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Abstract—Standard distribution middleware has traditionally
been perceived as complex software which is not suitable for sat-
isfying the highest certification criteria in safety-critical environ-
ments. However, this idea is slowly changing and there are efforts
such as the Future Airborne Capability Environment (FACE)
consortium to integrate standard distribution middleware into
the development of avionic systems. This integration facilitates
the interoperability and portability of avionic applications, but
there are still challenges that need to be addressed before full
success can be achieved. To this end, this paper explores the usage
of the Data Distribution Service for Real-Time Systems (DDS) on
top of a partitioned system with a communication network based
on the ARINC 664 specification (precisely, the AFDX network).
This work specifically identifies the incompatibilities between
the two standards and also proposes potential solutions. A set
of overhead metrics of using DDS in a distributed partitioned
platform is also provided.

Index Terms—distributed systems, distribution middleware,
vehicular networks, real-time systems, AFDX, DDS, ARINC 653

I. INTRODUCTION

Over the last years, airborne systems have migrated from
federated to integrated modular avionics (IMA) architecture
in order to simplify the development of onboard software. To
further develop the competitiveness of IMA, this architecture
is still evolving and being investigated [1]. A core concept in
IMA architectures is partitioning, which enables applications
to be strictly isolated from each other in terms of time
and space. This isolation allows applications running on a
common hardware platform to be certified separately, even
if they have been developed by different companies. The
partitioning concept is fully supported by the ARINC 653
specification [2], which represents the reference standard in
airborne systems. Although partitioning can be implemented
in different ways [3], one increasingly important approach is
based on hypervisors, which allow multiple operating systems
to be run on the same hardware platform.

The adoption of IMA architectures provoked the need for
new requirements to be fulfilled [4], such as robust and
flexible data communications. ARINC 653 communication
ports [2] provide standardized inter-partition communication
services in avionics systems, ensuring robust and predictable
data exchange between software modules. The Avionics Full
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Duplex Switched Ethernet (AFDX) enhances these capabilities
by offering a deterministic Ethernet-based network, enabling
high-speed data transfer and improved integration of complex
avionics systems. The AFDX network is defined in the ARINC
664 standard, Part 7 [5], and it relies on the use of standard
Ethernet links along with special-purpose switches and net-
work interface cards.

Traditionally, the avionics industry has relied on custom
communication software for the exchange of data among
avionic subsystems. These proprietary, closed developments
usually lead to high life cycle costs, as maintenance and
system upgrades are bounded to the original manufacturers.
Furthermore, other relevant capabilities such as portability
across platforms or interoperability among subsystems are also
restricted. To address these issues, multiple initiatives in the
industry [6] [7] are supporting the use of open standards as a
key element to preclude vendor lock-in and reduce software
development and integration costs.

These initiatives together with the new technologies adopted
by the industry (i.e., virtualization based on a hypervi-
sor and Ethernet-based networks) facilitate the integration
of commercial-off-the-shelf (COTS) distribution middleware.
One major effort in this direction is the Technical Standard for
Future Airborne Capability Environment (FACE) [7], which
supports the use of middleware built upon open distribution
standards to facilitate the interoperability and portability of
software. This integration is not yet exempt from open chal-
lenges, as typical communication middleware usually aims at
non-critical applications and thus it does not meet the safety
requirements to be used in the avionic domain. However, this
scenario is slowly changing, and some vendors are specifically
developing products for the airborne market. For instance, this
is the case of [8] and [9] for the Data Distribution Service for
Real-Time Systems (DDS) standard [10].

The DDS standard is explicitly designed to build distributed
real-time systems, as it supports a rich set of quality of service
(QoS) parameters for fine control of non-functional properties.
For instance, DDS has been used in robotics [11] or smart-grid
[12] systems. Furthermore, the standard is evolving towards a
safety-critical subset of its full distribution facilities [13][14].

From a communication viewpoint, AFDX complements
ARINC 653 systems. Typically, the communication between
partitions belonging to different end-systems is performed
through ARINC 653 ports, which in turn are connected to the
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communication ports defined by AFDX. Consequently, both
standards should be analysed in order to integrate DDS into
avionics systems. There are several analysis for integrating
DDS and ARINC 653 [15][16][17] that represent the basis
for the integration of DDS in distributed avionics systems
interconnected through AFDX. However, it is worth noting
that the integration of DDS and AFDX is not straightforward,
thus requiring a detailed analysis to determine which features
of DDS can be used in this domain. This paper fills this gap
by making the following contributions:

• Identification of a set of issues that may compromise the
integration of DDS and AFDX technologies.

• Definition of a set of recommendations for the usage of
DDS in avionics, which can be of relevance for the future
safety-critical profile of DDS in this domain.

• Development of a software platform in order to estimate
the overhead of using DDS with AFDX.

It is also worth considering that in this paper, we exam-
ine the integration from both standard perspectives, although
the choice of a particular DDS implementation may require
extending the analysis to include implementation-dependent
aspects. Furthermore, the design choices made by each imple-
mentation may affect the response time of DDS applications
[18].

This document is structured as follows. Section II introduces
a brief review of the DDS and AFDX standards. Section III
analyses the differences between these standards from the
communication perspective and suggests ways of integrating
them. Section IV outlines recommendations that could form
part of the future safety-critical profile of DDS in the avion-
ics domain. The implementation of a partitioned distributed
platform that combines the use of DDS with an emulated
AFDX network is described in Section V, together with some
overhead and performance estimations. The related work is
presented in Section VI. Finally, Section VII summarizes the
main contributions and the lines of future work.

