
RTI Data Distribution Service

The Real-Time Publish-Subscribe Middleware

3.x to 4.0 Transition Guide

Version 4.0d

© 2004 - 2008 Real-Time Innovations, Inc.
All rights reserved.

Printed in U.S.A. Second printing.
July 2008.

Trademarks
Real-Time Innovations, NDDS, and RTI are registered trademarks of Real-Time Innovations, Inc.
Microsoft, Windows, Windows NT, MS-DOS, Visual C++, and Visual Studio are registered
trademarks of Microsoft Corporation in the United States and/or other countries.
All other trademarks used in this document are the property of their respective owners.

Copy and Use Restrictions
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form (including electronic, mechanical, photocopy, and facsimile) without the prior written
permission of Real-Time Innovations, Inc.
The software described in this document is furnished under and subject to the RTI software license
agreement. The software may be used or copied only under the terms of the license agreement.

Technical Support
Real-Time Innovations, Inc.
385 Moffett Park Drive
Sunnyvale, CA 94089
Phone: (617) 623-2570 x208
Fax: (617) 623-2574
Email: support@rti.com
Website: http://www.rti.com

http://www.rti.com

Contents

1 Overview ... 1-1

2 Object Model Comparative Analysis .. 2-1

2.1 Basic Models..2-2
2.2 Domains and DomainParticipants...2-2
2.3 Publications and DataWriters ...2-4
2.4 Subscriptions and DataReaders ...2-5
2.5 Publishers ..2-6
2.6 Subscribers...2-7
2.7 Topics..2-7
2.8 DataTypes ..2-8
2.9 Properties, Parameters, and QoS..2-8
2.10 Listeners...2-8
2.11 The ‘Manager’...2-9
2.12 Client-Server ...2-10
2.13 Applications and Threads ...2-10

2.13.1 Threads in RTI Data Distribution Service 3.x2-10
2.13.2 Threads in RTI Data Distribution Service 4.02-11

3 Configuration Parameters ... 3-1

3.1 Object Parameters in RTI Data Distribution Service 3.x3-1
3.2 Object Parameters in RTI Data Distribution Service 4.03-2
iii

4 Object Properties .. 4-1

4.1 Domain and Infrastructure Properties ... 4-1
4.1.1 NDDSDomainProperties .. 4-1
4.1.2 NDDSTasksProperties... 4-1
4.1.3 NDDSMulticastProperties.. 4-3
4.1.4 NDDSDGramProperties ... 4-4
4.1.5 NDDSDeclProperties .. 4-5
4.1.6 NDDSNICProperties... 4-5
4.1.7 NDDSDomainBaseProperties .. 4-7
4.1.8 RTPSWireProtocolProperties ... 4-8
4.1.9 NDDSAppManagerProperties... 4-9

4.2 Publication and Subscription Properties...4-11
4.2.1 NDDSPublicationProperties ...4-11
4.2.2 NDDSSubscriptionProperties .. 4-13

4.3 Client and Server Properties .. 4-14

5 Comparing the C APIs .. 5-1

5.1 Examples... 5-2
5.1.1 Domain Instantiation .. 5-2
5.1.2 Publishing Data.. 5-3
5.1.3 Subscribing To Data... 5-6

5.2 Domain API...5-11
5.2.1 Domain Create/Delete Routines... 5-12
5.2.2 Domain Index and Handle Retrieval Routines 5-12
5.2.3 Domain Wait Routine.. 5-13
5.2.4 Wire Protocol Properties Routine.. 5-13
5.2.5 Manager and Application Host Routines 5-13
5.2.6 Default Properties Routines ... 5-13
5.2.7 Type API.. 5-14
5.2.8 Database API .. 5-16

5.3 Publication API .. 5-17
5.3.1 Publication Create/Delete Routines ... 5-18
5.3.2 Publication Properties Routines .. 5-18
5.3.3 Publication Send and Wait Routines... 5-19
5.3.4 Publication Status Routines ... 5-19
5.3.5 Publication Topic and Instance Routines 5-20
iv

5.3.6 Publication Listener Routines...5-21
5.4 Subscription API...5-21

5.4.1 Issue Listener Routines..5-22
5.4.2 Subscription Create/Delete Routines..5-23
5.4.3 Subscription Properties Routines...5-23
5.4.4 Subscription Status Routine..5-24
5.4.5 Subscription Poll and Wait Routines ...5-24
5.4.6 Subscription Topic and InstanceRoutines.......................................5-24
5.4.7 Reliable Subscription Routines...5-24

5.5 Publisher API ..5-26
5.5.1 Publisher Create/Delete Routines ...5-27
5.5.2 Publisher Add/Remove Routines ...5-27
5.5.3 Publisher Send and Wait Routines...5-28
5.5.4 Publisher Find and Iterate Routines ..5-28

