plugins that provide a uniform network namespace and
DNS capabilities across the entire container cluster. However,
since each CNI plugin is implemented in different ways,
their performance when used with IoT applications based on



real-time pub/sub middleware, such as DDS, is likely to be
different. Until now, no study has investigated this.

The research presented in this paper addresses these key
gaps. To the best of our knowledge, this is the first comprehen-
sive study of DDS performance in a K8s cluster deployment
at the edge with different CNI plugins. Specifically, this paper
makes the following contributions:

1) It validates the feasibility of operating DDS applications
in a K8s cluster;

2) It explores and analyzes a set of K8s CNIs deployed on
a K8s cluster with heterogeneous platforms;

3) It describes the automated benchmark framework that
we developed to evaluate the performance of container-
ized DDS applications under various CNIs, workloads,
and DDS quality of service (QoS) configurations; and

4) It presents a systematic set of experiments that quan-
titatively show the performance impact of K8s CNIs
on DDS applications with different QoS settings and
payload lengths.

The rest of the paper is organized as follows: Section II
provides an overview of DDS and K8s, it explains the rel-
evance of the K8s network model to DDS, and it compares
the most commonly used CNI plugins for K8s; Section III
introduces our evaluation environment, system configurations,
benchmark framework, and reports on results of performance
experiments; Section IV compares our work to related work;
and finally, Section V provides insights, concluding remarks
and future work.

II. BACKGROUND ON UNDERLYING TECHNOLOGIES

To make the paper self-contained, this section provides the
requisite background on the technologies used in this paper.

A. OMG Data Distribution Service (DDS)

The OMG DDS standard defines a data-centric, publish/sub-
scribe (pub/sub) communication framework for real-time ap-
plications. DDS is designed to meet the performance, scalabil-
ity, fault-tolerance, and security requirements of real-time and
mission critical systems. The DDS pub/sub interaction model
promotes loose coupling between applications with respect to
time (i.e., the publisher and subscribers need not be present at
the same time) and space (i.e., publishers and subscribers may
be located anywhere). A core concept in DDS is data-centricity
wherein the data moved between publisher and subscriber is
treated as a first-class citizen in the system. This requires
programmers to define a data model of named topics with
specific data types, and to provide this information to the
middleware. This allows DDS to understand the structure and
values of the data it manages, which consequently allows it to
perform a wide range of fine-grained data-centric operations
and optimizations, such as validating data liveliness, content-
based data filtering, etc.

Figure 1 presents the primary entities involved in a DDS
application. A DomainParticipant is the starting point in the
pipeline of creating a DDS application. It is responsible
for (1) joining a DDS Domain (only participants using the

same domain ID can communicate with each other); (2)
creating DDS Publishers and Subscribers; (3) creating topics,
data types, and QoS policies; (4) creating DDS Writers and
Readers that are associated with created topics, data types,
and QoS policies. A Publisher or Subscriber can have multiple
DataWriters or DataReaders, respectively. Each DataWriter/-
DataReader is associated with a single topic. When sending
messages, samples written by a DataWriter are forwarded to
matching DataReaders in terms of topics, data types, and QoS
policies.

Fig. 1: DDS Architecture

One of the most compelling features of DDS is its support
for a rich set of configurable QoS policies that can be applied
on DDS objects at different levels of the architecture. DDS
QoS is a concept that is used to specify the non-functional
behavior of an application (e.g. reliable transmissions and
persisting historical data). With XML-based configurable QoS
policies, developers can define and update desired behav-
iors and resource distribution strategies for applications. For
example, the Reliable QoS permits reliable communication
based on a series of delivery confirmation mechanisms at
the middleware layer even when using the unreliable UDP
transport protocol. Likewise, Batching QoS allows publishers
to buffer data samples and send in bulk for a high throughput
use case.

B. Kubernetes and its CNI Plugin Support

Kubernetes (K8s) is an orchestration platform for deploying
and managing containerized workloads and services. It helps
manage the applications by scaling up and down, performing
updates and rollbacks, self-healing, etc. The deployable unit
of K8s is a pod that is essentially a collection of one or more
containers with shared storage and network. Containers in a
pod share an IP address and can communicate with each other
over shared memory or localhost interface.

In a K8s cluster, every pod gets its own directly accessible
IP address, and therefore does not require users to deal
with mapping ports between containers. The K8s networking
model [1] creates a clean, backward-compatible model where
pods can be treated much like physical hosts. When they are



created, K8s pods get unreliable (i.e., non static) IP addresses
as they are dynamically assigned. Therefore, pods are typically
stitched to a K8s service that has a reliable IP address and
a DNS name. Then, a K8s service load balances network
traffic for the stitched backend pods. This model imposes
the following fundamental requirements: (1) all containers
can communicate with all other containers without Network
Address Translation (NAT); (2) all nodes can communicate
with all containers (and vice-versa) without NAT; (3) the IP
that a container sees itself is the same IP that others see.

Kubernetes provides a plugin model for network connectiv-
ity called the Container Network Interface (CNI), which essen-
tially constructs a flat network address space where each node
owns an individual network segment (a CIDR block). A CNI
plugin enables every pod running on a physical node to have a
globally unique virtual IP address and eliminates the need for
network address translation for pod-to-pod communications.
The most popular contemporary CNIs include Flannel, Kube-
Router, Calico, WeaveNet, and Cilium. However, the latest
implementations of Calico and Cilium do not support the ARM
architecture, which we need for our edge deployments; hence,
this paper focuses on Kube-Router, Flannel, and WeaveNet
only.

CNI plugins can be implemented at the data link layer (L2)
or network layer (L3). Flannel enables both L2 (VXLAN) and
L3 (Hostgw) backends, while Kube-Router and WeaveNet are
implemented at L3 and L2, respectively. Figure 2 provides an
architectural comparison between these technologies described
below. We first introduce the Host-mode, which is a native
networking solution in K8s and is used as the baseline
setting for understanding the overhead of CNI network plugins
reported in Section III and then delve into the details of each
CNI.

Fig. 2: Architecture Comparison of K8s CNIs

Host-mode is a native networking option in K8s allowing
pods to share the host’s network space. Therefore, it does
not require installing any virtual network plugins; rather it
establishes connections between containers using host IP ad-
dresses. This implies that users have to deal with port conflicts
when running multiple containers on the same host. Moreover,
since the Host-mode completely exposes the host network
space to containers, any pod can sniff and manipulate the
network traffic of other containers. Therefore, it is regarded

as an insecure solution alone, but the security issue can be
compensated by leveraging DDS Security that can protect
applications from unauthorized access. . Host-mode is the best
option for performance [2] [3] because it directly uses the
host’s network interface and hence its performance is adopted
as the baseline in this paper.