II. BACKGROUND

A. Overview of DDS

The DDS standard [10] provides connectivity, portability
and interoperability features in distributed real-time systems.
The communications in DDS are based on the publisher -
subscriber paradigm in which DataWriter and DataReader
communication entities respectively write (produce) and read
(consume) data through a fully distributed global data space.
To support the requirements of distributed real-time systems,
the standard also provides applications with QoS policies to
control non-functional properties such as persistence, durabil-
ity or timeliness.

In addition to user data, DDS applications also exchange
middleware internal data in order to obtain information about
the presence and characteristics of the DDS entities available
in the distributed system (i.e., the discovery process). Further-
more, satisfying some of the QoS configurations in DDS also
produces additional overhead in the network. Henceforth and

in the context of this paper, this special kind of network traffic
that is internal and automatically managed by middleware will
be called metatraffic.

Another key feature of the standard is the interoperability
among middleware implementations, which is provided by
the DDS Interoperability Wire Protocol (DDSI-RTPS) [19]. It
defines a set of exchange information protocols and message
formats capable of supporting the main features of DDS
(e.g., decentralized architecture, QoS configurations, automatic
discovery, etc.). This protocol is based on a modular message
design in which messages are composed of a fixed-size header
followed by a variable number of sub-messages. This special
design maximizes interoperability, as nodes can still participate
in the network even though they are running different versions
or they only implement a subset of the protocol (i.e., unknown
sub-messages are ignored).

B. Overview of AFDX

AFDX is a communication network defined for ARINC
systems and included in the ARINC 664 standard [5]. Al-
though this communication network is based on standard
Ethernet technologies, it adds significant restrictions to ensure
deterministic timing behaviour [5], such as dedicated full-
duplex Ethernet links, pre-defined network routing or band-
width preservation through a traffic shaping mechanism.

The AFDX network mainly consists of two kinds of devices:
end-systems and switches. While the former represents a
source or destination of data on a network, the latter provides
different network functionalities such as frame filtering, traffic
policing, frame switching or network monitoring.

The AFDX specification should be interpreted in the context
of IMA systems. Hence, partitions exchange messages via
the application ports defined in the ARINC 653 standard [2],
which in turn are connected to AFDX communication ports,
as can be seen in Fig. 1. For both kinds of port, two types of
services are defined: sampling, where only the last received
message is available for reading (i.e., messages are always
overwritten); and queueing, which allows multiple messages
to be buffered.

A central feature in AFDX networks is the virtual link.
It defines a logical unidirectional connection between end-
systems. An important feature of AFDX networks is that a
particular virtual link originates at one source end-system,
but also at a single partition. However, messages can be
originated from multiple communication ports, as long as
they are allocated to the same source partition. Regarding the
receiving end-systems, a virtual link can deliver messages to
multiple partitions, belonging or not to the same end-system.

To prevent interference between virtual links that could lead
to non-deterministic behaviour, virtual links are isolated from
each other. This is accomplished by limiting the size and the
transmission rate of messages associated with a virtual link. To
this end, each virtual link is characterized by two parameters:
the Bandwidth Allocation Gap (BAG) and the maximum frame
size (Lmax). Data written to a communication port is only
transmitted when the virtual link complies with the required



Fig. 1. Transmission stack in AFDX

bandwidth regulation for transmission. This task is performed
by the virtual link scheduler, which is responsible for selecting
the first packet from the FIFO queue associated with the
virtual link (see Fig. 1). Optionally, a single virtual link can
be comprised by up to four sub-virtual links. Each sub-virtual
link has a dedicated FIFO queue, and all the queues are read
on a round robin basis by the main FIFO queue associated
with the virtual link.

To increase the robustness of the system and prevent the
failure of network devices, AFDX relies on two independent
and redundant networks operated on a per virtual link basis.
The management of redundant transmission and reception of
data is performed at the end-systems before data is delivered to
the transmitting network or the receiving partition. Therefore,
partitions are unaware of the underlying network redundancy
so any error in either network is transparent to them [5].

Finally, the IMA development process requires the virtual
links and their corresponding features to be statically defined
in a configuration table. This task is performed by the system
integrator, who is responsible for the integration and configu-
ration of all components in the system.

III. INTEGRATION ANALYSIS

The use of DDS in ARINC 653 systems may provide sig-
nificant benefits for developing partitioned distributed systems
[15][16][17]. For instance, it may provide a unified data dis-
tribution environment without concern for the actual physical
location, the programming language or the underlying network
services. This latter aspect is of paramount importance in
modern mixed-criticality systems, where connectivity remains
a core part of the system, even with open system architectures.
Furthermore, DDS provides high-level mechanisms for the
management of data [10][7] which not only reduces the

application logic but also facilitates software integration and
distribution.

A preliminar analisys for the integration of DDS and
ARINC 653 was presented in [15]. This analysis presented
three different integration architectures (see Fig. 2):

• Configuration #1: DDS as a transport layer for the
ARINC 653 communication service

• Configuration #2: Standard DDS on top of ARINC 653
• Configuration #3: Safety-critical subset of DDS on top

of the ARINC 653 communication service
The work in [15] argued that Configuration #3 is a promis-

ing option for developing future heterogeneous partitioned
systems, as it preserves most DDS features and it allows
certification at high criticality levels. As a result, our research
focuses on using the architecture depicted in Configuration #3
to integrate DDS and AFDX.