5.6 Subscriber API ..5-28
5.6.1 Subscriber Create/Delete Routines ...5-29
5.6.2 Subscriber Pattern Routines..5-29
5.6.3 Subscriber Add/Remove Routines..5-30
5.6.4 Subscriber Poll Routine ...5-30
5.6.5 Subscriber Find and Iterate Routines ..5-30

5.7 Client and Server APIs ..5-31
5.8 Listeners...5-31

5.8.1 Domain Listeners..5-31
5.8.2 Publication Listeners..5-34
5.8.3 Issue Listeners...5-35
5.8.4 Subscription Reliable Listeners ..5-37
5.8.5 Publisher and Subscriber Listeners ...5-38
5.8.6 Client and Server Listeners ...5-39

6 Comparing the C++ APIs ... 6-1

6.1 Examples..6-2
6.1.1 Domain Instantiation ...6-2
6.1.2 Publishing Data ..6-3
6.1.3 Subscribing to Data ..6-7

6.2 Domain Methods..6-11
6.2.1 Methods for Creating/Destroying Domains..................................6-11
v

6.2.2 Domain Method for Retrieving a Domain Handle....................... 6-12
6.2.3 Domain Methods for Creating/Destroying Publications............ 6-12
6.2.4 Domain Methods for Creating/Destroying Publishers 6-12
6.2.5 Domain Methods for Creating/Destroying Subscriptions.......... 6-13
6.2.6 Domain Methods for Creating/Destroying Subscribers 6-13
6.2.7 Domain Methods for Getting/Setting Properties......................... 6-14
6.2.8 Domain Methods for Clients and Servers...................................... 6-14

6.3 Publication Methods ... 6-15
6.3.1 Publication Listener Methods .. 6-15
6.3.2 Publication Methods for Retrieving Instances and Topics 6-16
6.3.3 Publication Methods for Getting/Setting Properties 6-16
6.3.4 Publication Method for Getting Status... 6-16
6.3.5 Publication Methods for Sending/Waiting 6-17

6.4 Publisher Methods... 6-18
6.4.1 Publisher Methods for Adding/Removing Publications 6-18
6.4.2 Publisher Methods for Finding Publications................................. 6-19
6.4.3 Publisher Methods for Sending/Waiting....................................... 6-19
6.4.4 Publisher Methods for Iterating .. 6-19

6.5 Subscription Methods ... 6-20
6.5.1 Subscription Method for Getting Instances and Topics 6-20
6.5.2 Subscription Method for Checking Reliability............................. 6-20
6.5.3 Subscription Methods for Getting/Setting Listeners.................. 6-21
6.5.4 Subscription Methods for Polling and Waiting............................. 6-21
6.5.5 Subscription Methods for Getting/Setting Properties................. 6-21
6.5.6 Subscription Methods for Getting Status....................................... 6-21

6.6 Subscriber Methods... 6-23
6.6.1 Subscriber Methods for Adding/Removing Subscriptions 6-24
6.6.2 Subscriber Methods for Finding Subscriptions............................. 6-24
6.6.3 Subscriber Method for Polling Subscriptions................................ 6-24
6.6.4 Subscriber Method for Iterating .. 6-25
6.6.5 Subscriber Methods for Adding/Removing Patterns.................. 6-25

6.7 Client and Server Methods... 6-25
6.8 Listeners .. 6-25

6.8.1 Domain Listeners... 6-26
6.8.2 Publication Listeners... 6-28
6.8.3 Issue Listeners .. 6-29
6.8.4 Subscription Reliable Listeners ... 6-29
vi

6.8.5 Publisher and Subscriber Listeners ...6-30
6.8.6 Client and Server Listeners ...6-30

7 RTI Data Distribution Service Product Lifecycle .. 7-1

7.1 Early Access Phase ...7-1
7.2 Production Phase..7-1
7.3 Retirement Phase ..7-3

8 Summary ... 8-1

A Buildable Source Code Examples ... A-1

Index .. Index-1
vii

viii

1. O
ve

rview
Chapter 1

Overview

What is RTI Data Distribution Service?

RTI Data Distribution Service is a software infrastructure that provides transparent net-
work connectivity that enables the efficient design of highly complex distributed appli-
cations. RTI Data Distribution Service implements a publish-subscribe communications
model and allows distributed processes to share data without concern for the actual
physical location and architecture of their peers.

The RTI Data Distribution Service 4.0 architecture implements the Data-Centric Publish-
Subscribe (DCPS) layer of the OMG Data Distribution Service (DDS) for Real-Time Sys-
tems. The goal of DCPS is to provide efficient data movement within a distributed real-
time system. With RTI Data Distribution Service, system architects and programmers can
create fault-tolerant and flexible communication systems that will function over a wide
variety of computer hardware, operating systems, languages, and networking transport
protocols.