Flannel [4] is the most straightforward and mature K8s
CNI [5]. The Flannel network fabric is established and con-
trolled by a daemon process called flanneld, which is respon-
sible for 1) installing tunnel devices (interface and bridge) on
the host machine and maintaining the network configuration
with etcd (a distributed key-value store running on K8s master
node); 2) allocating and managing IP address resources for
pods; 3) emulating the ARP protocol and populating the host
ARP table; and, 4) querying routing information (MAC, IP,
VNI) when forwarding packets. Flannel can be paired with
other backends (e.g., VXLAN and Host-gw) to meet the
deployment demands on heterogeneous platforms and network
environments. In terms of security support, Flannel provides an
experimental backend called Flannel-IPSec that encapsulates
and encrypts packets based on the Internet Protocol Security
(IPSec) protocol.

Figure 2 shows the Flannel networking architecture on a
single host when VXLAN and Host-gw backends are used.
Specifically, the VXLAN backend creates an overlay on top
of the underlying network based on the VXLAN tunneling
technique. It installs a network bridge cni0 and a virtual
interface flannel.1 on the host machine, where cni0 bridges
traffic between the host-end virtual interface of VETH pair
and flannel.1. When a sending packet arrives at the local
flannel.1 interface, flanneld queries etcd to obtain the desti-
nation IP (physical) and encapsulates the packet into another
UDP packet with the source and destination container IP
(virtual) in kernel space. The Host-gw backend uses peer
hosts as gateways, writing routing rules between source and
target pods directly into the host’s iptable ensuring that there
are no in-kernel packet wrapping and unwrapping operations
during communication which is required by the VXLAN
option. The Host-gw backend incurs less overhead, but the
L2 interconnection between nodes is required.

WeaveNet [6] fully emulates a L2 network whose topology
is built by application-level virtual routers located on the user
space of each host. WeaveNet routers set up full mesh TCP
connections and synchronize routing information based on
spanning tree and gossip protocols. WeaveNet supports two
encapsulation modes: sleeve mode and fastpath mode. In the
sleeve mode, it first captures packets from the weave bridge
(see Figure 2), then forwards them to the virtual router in
the user space to perform UDP encapsulation, and finally
sends them back to the kernel space for post routing. In
contrast, the fastpath mode adopts open-datapath (odp) of
Open vSwitch (OVS) to wrap UDP packets with a VXLAN
header in the kernel space, and then routes packets based on
the odp routing tables issued by the virtual router. Since the
fastpath mode has less context switches than the sleeve mode,
it has been proven to earn better performance [7], and hence is



used in our analysis. Moreover, a distinctive feature supported
by WeaveNet is unicast-based multicast, which means that
containers are able to send multicast traffic which is then
propagated by the physical network devices using unicast.
Similar to Flannel-IPSec, the WeaveNet fastpath mode also
supports data encryption based on IPSec; the difference being
that Flannel realizes this in the kernel, while WeaveNet does
so in the OVS VXLAN tunnel.

Kube-Router [8] is a lean yet powerful K8s CNI de-
signed for the sake of simplifying the K8s network fabric,
which can be seen from its architecture in Figure 2. Kube-
Router constructs L3 virtual networks by deploying an agent
on each node. When operating in a single subnet, Kube-
Router employs the internal Border Gateway Protocol (iBGP)
for exchanging routing and reachability information between
pods. In the context of BGP, a K8s cluster is regarded as
an autonomous system (AS), and nodes within the AS act
like routers that form a full node-to-node mesh by advertising
pod subnet CIDR to the rest of peers. To enable cross-subnet
pod-to-pod communication, Kube-Router offers both overlay
(IP-in-IP tunneling) and underlay (BGP) options, where the
IP-in-IP tunnel encapsulates a pod IP packet as the payload of
host IP packet. Kube-Router seamlessly integrates with out-of-
the-box K8s functionalities, such as IP address management
(IPAM), pod networking, Network Policy, etc. However, data
encryption is not yet supported and so security features need
to be implemented at the application or transport layer.

C. Kubernetes-managed Distributed DDS Application

DDS is an application-layer networking framework that
relies on the underlying transport layer protocols (e.g. UDP,
TCP). DDS participants rely on an internal DDS-specified
discovery service to exchange their IP addresses for peer-to-
peer communications. Therefore, DDS works better over a net-
work without a NAT requirement. Since K8s does not require
NAT, its container orchestration capabilities and networking
model makes it better suited than Docker alone for realizing
distributed DDS applications across heterogeneous resources.

With the DDS discovery service, containerized DDS par-
ticipants belonging to the same DDS Domain can discover
and establish connections with each other using topics, ab-
stracting away IP-based communications. This allows DDS
pods to discover and communicate without a K8s service
thereby overcoming the unreliable IP address issue with pods.
DDS typically employs multicast for the discovery service.
However, if a K8s networking addon or a transport protocol
does not support multicast, a complementary means to enable
DDS participants to set up machine-to-machine connections
automatically is an implementation provided by the RTI Cloud
Discovery Service (CDS) [9], which plays the role of bridging
and maintaining reachability information between participants.
However, given that RTI CDS is a centralized standalone
application in the system, a K8s StatefulSet can offer a set
of replicated services to avoid this single point of failure.

III. EVALUATING DDS PERFORMANCE IN KUBERNETES

In this section we evaluate the performance of DDS appli-
cations deployed in a K8s cluster along the dimensions of reli-
ability, scalability, and security. Accordingly, we aim to study
the impact of K8s CNIs on DDS performance from different
angles and propose deployment recommendations when differ-
ent DDS QoS policies are used. It is worth noting that DDS
uses UDP as the default transport protocol because it meets
the design concept of real-time systems; hence, the following
experiments employ UDP as the underlying transport protocol.
The source code for the benchmarking capabilities presented in
this paper are available at https://github.com/doc-vu/K8sDDS,
which provides the experimental apparatur for examining the
validity of our experimental approaches and results. Note
our experiments were conducted on a resource-limited edge
environment and performance values may vary to some extent
under other hardware profiling and cluster scales.