Furthermore, the DDS distribution model resembles the
one proposed for avionic systems. Similarly to ARINC 653,
communication among partitions using AFDX networks is
performed through sampling and queueing services [5]. These
services are similar to the decentralized architecture proposed
by DDS, in which distribution entities produce and consume
data regardless of their location. However, the use of data-
centric middleware allows the application code to raise the
abstraction level, as applications do not need to directly write
to the application ports and manage the logic related to the
connectivity process.

Despite these similarities, some features of AFDX networks
may compromise the integration of the two technologies. The
remainder of this section deals with a set of integration issues
and proposes possible solutions to address them. To better
organize this analysis, the integration of DDS is discussed with
regard to the main features of AFDX networks as follows:

• Communication model, or how data can be transmitted
among end-systems.

• Frame format and communication protocols, or how
messages are structured and exchanged in the network.

• Bandwidth regulation, which deals with the regulation of
transmitted data on a per virtual link basis.

• Failure protection mechanisms to minimize or eliminate
the impact of network failures.

• Traffic prioritization mechanisms to differentiate between
traffic classes.

A. Communication model

As shown in Fig. 1, the queueing and sampling communi-
cation ports defined in AFDX have a direct correspondence
to those defined in ARINC 653. Consequently, the analysis of
the integration of DDS and the ARINC 653 communication
service performed in [15] and [17] remains valid for AFDX.
Nevertheless, AFDX includes some additional features that
should be taken into account, all of them related to the virtual
link mechanism.

Queueing and sampling ports are the communication points
for the virtual link entity defined by AFDX. The virtual



Fig. 2. Integration architectures for DDS and ARINC 653

link represents a logical unidirectional connection from one
source end-system to one or more destination end-system/s.
Hence, AFDX provides support for unicast and multicast
communications. According to the AFDX standard, one virtual
link cannot be shared by two or more source partitions within
the same end-system, but a single source partition can have
multiple communication ports using the same virtual link.

The limitations on the type of communications supported by
AFDX restrict how DDS may share data. Both standards allow
unicast and multicast communications, but DDS also provides
support for many-to-one communications. This is a common
scenario in DDS, where for instance a set of DataWriters can
be responsible for updating the same Topic so that a single
DataReader receives data from multiple sources. This scenario
can be supported in partitioned systems using different appli-
cation ports. In the particular case of AFDX networks, this
means that many-to-one communication is logically managed
at DDS level. Hence, a single DataReader can receive data
from multiple communication ports, which are allocated per
incoming data flow to the end-system. Furthermore, redun-
dant DataWriters should use different virtual links, as they
are commonly located in different partitions or end-systems.
This scenario is illustrated in Fig. 3. It is worth noting that
this approach is transparent to the end-user, as many-to-one
communications over AFDX should be internally managed by
middleware.

On the other hand, a single virtual link can be shared by
different DataWriters as long as they (1) are allocated to the
same partition and (2) share the receiving end-system/s. It is
worth noting that the latter does not imply the same receiving
partition at the end-system.

It is important to remark that this paper does not analyze
whether multiple DataWriters should use different virtual
links or a single shared virtual link, as it would depend on
the system’s real-time requirements. In any case, sharing a
virtual link among several DataWriters may imply additional
restrictions in the configuration of DDS. These restrictions will
be discussed throughout the next subsections.

B. Frame format and communication protocols

To enable the communication among avionic applications,
the AFDX specification identifies two types of message struc-
tures for building and decoding messages from the application
layer [5]. In the context of DDS, this task is carried out
by the standard DDSI-RTPS protocol [19], which provides
interoperability among different implementations.

Similarly to AFDX, DDSI-RTPS is primarily based on UDP
transport, although the specification allows other transport
mechanisms to be used. Thus, several strategies can be applied
to integrate DDS and ARINC-compliant systems.

This work focuses on the use of a safety-critical subset
of DDS directly on top of the ARINC 653 communication
service, as it is suitable for applications where a high-level of
criticality is required: on the one hand, communications among
partitions belonging to the same end-systems are directly built
on top of the ARINC 653 communication service; on the other
hand, communications among partitions belonging to different
end-systems rely on the UDP/IP stack provided by the AFDX
hardware. The proposed architecture is illustrated in Fig 4.

Under the proposed architecture, the use of DDS with
AFDX networks would require adapting the DDSI-RTPS pro-
tocol to use a transport based on the ARINC 653 communica-

Fig. 3. Many-to-one communication in AFDX



Fig. 4. Integration between DDSI-RTPS and AFDX

tion service. This new transport should modify some common
behaviour of regular distribution middleware as follows:

• The use of pre-defined ports to receive data. DDS de-
fines a set of pre-defined transport ports in order to
facilitate interoperability and the automatic discovery of
entities. However, the AFDX specification requires ports
to be statically assigned by the system integrator, who
is responsible for the assignment of ports throughout the
distributed system. Consequently, DDS implementations
cannot rely on pre-defined transport ports, but should
determine which ports are available in each partition (e.g.,
via a static configuration table).

• Sharing a single port to receive data from multiple
sources. As commented in subsection III.A, the many-
to-one communication model is not directly supported.
Therefore, this issue is addressed in the reader partition
by creating as many ports as matched DataWriters (i.e.,
per data flow), as can be seen in Fig. 3.

To communicate via an AFDX network, each partition is
assigned a unique IP address. From a DDS perspective, this
means that inter-partition communications should be identical
regardless of whether the partitions are allocated to the same
end-system (i.e., messages are directly exchanged through the
hypervisor) or not (i.e., messages are exchanged via the AFDX
network).

In general-purpose systems based on Ethernet, a large block
of data usually fragments at the IP level. For AFDX networks,
the fragmentation service is also performed at the IP level,
but it depends on each virtual link and its corresponding
Lmax parameter. Specifically, while sampling communication
ports do not support fragmentation (i.e., the size of messages
and protocol overheads must be less than or equal to Lmax),
queueing ports can only manage up to 8 Kbytes which will
be fragmented according to the Lmax parameter. Therefore,
the maximum payload size coming from partitions must be
bounded and it cannot exceed these values.

The DDSI-RTPS protocol provides support for fragmenting
messages whose size is over the maximum size allowed in
UDP (i.e., 64Kbytes). Furthermore, the modular design of
DDSI-RTPS implies that the size of messages is not pre-
determined, as multiple sub-messages including user and/or
protocol data may be combined into a single message. There-
fore, DDS for AFDX should take into account the restrictions
of AFDX in terms of message size and fragmentation. This
issue can be addressed by pre-configuring the maximum size
of messages written by a DataWriter.

Finally, and since DDS for AFDX would be built on top of
the ARINC 653 communication service, the management of
the UDP/IP stack is left to the specialized AFDX hardware,
as shown in Fig. 1 and Fig. 4.

C. Bandwidth regulation

The virtual link concept provides partitioning at the network
layer through the traffic shaping mechanism, which regulates
the flow of data generated by different sources belonging to
the same end-system.

To ensure determinism in the whole distributed system, all
the network traffic should be regulated using the traffic shaping
mechanism. In the case of DDS, middleware implementations
exchange messages which could include not only user data
but also protocol data (i.e., metadata or metatraffic). In AFDX
networks, this additional traffic or overhead should be included
in the corresponding virtual link.

It is worth remarking that the impact is even higher when
middleware uses additional messages for this metatraffic. In
this case, two options are available: (1) the creation of new
virtual links for this protocol data or (2) the reuse of the
virtual links defined for user data. On the one hand, the former
option strongly depends on the DDS implementation and
configuration and therefore it adds complexity. Furthermore,
adding a new virtual link impacts the worst-case latency of the
remaining virtual links. On the other hand, the latter option
is simpler since the number of virtual links is unchanged.
However, it strongly impacts the worst-case latency of the cor-
responding virtual link, as it increases the number of messages.
In DDS, part of this extra latency could be controlled by means
of the Transport_Priority and Latency_Budget QoS parameters
to prioritize communications, but the standard is not very
precise about the aim and implementation requirements of
these QoS parameters. In any case, this extra latency cannot
be fully removed since the virtual link relies on a FIFO queue
for all the packets ready to be transmitted. As a result, the
DDS metatraffic should be minimized whenever possible. To
this end, the following DDS configurations should be taken
into account:

• Discovery metadata: DDS exchanges data between built-
in DataWriters and DataReaders. However, a static ap-
proach is more suitable for partitioned systems [20].
Under this approach, all the information about DDS
entities can be statically configured before runtime (i.e.,
no discovery data is sent through the network).



• Liveliness metadata: The Liveliness QoS parameter de-
termines whether or not a DDS entity is still alive. In this
case, DDS supports two approaches to assert liveliness:
(1) automatic, in which middleware is responsible for
signaling the liveliness using a built-in DataWriter; or
(2) manual, in which the user must explicitly or implic-
itly signal the liveliness of DDS entities. Furthermore,
two possible manual settings are defined to control the
granularity at which the application must assert liveliness:
manual by participant, in which the liveliness of a set of
DataWriters can be maintained at the same time by using
a middleware built-in DataWriter; and manual by topic,
in which the liveliness in maintained per DataWriter.
For AFDX networks, the manual by topic setting is
preferred as it minimizes the overhead in the network
and it does not require adding extra virtual links for the
communications associated with the built-in entities.

• Reliable metadata. The Reliability QoS parameter ad-
dresses the loss of messages in the network. To this
end, periodic messages are sent to the reliable readers
in order to inform about the last available samples. In
response to these periodic messages, readers must also
acknowledge the reception of all available samples or they
must indicate that some samples are missing. On the other
hand, best-effort readers/writers do not send this kind of
metadata. As this QoS parameter is directly related to the
failure protection mechanisms, it will be further discussed
in subsection III.D.

• Time_Based_Filter metadata: The Time_Based_Filter
QoS parameter provides support for limiting the number
of data samples received in a period of time. This
parameter applies per DataReader, even those subscribing
to the same topic. The filtering can be applied on both
writer and reader side. The former option requires the
transmission of metadata to denote that the sample was
filtered and not simply lost. This option also increases
the complexity, as it may require specifying a variable
number of filtered samples in the metadata or applying
multiple filters from different readers at the same time
[19]. Therefore, filtering on the reader side is simpler
and it does not require transmitting metadata through the
network.