A. Experimental Setup and Benchmark Framework

1) Hardware: The K8s cluster for our experiments is
composed of one master node and 10 worker nodes. The
master node is equipped with quad-core Intel i7-2600 3.40
GHz processors, 4GB RAM. Worker nodes are composed of
10 Raspberry Pi 3 Model B boards that each has four ARMv7l
1.20 GHz processors and 1GB RAM. All worker nodes are
connected to a 100 Mbps LAN and we use the default MTU
size (1500 bytes). This setup is representative of an indoor
edge-fog deployment, e.g., a warehouse, factory floor, hospital
or convention center where networks are stable but still use
IoT devices to deploy applications. We chose this setup for two
reasons: first, it is representative of real-time IoT applications
deployed at the edge, and second, we wanted to maintain
stable underlying network conditions to accurately pinpoint
the effects of K8s CNI plugins on DDS performance.

2) Software: We installed Ubuntu 20.04 LTS (64bit) and
Raspbian 9 (32bit) OS on the master and worker nodes,
respectively. We used Docker 19.03 and Kubernetes 1.19
for container runtime and orchestration, respectively. The
versions of CNI network addons used were: Flannel 0.11.0,
WeaveNet 2.6.5 and Kube-Router 0.3.0. We leveraged the
RTI Connext DDS v6.0.1, and its test harness called PerfTest
v3.1 [10] for benchmarking applications and to measure la-
tency and throughput with various configurations. To obtain
optimal performance results, the OS network performance was
tuned based on recommended configurations for RTI Connext
DDS.1.

3) Benchmark Framework: To reduce manual efforts of
setting up the cluster and evaluating heterogeneous CNIs and
DDS configurations, we developed an automated benchmark
framework as shown in Figure 3, which is an out-of-the-box
tool that can help DDS users to make CNI selection and
configuration decisions under specific use cases. The K8s auto-
deployer in the figure accepts a custom deployment profile,

1 https://github.com/rticommunity/rtiperftest/blob/master/srcDoc/tuning os.
rst

https://github.com/doc-vu/K8sDDS
https://github.com/rticommunity/rtiperftest/blob/master/srcDoc/tuning_os.rst
https://github.com/rticommunity/rtiperftest/blob/master/srcDoc/tuning_os.rst


Fig. 3: Architecture of K8sDDS Benchmark Framework

then automatically carries out the following tasks in sequence:
(1) initialize the K8s cluster; (2) install CNI plugins; (3) deploy
Perftest pods, DDS-CDS Deployment, and Resource Metrics
Monitor Deployment on the cluster. The functionality of each
component is described below.

• A Perftest pod is a containerized Perftest benchmark
application compiled with Connext DDS, which can be
profiled as either a publisher or subscriber. It exposes
a rich set of configurable DDS QoS policies and run-
time experimental options allowing users to emulate
heterogeneous use cases. Unlike broker-based service dis-
covery mechanism in centralized messaging middleware,
Connext DDS does so with multicast.

• The Cloud Discovery Service (CDS) is an external DDS
infrastructure service used for discovery when multicast
is not supported by the network infrastructure, such as
K8s CNIs.

• Resource Metrics Monitor is a K8s built-in metrics server
that is deployed as a K8s Deployment. It collects con-
tainer CPU/memory usage information from a Kubelet
(a K8s agent running on each node) and exposes them
to K8s API server, which are then accessible through
Metrics API or the K8s command-line tool, kubectl.

Although our experiments were conducted in an edge environ-
ment, the framework can be applied to a cloud-based cluster
as well.

Once the cluster is created, the DDS-PerfTest Manager
generates performance test commands with a given experiment
profile and executes them on pods using the kubectl tool. The
manager then monitors the experiment’s progress and periodi-
cally gathers node resource usage from the K8s Metrics Server
using the ”kubectl top” command. For DDS performance
measurements, we deploy the containerized PerfTest [10]
pub/sub application pods on worker nodes. For single pub/sub
tests, a PerfTest container was deployed on each Raspberry Pi
board without any resource constraints. For multi-subscriber

scenarios, we deployed multiple containers on a Raspberry Pi
and limited each container to use a single core. A PerfTest
application measures latency, throughput, and CPU usage
internally, and reports execution summary through standard
I/O when completed. Each machine used in our testbed
accommodates a single publisher or subscriber pod in our
experiments unless otherwise specified. By integrating the
kubectl tool with the PerfTest application, we can easily invoke
and trace a performance test. For instance, the following
commands show an example of 1-pub/1-sub latency test:

nohup kubectl exec -t ./perftest_cpp -pub
↪→ -latencyTest -dataLen 1024 -
↪→ executionTime 120 -domain 1 -
↪→ transport UDPv4 -nic eth0 -cpu -
↪→ noPrint -- perftest-pub0 > logs/
↪→ perftest-pub0.log 2>&1 &

nohup kubectl exec -t ./perftest_cpp -sub
↪→ -latencyTest -dataLen 1024 -
↪→ executionTime 120 -domain 1 -
↪→ transport UDPv4 -nic eth0 -cpu -
↪→ noPrint -- perftest-sub0 > logs/
↪→ perftest-sub0.log 2>&1 &

PerfTest has two operational modes: Latency Test and
Throughput Test. In the throughput test mode, a publisher
sends data samples at a configurable rate, and a subscriber
calculates throughput by counting the volume of received
bytes and samples. PerfTest behaves differently in the Latency
Test mode, where all samples are marked as latency samples,
and they are exchanged in a stop-and-wait manner between
publisher and subscriber. In each trip, specifically the publisher
enters into the wait state after sending a ”ping” sample until
a responding ”pong” is returned by subscriber. The Publisher
computes the one-way latency from the measured round trip
time. This measurement method gets rids of the impact of sys-



tem clock difference across machines on latency accuracy and
the interference of network congestion. We used the default
configuration of PerfTest unless specified. The following is an
example command that we used for experiments:

B. Experimental Results

1) Virtualization Overhead: To understand the feasibility of
encapsulating DDS-based real-time applications as containers
in K8s clusters, it is worth investigating the performance
overhead introduced by container virtualization. To this end,
we design two sets of controlled experiments once running a
1pub-1sub DDS application directly on baremetal and once on
containers with the Host-mode network.

Figure 4 shows experimental results with 1 publisher-1
subscriber over UDP unicast. The throughput of containerized
DDS application is about 6% lower than the performance on
baremetal when sending payloads that are smaller than 1KB.
Previous studies [11], [12] indicate that container virtualization
can lead to slight computation overhead for CPU-intensive
applications, which is the case when writing small messages
at unlimited rate. For large samples, with network bandwidth
becoming saturated, the impact of container virtualization is
negligible. Latency results indicate the end-to-end response
time for the two types of deployments in a zero-load network
condition. The performance difference is smaller than 1.5%
over 5 payload lengths. Overall, the impact of container
virtualization is not detrimental to the real-time property of
DDS applications.

Fig. 4: Performance overhead of container virtualization in
Throughput and Latency Tests. Figure shows mean throughput
and 90th latency. Communication Pattern: 1pub-1sub. Publi-
cation rate: unlimited for throughput test and ping-pong mode
for latency test. Reliability : enabled, Batching: disabled. Test
period: 120 seconds.

2) CNI-based Network Virtualization Overhead: Due to the
drawbacks of Host-mode (security, portability, and resource
isolation), CNI-based network solutions are recommended for
most K8s use cases. To quantify the performance overhead im-
posed by virtual networks on DDS applications, we conducted
throughput and latency tests with different CNI plugins.

DDS accomplishes reliable data transmission over unre-
liable (UDP) transport relying on application-level heart-
beat and acknowledgment/negative-acknowledgment (ACK/-
NACK) mechanisms. For the throughput tests, the publisher
distributes data samples at an unlimited publication rate. For a
publisher that requests strict reliability, its DataWriter thread
will block until receipt of an ACK signal from the subscriber

that confirms a message has been delivered successfully.
Then the confirmed sample is deleted from the queue, and
DataWriter recovers to the writable state. In this experiment,
the Reliable QoS is enabled the batching is disabled.

Although the default WeaveNet MTU is 1376 bytes, we
manually configured it to 1438 bytes as it is the maximum
effective MTU that allows WeaveNet to work in its fastpath
mode on our testbed. Flannel uses the same MTU (1500 bytes)
as the physical network interface when porting with the Host-
gw backend, while using 1450 bytes MTU in VXLAN mode.
The MTU allowed by Kube-Router is 1480 bytes. The rest
of the experiments in this paper also adopt the same MTU
configurations. The overhead ratios of each CNI on through-
put and latency compared to Host-mode are summarized in
Tables I and II, respectively.

CNI

∆T (%) Payload(B)
64 256 1024 4096 16384

Flannel-VXLAN 45.6 44.4 41.3 8.4 2.9

Flannel-Hostgw 29.8 28.4 24.6 0.3 -0.1

Kube-Router 28.1 28.4 24.5 0.3 -0.1

WeaveNet 52.6 51.6 49.5 15.5 2.8

TABLE I: The throughput overhead of each CNI relative to
Host-mode in percentage.

CNI

∆L(%) Payload(B)
64 256 1024 4096 16384

Flannel-VXLAN 39.3 37.8 28.7 25.6 35.9

Flannel-Hostgw 16.5 15.2 13.1 18.8 27.7

Kube-Router 13.5 12.6 9.8 19.1 30.3

WeaveNet 52.2 48.7 38.6 33.1 41.4

TABLE II: The 90th latency overhead of each CNI relative to
Host-mode in percentage.

Throughput results shown in Figure 5 and Table I reveal that
CNIs that rely on VXLAN tunneling, such as Flannel-VXLAN
and WeaveNet, present notable throughput degradation over
all payload lengths due to the overhead of L2 encapsulation.
WeaveNet’s throughput is comparably lower than Flannel-
VXLAN suggesting the OVS VXLAN encapsulation in Weav-
eNet yields more overhead than the native VXLAN imple-
mentation adopted by Flannel. Direct routing approaches like
Flannel-Hostgw and Kube-Router obtain similar throughput.
Although the MTU of Flannel-Hostgw is 20 bytes smaller
than Kube-Router, the impact is negligible when the data
frequency is unlimited. The overall trend indicates that the
performance gap between Host-mode and CNIs gradually
narrows with the increase in payload size. The performance of
L3 CNIs is on par with the Host-mode when the bandwidth
is saturated. Therefore, the extent of performance degradation
when running DDS applications in containers depends on the
CNI used, payload size, and network load condition.



Fig. 5: Performance comparison of different K8s CNI plu-
gins in Throughput and Latency Tests. Figure shows mean
throughput and 90th latency. Communication Pattern: 1pub-
1sub. Publication rate: unlimited for throughput test and ping-
pong mode for latency test. Reliability: enabled, Batching:
disabled. Test period: 120 seconds.

For the latency test (see Figure 5 and Table II), we notice
that Kube-Router has around 3% better latency than Flannel-
Hostgw for messages that are smaller than 1KB indicating
that Kube-Router spends less time in encapsulating and rout-
ing packets. However, when the payload length is greater
than 1KB, Flannel-Hostgw performs better than Kube-Router,
which is caused by the difference in MTU. For instance, a
16KB message is chopped into d 16K

1480B e = 12 IP segments
when using Kube-Router for pod networking, while Flannel-
Hostgw needs d 16K

1500B e = 11 instead. WeaveNet is slower than
Flannel-VXLAN by 4.3%-12.9% over five payload lengths,
which further testifies WeaveNet’s data encapsulation strategy
incurs more overhead.

3) BestEffort QoS: Apart from the stringent reliability
QoS employed in the previous experiment, DDS offers a
weak reliability choice, called BestEffort, which meets the
demand of applications that desire superior end-to-end la-
tency but tolerable packet dropout and out-of-order delivery.
When BestEffort QoS is enabled, every sample is written
immediately and disseminated at most once and no extra
resources are consumed for maintaining reliable connections
between publishers and subscribers. If the send queue is full,
DataWriter replaces the last sample with the incoming one.
With BestEffort, applications are expected to obtain lower
latency due to lower application-level overhead while the
throughput performance correlates closely with the bandwidth
utilization rate.

Publishers with BestEffort QoS can use bandwidth more
effectively in low load conditions but may aggravate conges-
tion if network is overwhelmed. Therefore, it is unreliable
to observe the maximum throughput with BestEffort. In this
case, this experiment concentrates on the latency of unreliable
DDS applications on each CNI and compares the performance
changes relative to Reliable mode. In the latency test, we
configured a 200 millisecond timeout period for the publisher
to wait for a “ping” response.

Figure 6 shows the latency numbers when enabling BestEf-
fort and the performance gain compared to the Reliable mode.

Similar to the previous experiment, L2 CNIs have higher
latency than L3 ones. However, their latency dramatically
reduces in the BestEffort mode.

Fig. 6: 90th Latency with BestEffort QoS. Communication
Pattern: 1pub-1sub. Transport: UDP. Batching: disabled. Test
period: 120 seconds.