• Durability metadata: The Durability QoS parameter pro-
vides support for making historical data available to any
potential late-joining DataReaders. Although this param-
eter can take up to four different settings, the DDSI-RTPS
specification only covers two of them for interoperability
purposes: volatile (i.e., historical data does not need to
be maintained for late-joiners) and transient-local (i.e.,
historical data needs to be maintained in memory as long
as the associated DataWriter is active). As commented
before, the AFDX network requires the static configura-
tion of communications and therefore late-joiners are not
allowed. However, this parameter may still be useful to
facilitate the startup sequences or increase the tolerance
to failure conditions (for instance, a partition reset). In

addition to the operational overhead for maintaining the
historical data, this QoS parameter also produces an
increase of the network traffic when the transmission of
the historical data takes place. The effect of this extra
traffic on the rest of the system is bounded by the use
of the virtual link mechanism, which regulates the flow
of data by setting a maximum frame size (i.e., Lmax)
and a minimum interval between frames transmitted on
the corresponding virtual link (i.e., BAG). Other QoS
parameters defined by DDS can be used to limit the
number of historical data samples stored and transmitted
[10].

The traffic shaping mechanism defined by AFDX may also
influence the QoS configurations in DDS. In particular, the
QoS parameters related to some kind of temporal deadline may
be restricted by AFDX networks. Hence, the configuration of
the following parameters should take into account the traffic
shaping mechanism as follows:

• Deadline: This QoS parameter indicates the maximum
amount of time available to send/receive data samples
belonging to a particular Topic. This QoS parameter is
restricted by several factors in partitioned systems, such
as the temporal isolation, the shared access to the net-
work device or the underlying communication network.
Regarding the AFDX network, the Deadline parameter is
influenced by the selected BAG and Lmax even for the
simplest scenario, that is, without fragmentation or sub-
virtual links usage. Therefore, the Deadline parameter
could be guaranteed through the worst-case end-to-end
latency (LVL) for the message stream sent through the
virtual link or an upper bound for it. There are analytical
techniques which can compute upper bounds of LVL such
as those based on forward analysis [21] or worst-case
response times [22].

• Liveliness: As commented earlier, this parameter deter-
mines whether or not a DDS entity is still alive. To this
end, DataWriters signal that it is alive with a delay lower
than a specific lease_duration. Similarly to the Deadline
parameter, this value should be greater than the end-
to-end latency for the message stream sent through the
virtual link.

D. Failure protection mechanisms

AFDX provides support for redundancy to protect against
network failures. In general, each message is sent through
two networks. Upon reception, only the first valid message
received from either network is accepted and delivered to
the receiving partition. As a consequence of using redundant
AFDX networks, both queueing and sampling communication
services may be simple, connectionless and without acknowl-
edgements.

In the case of DDS, the standard defines three main mech-
anisms to provide protection against failures: firstly, the Re-
liability QoS parameter, where middleware will automatically
manage the communication to address the loss of messages at
network level; secondly, the Ownership QoS parameter, which



enables transparent failover between redundant DataWriters
and thus is applied at partition level; and thirdly, the Durability
QoS parameter, which allows the retransmission of data to
temporally out-of-contact DataReaders, and thus it is also
applied at partition level.

As a result, the redundancy implemented in the AFDX
specification and the Reliability QoS parameter work at net-
work level to provide protection against network failures. It
is worth remarking that the loss of messages is not fully
avoided when using the redundancy management mechanisms
in AFDX networks [5]. For instance, the loss of messages
could happen if message “A” is lost on one of the redundant
networks and the subsequent message “B” arrives earlier at
the destination than the copy of message “A” transmitted by
the other network. Under this scenario, the Reliable setting
could address the loss of messages in AFDX at the cost of
not only increasing overhead but also complexity, which may
lead to search for simpler approaches: for instance, this issue
could also be addressed using other approaches such as the
proposed in [23].

On the other hand, the Ownership and Durability QoS
parameters work at the partition level and thus they can co-
operate with the redundancy mechanism provided by AFDX,
which works at the network level. In this case, both Exclusive
and Shared settings are available for the Ownership QoS
parameter, while only Volatile and Transient_Local settings
are available in the case of the Durability QoS parameter.

E. Traffic prioritization mechanisms

The AFDX standard enforces appropriate switching mech-
anisms to guarantee deterministic behaviour. One of these
mechanisms is the traffic prioritization at output ports of the
AFDX switch. The switch should be able to differentiate
between traffic classes (high priority and low priority) on a
per virtual link basis.

In the case of DDS, traffic prioritization is performed
through the Transport_Priority QoS parameter. This parameter
allows the priority of the underlying transport used to send data
from a particular DataWriter to be set. However, this parameter
is considered a hint in the specification, which makes it hard
to determine whether it may or may not be used in AFDX
networks.

Nowadays, most high-end Ethernet switches support traffic
prioritization based on the type of service (ToS) field in the
IP header. Hence, some DDS implementations could take
advantage of this feature to resolve data contention at output
ports in the switches. However, it is worth noting that the
ToS field must not be used in AFDX networks, where traffic
prioritization should be statically defined on a per virtual
link basis (i.e., during the system integration phase). Further-
more, several DDS topics with different priorities could be
sent through the same virtual link (e.g., using multiple sub-
virtual links), which is not allowed either. However, the loose
definition of this QoS parameter provides implementations
with great flexibility to apply it in a compatible way to
AFDX. For instance, some implementations could use this

parameter to prioritize the transmission of messages before
their delivery to the network stack. Consequently, the use of
the Transport_Priority QoS parameter with AFDX networks
depends on the middleware implementation.

IV. TOWARDS THE SAFETY-CRITICAL PROFILE

The integration of standard distribution middleware in parti-
tioned systems represents a promising approach for the future
development of distributed applications in avionics. In the case
of the DDS specification, it is already envisioned by the FACE
standard [7], and by the ongoing development of a safety-
critical profile for DDS [13][14].