4) Multicast vs. Unicast: DDS supports reliable
middleware-level multicast with both underlying unicast and
multicast transports in which case application performance
and scalability is closely influenced by the underlying
transport mechanism. As such, this experiment investigates
performance with unicast and multicast of each CNI in
multi-subscriber scenarios. DDS can leverage multicast for
scalability with multiple subscribers. However, WeaveNet is
the only K8s CNI plugin that emulates L2 multicast. With
that, a user application sends multicast packets to WeaveNet,
and then WeaveNet disseminates the packets to multiple
receivers using unicast. Other CNI plugins only support
unicast, in which case, DDS takes care of sending data
samples to multiple subscribers.

In general, multicast is more efficient when the same data
needs to be sent to multiple subscribers. By using multicast,
the network bandwidth and CPU usage of publisher pod
will be constant, regardless of the number of subscribers.
Therefore, a publisher with WeaveNet is expected to use less
resources and performs better than others when there are multi-
ple subscribers. According to our previous experiments, Kube-
Router and Flannel-Hostgw are preferred over WeaveNet
in reliable unicast communication. This raises the question
whether WeaveNet multicast can make up for the overhead
yield from OVS VXLAN encapsulation, and thus become a
more promising solution in multi-subscriber use cases. For this
experiment, we deployed each pub/sub container on different
nodes. In the throughput test, a single publisher continuously
sends 1KB workloads to 4/8/12 subscribers at an unlimited
publication rate.

WeaveNet fully emulates layer-2 network supporting mul-
ticast, but incurs nontrivial overheads as shown in Figure 7.
The performance of WeaveNet-Multicast lags behind all other
unicast solutions when there are four subscribers, then exceeds
WeaveNet-Unicast and Flannel-VXLAN in the 1pub/8sub use
case, eventually becoming the optimal CNI as the number of



Fig. 7: Performance comparison of multicast/unicast-enabled CNIs in aspects of throughput, pub pod CPU usage, pub host
CPU usage, pub host memory usage, and 90th ping-pong latency. The left four plots are produced by the same throughput
tests. QoS settings: Reliable QoS: enabled, Batching QoS: disabled, Transport: UDP. Payload length: 1KB. Test period: 120
seconds.

subscribers increases to 12. The throughput results in Figure 7
confirms that unicast throughput linearly decreases by the
number of subscribers, while performance with emulated mul-
ticast degrades at a relatively slower pace. In the throughput
test, since the publication rate is unlimited, the DataWriter
is blocked once the writing buffer at the middleware layer
overflows. Therefore, the CPU usage of perftest process
and publisher host are restricted to around 25% and 32%,
respectively. However, for WeaveNet-Multicast, the process
of wrapping samples to individual subscribers takes place
in the Weave container, leading to incrementally increasing
CPU utilization on the host. WeaveNet-Multicast effectively
saves host memory due to its multicast functionality on the
virtual network stack. The relatively low memory usage and
throughput of WeaveNet-Unicast are due to the overhead of
OVS VXLAN encapsulation.

Recalling the description from the previous 1pub-1sub ex-
periments, we compute one-way latency based on the round-
trip time, which prevents the influence of system clock dif-
ferences on the accuracy of latency measurements at the
nanosecond level. In an N-subscriber scenario, however, if all
subscribers respond to a latency “ping” sample, the publisher
needs to process N “pong” samples, which will artificially
increase the round-trip time of the Nth “pong” as the previous
N−1 responses have to be processed in a single-thread, conse-
quently resulting in inaccurate latency observations. Therefore,
we measure the average one-way latency over all subscribers
by letting them return a single “pong” sample in a round-robin
manner, such that

Lavg =
1

K

K∑
i=1

Li%N (1)

, where Li%N is the one-way latency of the (i%N)-th sub-
scriber and K is the total number of samples emitted by
publisher during the test. Also, since the underlying layer of
WeaveNet-Multicast is unicast, it is reasonable to compare
its latency results with other unicast-based CNIs. According
to Figure 7, the average latency over all subscribers for
WeaveNet-Multicast is greater than others, which means the
delay introduced by emulating multicast is non-negligible. In
contrast, since considerable duplicated messages are cached in

the fix-sized send queue in high traffic scenarios, unicast-based
approaches obtain higher latency.

Overall, we conclude that performance in multi-subscriber
scenarios is coupled with the number of subscribers and the
data frequency. For small-scale systems where a publisher has
lower data frequency, unicast-based CNIs are recommended;
otherwise, WeaveNet-Multicast is more scalable and and there-
fore a better option for high throughput and low latency use
cases.

5) Evaluating Security Support: Communication between
containerized DDS applications in the K8s cluster can be
protected at the middleware layer (DDS Security extension),
transport layer (DTLS), or IP layer (IPSec), where the security
addon and DTLS are defined by the OMG DDS security model
and IPSec is supported in some K8s CNIs. Given that the
differences between DDS Security plugin and DTLS have
been well-studied in [13] and DDS Security plugin is more
suitable for DDS-based systems, this section delves into the
comparison of DDS Security extension and IPSec approaches
in a K8s deployment. Particularly, Flannel and WeaveNet
employ the Encapsulating Security Payload (ESP) protocol to
secure IP packets, which is a member of IPSec protocol suite.

Authentication, integrity, data-origin authenticity, confiden-
tiality, and access control are core foundations of informa-
tion security. The first phase of secure communication is to
establish mutual trust connection between participants. The
DDS Security plugin does so with Public Key Infrastructure
(PKI) framework. The OpenSSL library (v1.1.1d for this
experiment) is adopted for supporting diverse cipher suites
and certificate exchange choices. The IPSec approaches in
Flannel and WeaveNet instead rely on the Pre-shared Key
(PSK) authentication method and the Internet Key Exchange
protocol.