As a result, the previous analysis for the AFDX avionics
network can be of interest for this new profile for DDS.
This analysis has shown that the use of virtual links restricts
the use of DDS in terms of the communication model, the
underlying transport, the communication protocol and the QoS
parameters. In the context of the DDS specification, this
means that the standard should not only be restricted at the
configuration level, but it should also add restrictions from the
operational point of view.

Although the proper configuration of the QoS parameters
is already a hard task in distributed real-time systems, it is
even more complex when DDS entities produce/consume data
using the same virtual link. In this scenario, these entities must
also share some of their QoS parameters, as the traffic shaping
mechanism is defined per virtual link.

Unlike traditional DDS applications, it is also worth not-
ing that the usage of DDS in AFDX networks requires the
static configuration of the QoS parameters. Once the system
integrator has dealt with the IMA system configuration and
transferred the collected data into the configuration tables,
middleware should determine the corresponding QoS settings
from them and disable their reconfiguration at runtime.

Therefore, while some QoS parameters may not be nec-
essary in the context of AFDX due to their loose definition
in the current DDS standard (e.g., Transport_Priority), others
can only be configured with a restricted set of their available
settings (e.g., Durability or Liveliness). Furthermore, the QoS
parameters which depend on the end-to-end latency should
have a value according to the underlying traffic shaping
mechanism (e.g., Deadline or Liveliness). The Reliability QoS
parameter represents a complex case since the Best-Effort is
the preferred setting for AFDX, but the Reliable setting could
be of interest for scenarios where the loss of any sample cannot
be tolerated. However, the extra complexity and overhead
introduced by this setting may lead to search for simpler
alternatives. Table 1 summarizes the QoS restrictions for DDS
identified when using an AFDX network.

In addition to these restrictions, the implementation of the
DDS distribution model should take into account the following
considerations. Firstly, the DDSI-RTPS protocol requires the
definition of a new transport based on the ARINC 653 com-
munication ports. Unlike traditional UDP/IP transport used
in DDSI-RTPS, the use of ARINC 653 and AFDX implies
that the communication ports can no longer be predefined



or shared among multiple DDS entities. Furthermore, DDSI-
RTPS messages should be restricted in size to comply with
the requirements of the underlying communication service.
Secondly, the discovery of entities should be statically per-
formed, for example, by obtaining the location data together
with the QoS configurations from the system integration phase.
A comprehensive summary of the DDS and AFDX integration
challenges is shown in Table 2, which denotes the list of issues
and proposed solutions.

Finally, one key objective of using open standards is
supporting the addition or substitution of software compo-
nents from different vendors. Hence, interoperability between
different DDS implementations supporting this new profile
should be guaranteed as long as they are compliant with
the requirements of the DDSI-RTPS protocol, including the
aforementioned restrictions.

V. EVALUATION

This Section aims to assess the proposed integration by
implementing a distributed partitioned platform from which
some performance metrics can be obtained.

A. The distributed partitioned platform

The proposed platform relies on DDS for the distribution
of data, which in turn relies on the ARINC 653 communi-
cation service to interconnect partitions within the same end-
system. Additionally, end-systems are interconnected through
an AFDX emulator [24]. Beyond the integration, our devel-
opment has also focused on adapting the partitioned platform
towards multi-core systems in order to minimize the overhead
associated with time partitioning.

The main points addressed in the development of the
distributed partitioned platform are briefly described next.

Extensions to the hypervisor: The proposed platform relies
on the XtratuM hypervisor [25], version 3.7.3, to enforce
spatial and temporal isolation as required by ARINC 653.
It provides different services to partitions such as timing,
interrupt management, scheduling or inter-partition commu-
nications.

When executing on multi-core systems, XtratuM can also
provide partitions with one or more virtual CPUs. To enable
communication and event notification between different virtual
CPUs, a special kind of interrupt called IPVI (Inter-Partition
Virtual Interrupt) is defined. This special interrupt is triggered
by a partition to inform about some relevant event to partitions
allocated in different virtual CPUs.

XtratuM handles shared devices by means of special parti-
tions called I/O partitions. In the proposed distributed parti-
tioned platform, for instance, multiple partitions may require
access to the AFDX network and therefore the driver con-
tention is handled through the corresponding I/O partition.
Under this approach, all the partitions belonging to the same
node are interconnected through the standard ARINC transport
mechanism; and communications between partitions allocated
to different nodes must be performed via the pseudo-partition,
which will be responsible for redirecting messages to the
communications network.

Finally, XtratuM only considers communications among
partitions within the same end-system. Thus, communications
among remote partitions require extending the hypervisor with
new configuration parameters. These new parameters are used



to generate the discovery information required to interconnect
remote partitions through DDS.

Extensions to the real-time operating system: The real-
time operating system used in the platform is called MaRTE
OS [26]. It is a real-time kernel which follows the POSIX.13
minimal real-time system profile and provides support for
concurrent applications, any of which could be written in C
or Ada programming languages.

In the context of the platform, applications running in a
partition on top of MaRTE OS do not need to be directly
virtualized and they use the services provided by the operating
system. However, the hardware abstraction layer of MaRTE
OS need to be modified in order to access the system resources
by means of the interface provided by XtratuM.