For any received message, the DDS Security plugin
and Flannel-IPSec first examine the origin authenticity
and integrity of ciphertext by computing a 128 (for this
experiment)/192/256-bit message authentication tag using
AES-GMAC. The tag length is 128 bits in WeaveNet. This en-
sures the packet is not damaged or altered since creation time.
In terms of data encryption, AES-GCM algorithm with either
128 (for this experiment), 192, or 256 bits keys is supported
by the DDS Security plugin and Flannel-IPSec. WeaveNet
does so with AES-256-GCM. However, Flannel operates IPSec



ESP in tunnel mode that encapsulates and encrypts whole
IP packets, while WeaveNet encapsulates packets using OVS
VXLAN and encrypts UDP datagrams in ESP transport mode.
Therefore, Flannel-IPSec protects the pod IP in transmission
but incurs more encryption overhead. Overall, the effective
MTU of WeaveNet on our testbed reduces to 1414 bytes due
to 50 bytes VXLAN and 34 bytes ESP cryptographic cost.
Likewise, the effective MTU of Flannel-IPsec is verified at
1,423 bytes, including 20 bytes IP header and 57 bytes ESP
overhead. Previous sections demonstrate Kube-Router stands
out in reliable unicast performance, thus it is used to build
the pod network for this experiment when evaluating the DDS
Security plugin.

Compared to IPSec ESP, DDS Security extension decouples
data integrity and confidentiality in a configurable way and
seamlessly knits into the current DDS Core architecture. The
DDS payload sent on the wire are encapsulated with the
Real-Time Publish Subscribe (RTPS) protocol [14], which
contains an RTPS header followed by a set of RTPS sub-
messages. The submessage model defines a variety of DDS
built-in signals for enforcing QoS and realizing reliable com-
munication over unreliable channels. Particularly, serialized
user data is defined as a class of submessage called DATA.
According to the hierarchical structure of RTPS model, the
DDS Security standard defines three data protection kinds
for user data, RTPS Submessage, and RTPS message: SIGN,
ENCRYPT, and WITH ORIGIN AUTHENTICATION. They,
respectively, correspond to the protection for data integrity,
confidentiality, and source authenticity offered by DDS Secu-
rity. SIGN and ENCRYPT can be applied on all levels, and are
compatible with WITH ORIGIN AUTHENTICATION when
securing RTPS Submessage or RTPS message. Moreover, DDS
Security allows users to define access control permission for
every domain and topic, which are not available in IPSec
methods.

DDS Security provides a comparable data protection level
as IPSec ESP when encrypting RTPS submessages, signing
RTPS, and authenticating the origin of RTPS together, which
corresponds to the SignWithOrigAuthRTPSEncryptSM test in
Figure 8. With that, Kube-Router with DDS Security performs
better than Flannel-IPSec when sending messages that are
smaller than 1KB but earns lower throughput and higher
latency for larger ones. However, the fine-grained data protec-
tion functions that are unique to DDS Security plugin enable
applications to plug tailored security options for a specific
domain or topic to avoid performance overhead induced by
unnecessary security operations. Although the ESP transport
mode of WeaveNet IPSec incurs lower encapsulation overhead
than the tunnel mode in Flannel, the impact of VXLAN
encapsulation offsets the overall performance.

For multi-subscriber use cases, Figure 9 indicates DDS
Security produces better throughput performance than security
provided by virtual networks. The reason lies in DDS Security
ciphers only once when transmitting samples to multiple
recipients; in contrast, IPSec ESP has to repeat this process for
each destination session, which is not scalable for one-to-many

Fig. 8: Performance comparison of security implementa-
tions on application-layer(DDS Security plugin) and network-
layer(Flannel-IPSec, WeaveNet-Encrypt). Communication pat-
tern: 1pub-1sub. Reliability: enabled, Batching: disabled. Test
period: 120 seconds.

pub/sub communications.

Fig. 9: Performance comparison of security implementa-
tions on application-layer(DDS Security plugin) and network-
layer(Flannel-IPSec, WeaveNet-Encrypt) in multi-subscriber
use case. Communication pattern: 1pub-4sub. Reliability: en-
abled, Batching: disabled. Test period: 120 seconds.

IV. RELATED WORK

Several efforts have studied the performance of DDS and
K8s separately but we have not found any prior work that stud-
ies DDS performance in the context of K8s-managed deploy-
ment. Related to DDS, existing efforts usually compare DDS
with other IoT middleware horizontally. For instance, [15]
compares the latency, bandwidth consumption and packet loss
of DDS, MQTT, CoAP and a custom UDP application under a
constrained wireless access network. Likewise, [16] includes
more middleware protocols, such as MQTTSN, AMQP, and
XMPP. The work in [17] surveys multiple middleware pro-
tocols including DDS based on their primary characteristics
and potential performance issues on throughput, latency, and
energy consumption. Similarly, [18] focused on DDS, ROS,
OPC UA, and MQTT, and measured the round trip time of
messages in different system states: idle, high CPU load, and
high network load. Compared to these efforts, we concentrate
on containerized DDS applications and analyze the perfor-
mance from multiple perspectives: reliability, scalability, and



security. Longitudinal studies, such as [19] investigated three
popular DDS implementations comparing their architectures
and performance. Our work uses the RTI Connext DDS, which
is one of the best-known DDS implementations and provides
the most mature and thorough support for the OMG DDS
standards. In [20], authors explored the overhead and side-
effects of a variety of VM-based virtualization methods for
distributed systems using DDS. Compared to virtual machines,
containers are more lightweight and easier to be profiled,
and thus better suited to resource-limited edge environments.
As such, our study presents detailed analyses of the impact
of various network virtualization techniques on containerized
DDS applications.

Related to K8s, [21] evaluated the performance of K8s
virtual network plugins with multiple transport protocols (TCP,
UDP, FTP, HTTP, and SCP) in terms of MTU auto-detection,
throughput, memory and CPU utilization. They used iperf32

as the benchmarking application. Similarly, Suo et al. [2]
conducted qualitative and quantitative analyses of container
networks including Docker Overlay, Flannel, WeaveNet and
Calico. Their benchmarks comprised four domain-specific
networking applications but did not include DDS. Although
scalability and security of the involved networking solutions
were discussed qualitatively, corresponding measurements of
virtual network addons were not presented. There are edge-
based K8s distributions, such as K3s [22] and KubeEdge [23].
Previous studies [24], [25] compared the resource utilization of
these distributions over multiple use cases. However, the per-
formance of DDS containers on K3s and KubeEdge remains to
be investigated, which will be one of our future works. In ad-
dition, many popular distributed messaging systems have been
deployed on K8s. Javadekar [26], Donca [27] and the study
in [28] illustrate the practice of deploying Kafka, RabbitMQ,
MQTT, and HiveMQ on K8s.

The authors in [5] evaluated the performance of Flannel,
Swarm Overlay and Calico. Their latency, and TCP and
UDP throughput results reveal that Calico has the highest
performance, and its TCP throughput is close to host net-
work. The purpose of [29] is similar to ours; they analyzed
the performance overhead of OVN, Flannel, WeaveNet, and
Calico on CoAP and FTP applications. In comparison, our
work addresses several gaps in the aforementioned efforts: (1)
we took application-level QoS properties into account when
designing experiments, such as DDS Reliable and BestEffort
QoS policies shown in Section III; (2) we compared unicast
and multicast performance of CNIs in multi-recipient sce-
narios; and (3) we investigated the performance overhead of
security operations implemented at the application layer and
network layer.

V. CONCLUSIONS

This paper validates the feasibility of deploying DDS-based
IoT applications with K8s specifically in a hybrid platform
setup where the K8s master runs on a relatively powerful AMD

2 https://iperf.fr/

machine compared to the remaining edge nodes, which are
ARM devices. It qualitatively analyzes the overhead of three
mainstream K8s CNI plugins that support hybrid-platform de-
ployment. Lastly, it evaluates their performance by executing
a systematic set of DDS benchmarking tests under a variety
of workload patterns and QoS configurations. The automated
benchmark framework presented in this paper provides users
with an out-of-the-box tool to evaluate DDS performance on
K8s clusters.

Our experimental results reveal that there is no one-size-fits-
all CNI recommendation when deploying DDS applications
on K8s clusters. The performance of DDS applications on
different CNIs is affected by system topology, QoS poli-
cies, and CNI configurations. Specifically, for deploying K8s-
managed DDS applications, we provide the following take-
home messages on choosing the appropriate CNIs.

1) From the point of view of performance only, the K8s
Host-mode achieves the best performance across multi-
ple scenarios, but it cannot isolate the container network
space, which may lead to security issues. However,
the security issues can be resolved if applications can
leverage DDS Security. Also, it may require additional
configuration efforts to avoid port conflicts. DDS auto-
matically allocates unused ports to avoid conflicts, and
therefore the port conflict issue can be mitigated with
using DDS.

2) This paper analyzed containerized DDS application per-
formance on a hybrid-platform (ARM+AMD) K8s clus-
ter when integrating with Flannel, WeaveNet, and Kube-
Router. DDS containers earn better performance when
using Kube-Router or Flannel-Hostgw CNI in reliable
unicast communication.

3) Compared to the reliable mode, enabling DDS Best-
Effort QoS is a good practice to reduce latency and
L2 CNIs show better performance improvement than
Flannel-Hostgw and Kube-Router.

4) Although WeaveNet is the only CNI that emulates L2
multicast, the overhead induced by VXLAN encapsula-
tion may offset the multicast’s benefit when operating
in small-scale clusters. But it promises better scalability
in large-scale multi-subscriber use cases compared to
Flannel-Hostgw and Kube-Router.

5) To protect DDS packets from malicious attacks, the
DDS security extension offers more flexible and fine-
grained protection than IPSec approaches supported by
Flannel and WeaveNet. In the 1-pub/1-sub communi-
cation, DDS Security outperforms Flannel-IPSec and
WeaveNet-Encrypt when the payload is smaller than
MTU, while incurs more overhead when sending large
samples.

6) In multi-subscriber use cases, DDS Security is the best
practice for achieving high performance and scalability.
Our observation also indicates that Flannel-IPsec per-
forms better than WeaveNet-Encrypt in unicast commu-
nication. In addition, the DDS Security plugin prevails

https://iperf.fr/


over IPSec solutions in multi-subscriber use cases, thus
delivering better scalability.

A. Scalability Discussion

The primary factors that affect scalability of K8s-based DDS
applications are twofold: (1) the overheads of K8s CNI on
network protocol stack and (2) DDS communication pattern
(unicast/multicast). Although our experimental cluster was
limited to 10 nodes, the empirical results indicate that L3
CNIs incur lower performance overhead than L2 ones. Thus,
it is reasonable to infer that the benefits persist in even larger
clusters, which is also shown in [30]. As multicast is naturally
more scalable than unicast in multi-subscriber scenarios, the
benefit of WeaveNet multicast is extensible to larger clusters.

B. Limitations and Future Work

The experiments reported in this paper were limited to
understanding the maximum throughput and minimum latency
that DDS can achieve when integrated with different K8s
CNIs. The performance of containerized DDS applications
with dynamic data flows has not been evaluated. In addition,
considering the heterogeneity of workload patterns, deploy-
ment environments, and system typologies in real-world DDS
use cases, tuning DDS and K8s CNI knobs under particular
QoS and hardware restrictions intelligently and adaptively is a
significant step for performance management of containerized
DDS applications, which becomes one of our future work.
Kube-router and WeaveNet support K8s Network Policies that
allow users to control traffic flow at the IP address or port
level. It could impact the performance of DDS applications.
Our future work will focus on these evaluations.

This paper is also limited to use cases of operating DDS
applications on a single K8s cluster, but the feasibility, per-
formance, and scalability of cross-cluster communication of
containerized DDS applications has not been systematically
studied. Leveraging eBPF-based [31] packet filtering features
provided by Calico [32] CNI plugin to improve DDS per-
formance and discovery scalability is an interesting future
direction to explore. Load balancing with session stickiness
would be also interesting to scale out stateful DDS services.
Last but not least, this paper, as a foundation work, will guide
our future research to depict a blueprint to achieving high-
performance and automated deployment of containerized DDS
applications on K8s platforms.

ACKNOWLEDGMENTS
We thank Dr. Gerardo Pardo-Castellote from RTI for valuable guidance and

feedback on this work. The authors are also grateful for insightful comments
and suggestions from anonymous reviewers.

REFERENCES

[1] T. K. Authors, “Kubernetes cluster networking,” https:
//kubernetes.io/docs/concepts/cluster-administration/networking/#th
e-kubernetes-network-model, 2020.

[2] K. Suo, Y. Zhao, W. Chen, and J. Rao, “An analysis and empirical study
of container networks,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 189–197.

[3] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar,
“Freeflow: High performance container networking,” in Proceedings of
the 15th ACM workshop on hot topics in networks, 2016, pp. 43–49.

[4] Flannel-Io, “flannel-io/flannel.” [Online]. Available: https://github.com
/flannel-io/flannel

[5] H. Zeng, B. Wang, W. Deng, and W. Zhang, “Measurement and evalua-
tion for docker container networking,” in 2017 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC). IEEE, 2017, pp. 105–108.