Since distributed applications based on distribution middle-
ware usually rely on a direct access to the network interface
and XtratuM enforces the use of the I/O partition mechanism
for shared devices, MaRTE OS has been extended to provide
partitions with a virtual network interface. From the distributed
application viewpoint, the virtual network interface features
the same basic functionality as network devices (open, send,
receive, close, etc.) but inter-partition communications are
internally based on the ARINC 653 communication service
provided by XtratuM. In particular, the proposed communica-
tion mechanism present two major features:

• Blocking and non-blocking receiving operations. While
the latter is directly implemented on top of the communi-
cation services provided by XtratuM, the former is based
on extended interrupts to determine on which port the
message is received.

• Management of IPVIs. In multi-core scenarios, the virtual
network interface is responsible for triggering an IPVI to
notify the delivery of an inter-partition message whose
destination is allocated in another virtual CPU as soon as
it is transmitted.

Extensions to the DDS implementation: RTI Connext
Micro is a minimal DDS implementation aimed at resource-
constrained devices which has been designed as a certifiable
component for safety-critical systems. In the context of this
work, version 3.0.3 has been ported to the distributed parti-
tioned platform. In particular, our work has focused on two
developments:

• Development of a port to MaRTE RTOS: This middleware
provides a kernel abstraction layer to facilitate the access
to different kernel services such as threading, memory
management, timing or protecting shared resources.

• Development of a transport plugin for ARINC 653 com-
munications. This plugin implements an abstract transport
API defined by the middleware that allows the ARINC-
based transport to be registered in middleware, announc-
ing it to other participants and sending and receiving
messages over the ARINC 653 communication service
provided by XtratuM via the virtual network interface
previously described.

Integration of the AFDX Emulator: The authors in [24]
presents a software written in Ada to emulate the behaviour of
an AFDX network on top of standard Ethernet hardware. This
emulator does not comply with all the timing requirements
specified by the AFDX standard, but it is considered to be
suitable for training or research purposes as it provides the ba-
sic functionality of AFDX networks such as the definition and
configuration of virtual and sub-virtual links, the transmission
and reception of messages at the end systems, fragmentation,
etc.

In this case, our development focused on adapting the
software to be distributed as a library and thus facilitating the
integration in the building process. Furthermore, some minor
bugs identified in the reception of data has also been fixed.

B. Performance metrics

This subsection provides some overhead metrics of using
DDS for information dissemination in the avionics domain. To
this end, we revisit the simulated Traffic alert and Collision
Avoidance System (TCAS) described in [27]. The TCAS
system is sufficiently complex to estimate the overhead of
using DDS with AFDX while keeping the scale appropriate
for the available development platform. The main objective
of this surveillance system is to prevent mid-air collisions by
monitoring the airspace for nearby aircrafts. When a threat
of mid-air collision is detected, the TCAS system shows
proximity warnings in the target display. Fig. 5 shows a
simplified TCAS system which is composed of two end-
systems:

• Air-to-air surveillance end-system: It is divided into three
main subsystems: (1) the data acquisition subsystem,
which provides the position and altitude of aircrafts
within the monitored area with a data acquisition rate
of 500 samples per second; (2) the control panel subsys-
tem, which allows the pilot to configure the sensitivity
level that should be used to determine possible threats;
and (3) the threat detection subsystem, which examines
the surveillance data generated by the data acquisition
subsystem in order to determine the existence of nearby
aircrafts. If a potential threat is detected or a risk of
collision exists, it provides the user interface subsystem
with traffic and resolution advisories, respectively.

• Alarm triggering end-system: It comprises the user in-
terface subsystem, which is responsible for describing the
state of the TCAS. It also reports the necessary warnings
to the pilot according to the selected operation mode. In
this case, the available information is reported by means
of two kinds of displays: (1) the traffic display and (2)
the resolution advisories (RA) display. In the case of RA,
it may be required to have one display per pilot.

In this system, all the data flows are asynchronous. The data
acquisition subsystem periodically send data samples about
nearby aircraft/s to the threat detection subsystem in order
to process them. Then, the threat detection subsystem sends
warnings to the corresponding displays managed by the user
interface subsystem. Additionally, the control panel subsystem



Fig. 5. The TCAS system

aperiodically sends the sensitivity levels to configure the user
interface subsystem. Since this example aims at evaluating the
overhead of the proposed DDS and AFDX integration, two
different scenarios has been implemented for the distribution
of data:

• DDS distribution: This requires the mapping of the
TCAS system to a DDS architecture by defining the
data structures that are exchanged within the dis-
tributed system. For instance, 4 different topics have
been defined: Surveillance_Data, Traffic_Advisory, Reso-
lution_Advisory and Control_Panel.

• Adhoc distribution: This is the reference case in which
the data distribution does not rely on middleware. Par-
titions interconnect via predefined communication chan-
nels statically configured before runtime.

The hardware platform is composed of two quad-core
processors with a clock rate of 2.8 and 3.2 Ghz. The system
has been configured to have a dedicated core for each partition
in both end-systems, thus minimizing the overhead associated
with time partitioning. Threads running on each partition are
scheduled using a fixed-priority preemptive scheduler provided
by MaRTE OS.