[6] Weaveworks, “weaveworks/weave.” [Online]. Available: https://github
.com/weaveworks/weave

[7] “Weave networking performance with the new fast data path,”
https://www.weave.works/blog/weave-docker-networking-performance

-fast-data-path/.
[8] C. Labs, “cloudnativelabs/kube-router.” [Online]. Available: https:

//github.com/cloudnativelabs/kube-router
[9] R.-T. Innovations, “Dds discovery in cloud-based environment,”

https://www.rti.com/developers/rti-labs/discover-data-in-cloud-service
s-with-cloud-discovery-service, 2020.

[10] ——, “Rti perftest 3.0 documentation,” https://community.rti.com/stat
ic/documentation/perftest/3.0/index.html, 2019.

[11] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and
modeling virtualization performance overhead for cloud environments.”
CLOSER, vol. 11, pp. 563–573, 2011.

[12] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange,
and C. A. De Rose, “Performance evaluation of container-based vir-
tualization for high performance computing environments,” in 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. IEEE, 2013, pp. 233–240.

[13] M. Friesen, G. Karthikeyan, S. Heiss, L. Wisniewski, and H. Trsek,
“A comparative evaluation of security mechanisms in dds, tls and dtls,”
in Kommunikation und Bildverarbeitung in der Automation. Springer
Vieweg, Berlin, Heidelberg, 2020, pp. 201–216.

[14] O. M. Group, “Dds interoperability wire protocol,” https://www.omg.
org/spec/DDSI-RTPS/.

[15] Y. Chen and T. Kunz, “Performance evaluation of iot protocols under a
constrained wireless access network,” in 2016 International Conference
on Selected Topics in Mobile & Wireless Networking (MoWNeT). IEEE,
2016, pp. 1–7.

[16] M. Anusha, E. S. Babu, L. M. Reddy, A. Krishna, and B. Bhagyasree,
“Performance analysis of data protocols of internet of things: a quali-
tative review,” International Journal of Pure and Applied Mathematics,
vol. 115, no. 6, pp. 37–47, 2017.

[17] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for internet of things and related challenges of
fog and cloud computing integration,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, pp. 1–29, 2019.

[18] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “Opc
ua versus ros, dds, and mqtt: performance evaluation of industry 4.0
protocols,” in Proceedings of the IEEE International Conference on
Industrial Technology (ICIT), 2019.

[19] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. C. Schmidt,
“Evaluating the performance of publish/subscribe platforms for infor-
mation management in distributed real-time and embedded systems,”
omgwiki. org/dds, 2010.

[20] R. Serrano-Torres, M. Garcı́a-Valls, and P. Basanta-Val, “Performance
evaluation of virtualized dds middleware,” in Simposio de tiempo real,
Madrid, 2014, pp. 18–19.

[21] D. Alexis, “Benchmark results of kubernetes network plugins (cni)
over 10gbit/s network,” https://itnext.io/benchmark-results-of-kuberne
tes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a
9886efe9c4, 2019.

[22] “K3s: Lightweight kubernetes,” https://k3s.io/.
[23] “Kubeedge,” https://kubeedge.io/en/.
[24] H. Fathoni, C.-T. Yang, C.-H. Chang, and C.-Y. Huang, “Performance

comparison of lightweight kubernetes in edge devices,” in International
Symposium on Pervasive Systems, Algorithms and Networks. Springer,
2019, pp. 304–309.

[25] A. C. Beltrão, B. B. N. de França, and G. H. Travassos, “Performance
evaluation of kubernetes as deployment platform for iot devices.”

[26] S. Javadekar, “Kafka on kubernetes: From evaluation to production at
intuit,” 2018.

[27] I.-C. Donca, C. Corches, O. Stan, and L. Miclea, “Autoscaled rabbitmq
kubernetes cluster on single-board computers,” in 2020 IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics (AQTR).
IEEE, 2020, pp. 1–6.

https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://github.com/weaveworks/weave
https://github.com/weaveworks/weave
https://www.weave.works/blog/weave-docker-networking-performance-fast-data-path/
https://www.weave.works/blog/weave-docker-networking-performance-fast-data-path/
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router
https://www.rti.com/developers/rti-labs/discover-data-in-cloud-services-with-cloud-discovery-service
https://www.rti.com/developers/rti-labs/discover-data-in-cloud-services-with-cloud-discovery-service
https://community.rti.com/static/documentation/perftest/3.0/index.html
https://community.rti.com/static/documentation/perftest/3.0/index.html
https://www.omg.org/spec/DDSI-RTPS/
https://www.omg.org/spec/DDSI-RTPS/
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4
https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4
https://k3s.io/
https://kubeedge.io/en/


[28] “Best practices for operating hivemq and mqtt on kubernetes,”
https://www.hivemq.com/best-practices-for-operating-hivemq-and-mqt

t-on-kubernetes/.
[29] A. Buzachis, A. Galletta, L. Carnevale, A. Celesti, M. Fazio, and

M. Villari, “Towards osmotic computing: Analyzing overlay network
solutions to optimize the deployment of container-based microservices
in fog, edge and iot environments,” in 2018 IEEE 2nd International
Conference on Fog and Edge Computing (ICFEC). IEEE, 2018, pp.
1–10.

[30] S. Qi, S. G. Kulkarni, and K. Ramakrishnan, “Assessing container
network interface plugins: Functionality, performance, and scalability,”
IEEE Transactions on Network and Service Management, vol. 18, no. 1,
pp. 656–671, 2020.

[31] M. A. Vieira, M. S. Castanho, R. D. Pacı́fico, E. R. Santos, E. P. C.
Júnior, and L. F. Vieira, “Fast packet processing with ebpf and xdp:
Concepts, code, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp. 1–36, 2020.

[32] “Project calico — tigera,” https://www.tigera.io/project-calico/.

https://www.hivemq.com/best-practices-for-operating-hivemq-and-mqtt-on-kubernetes/
https://www.hivemq.com/best-practices-for-operating-hivemq-and-mqtt-on-kubernetes/
https://www.tigera.io/project-calico/

	Introduction
	Background on Underlying Technologies
	OMG Data Distribution Service (DDS)
	Kubernetes and its CNI Plugin Support
	Kubernetes-managed Distributed DDS Application

	Evaluating DDS Performance in Kubernetes
	Experimental Setup and Benchmark Framework
	Hardware
	Software
	Benchmark Framework

	Experimental Results
	Virtualization Overhead
	CNI-based Network Virtualization Overhead
	BestEffort QoS
	Multicast vs. Unicast
	Evaluating Security Support


	Related Work
	Conclusions
	Scalability Discussion
	Limitations and Future Work

	References