Since the whole set of data flows are asynchronous, an
oscilloscope has been used to obtain the response times by
measuring the delay between two digital signals. Without loss
of generality, the evaluation consists of obtaining the response
time of triggering a resolution advisory in one display. To
this end, two different data flows are evaluated: the first data
flow is between the data acquisition and the threat detection
subsystems, and the second data flow is between the threat
detection and the resolution advisory displays. In order to
obtain the metrics, the Data Acquisition partition sets/clears
the first digital signal under evaluation and publishes a
Surveillance_Data sample; then, this sample is captured and
processed by the Threat Detection partition, which in turn
sends traffic and resolution advisories; once the advisory is
shown on the display, the RA Display 2 partition sets/clears
the second digital signal under evaluation, and therefore the
delay between both signals can be measured. It is worth
remarking that the remaining data flows could be evaluated

using a similar procedure.
To better estimate the performance figures, the operation

under evaluation is executed a minimum of 10,000 times and
the payload is bounded in order to avoid any fragmentation
at transport-level. Furthermore, response times are only mea-
sured after initialization and discovery processes have been
completed (i.e., the distributed partitioned system is in a
steady state). It is worthy of consideration that emulating
the AFDX network increases the response times compared
to using specialized AFDX hardware [24]. However, this
overhead is added to both scenarios and therefore the temporal
cost of using DDS can still be evaluated.

The images shown in Fig. 6 and Fig. 7 were generated using
the oscilloscope, where the y-axis represents voltages (2 volts
per division) and the x-axis represents times (200 microsec-
onds per division). Both figures show the minimum, average
and maximum response times obtained in the evaluation for
each proposed scenario, together with the standard deviation.
The DDS distribution scenario obtains slightly higher values
(about 380 microseconds for the maximum value) than the
Adhoc distribution scenario due to the extra overhead of
using a distribution middleware. For this particular example,
the data flow under evaluation includes at least 4 send /
receive operations which are handled by middleware in the
DDS distribution scenario. As a result, it takes less than 50
microseconds per send / receive middleware operation on
average. Additionally, both scenarios present a standard de-
viation below 10 microseconds, which shows that middleware
adds extra overhead but without increasing the dispersion.
As a trade-off for this extra overhead, DDS facilitates the
integration of heterogeneous software and it provides several
quality-of-service (QoS) policies, among other benefits.

VI. RELATED WORK

Although the integration of DDS in safety-critical scenarios
is still at an early stage in the avionics domain, a few research
works have already been published. For instance, the use
of DDS and time-triggered networks in avionic systems is
discussed in [28]. Furthermore, the authors in [29] evaluate the
impact of using DDS in a simulated automatic flight control
system from the application performance perspective.



Fig. 6. Response times obtained for the Adhoc distribution

Fig. 7. Response times obtained for the DDS distribution

In the context of combat management systems, the work
in [30] proposes a new discovery protocol of DDS entities
in order to reduce the data exchanged in large distributed
real-time systems. This protocol guarantees that the number
of messages sent to the network does not depend on the
number of DataWriter or DataReader entities, but Participants.
However, the static nature of AFDX communications prevents
its application in partitioned systems, where static discovery
is more suitable.

The execution of DDS in a virtual environment was
addressed in previous works. For instance, the authors in
[31] explore the performance of DDS over general-purpose
virtualization software, while DDS is used to interconnect
virtual resources on heterogeneous hypervisors in [32]. The
integration with ARINC 653 partitioned systems was dealt
with in [17] and in [15]. While the former explores the
integration of DDS for the communication between end-
systems (i.e., DDS is only executed in the pseudo-partition
or the partition which interacts with the external system),

the latter not only integrates the distribution model proposed
by DDS for communications between end-systems, but also
considers the communication between partitions within the
same end-systems (i.e., DDS is executed in all the partitions
with communication requirements). The authors in [33] also
deal with the integration of DDS into partitioned systems by
proposing an architecture in which each partition has direct
access to the shared network interface. Furthermore, [34] uses
DDS to interconnect partitioned and non-partitioned nodes.
Our paper represents a step forward to these works as it relies
on the use of the special-purpose AFDX network, instead of
the traditional UDP/IP network, while DDS is executed in all
the required partitions.

Similarly to our work, the use of other networks in DDS
has been addressed for automotive systems, where [35] and
[36] integrate the CAN bus and the FlexRay communications
system, respectively. Furthermore, [37] proposes a model-
based design block in Simulink to facilitate the use of DDS
with vehicular controllers.

VII. CONCLUSIONS AND FUTURE WORK

New approaches are being investigated by the avionics
industry to reduce times and costs in software development.
This is the case of the FACE standard initiative, which aims
at promoting interoperability and software reuse by applying
open standard solutions such as DDS.

The use of DDS in the avionics domain is a promising
approach towards more cost-effective software development
and integration. However, the current DDS specification is not
suitable for safety-critical environments so the development of
a new profile for DDS suitable for certification is essential. To
contribute in the development of the safety-critical profile, this
paper has explored the features of the DDS and ARINC 664
standards that may compromise the integration of both tech-
nologies. Hence, the paper has analysed the communication
models proposed by these standards, their frame formats and
communications protocols, their available failure protection
mechanisms, and their capabilities for bandwidth regulation
and traffic prioritization.

As a result, a set of incompatibilities and recommendations
has been identified, which can be part of the future safety-
critical profile of DDS in the avionics domain.

Additionally, this paper has presented a distributed parti-
tioned platform and the required extensions to integrate DDS
and an AFDX network emulator. Some performance metrics
were also presented and the results show the feasibility of the
proposed integration given the overhead and dispersion values
obtained.

In the short term, we plan to continue our investigation into
DDS for the avionics domain. For instance, further research is
required to fully determine which advanced features of DDS
can be applied in future airborne systems, such as the use of
keys.
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