Purpose of this Document

This document has been written to facilitate the understanding and use of the 4.0 (DDS)
API for those familiar with the 3.0 API (formerly known as NDDS). After reading this
document, a 3.x user should be able to port a 3.x-based application to RTI Data Distribu-
tion Service 4.0.

The object models of both products are quite similar; both address the real-time autono-
mous publish-subscribe communication paradigm. While several RTI Data Distribution
Service 3.x configuration and tuning parameters map directly to QoS policies supported
in RTI Data Distribution Service 4.0, several new policies are introduced as well. The API
Proprietary Information of Real-Time Innovations, Inc. 1-1

Chapter 1 Overview
has changed between the products as a result of the introduction of the DDS Specifica-
tion. Appendix A provides a list of available source code examples that represent use
cases using both the 3.x and 4.0 APIs. These buildable projects are available from the
same URL used to download this document. For information on which platforms are
supported in RTI Data Distribution Service 4.0, contact your local RTI Sales Team or see
the RTI Data Distribution Service 4.0 Release Notes (a separate document that is part of
the RTI Data Distribution Service 4.0 distribution).
1-2 Proprietary Information of Real-Time Innovations, Inc.

2. O
b

je
c

t M
o

d
e

l

Chapter 2

Object Model Comparative Analysis

The object model of both products is similar in that an application instantiates a Domain
or DomainParticipant, and proceeds to create objects that allow the sending and/or
receiving of Topic data. The “discovery” information is fully distributed (without cen-
tralized name servers), resulting in a highly robust, fault tolerant middleware architec-
ture with no single point of failure.

RTI Data Distribution Service 3.x supports the concept of Subscriptions and Publications
within a domain. These are the objects that allow the application the ability to actually
‘publish’ or ‘subscribe’ to the data Topic of choice. Publishers and Subscribers allow
publications and subscriptions to be managed and are optional. This chapter describes
the similarities and differences between the two products.

This chapter includes the following sections:

❏ Basic Models (Section 2.1)

❏ Domains and DomainParticipants (Section 2.2)

❏ Publications and DataWriters (Section 2.3)

❏ Subscriptions and DataReaders (Section 2.4)

❏ Publishers (Section 2.5)

❏ Subscribers (Section 2.6)

❏ Topics (Section 2.7)

❏ DataTypes (Section 2.8)
Proprietary Information of Real-Time Innovations, Inc. 2-1

Chapter 2 Object Model Comparative Analysis
❏ Properties, Parameters, and QoS (Section 2.9)

❏ Listeners (Section 2.10)

❏ The ‘Manager’ (Section 2.11)

❏ Client-Server (Section 2.12)

❏ Applications and Threads (Section 2.13)

2.1 Basic Models
For an illustration of the basic object model for RTI Data Distribution Service 3.x, see
Figure 2.1.

RTI Data Distribution Service 4.0 supports the concepts of DataWriters and DataReaders
within a DomainParticipant. These are the objects that allow the application the ability to
actually ‘publish’ or ‘subscribe’ to the data Topic of choice. Publishers and Subscribers
are directly associated with DataWriters and DataReaders, respectively. Publishers and
Subscribers are required in RTI Data Distribution Service 4.0. For an illustration of the
basic object model for RTI Data Distribution Service 4.0, see Figure 2.2.

2.2 Domains and DomainParticipants
A domain is a distributed concept that links all applications that are able to communicate
with each other. A domain represents a communication plane. Domains partition appli-
cations into logical units or separate name spaces: only the Publishers and the Subscrib-
ers attached to the same domain may interact. The object representing an application’s
presence in a domain (called a domain participant in RTI Data Distribution Service 4.0 and
simply a Domain in 3.x) is a manager (or factory) for every other DDS object. Domains
are global in nature; configuring or changing a Domain's default behavior effects all of
the objects created within the Domain. It is important to point out that RTI Data Distribu-
tion Service 4.0 offers additional flexibility with respect to participating in multiple
domains. A single application can participant in multiple domains or can even create
multiple DomainParticipants within the same domain.
2-2 Proprietary Information of Real-Time Innovations, Inc.

2.2 Domains and DomainParticipants
2. O

b
je

c
t M

o
d

e
l

Figure 2.1 RTI Data Distribution Service 3.x Object Model

Identified by means
of a Topic.

Data-Object

 Data values
Publisher

 Data values

Subscription

 Data values

Subscription

Identified by means
of a Topic.

Subscriber

Subscriber

Publication

Note: Publishers and Subscribers
are optional.
Proprietary Information of Real-Time Innovations, Inc. 2-3

Chapter 2 Object Model Comparative Analysis
2.3 Publications and DataWriters
In RTI Data Distribution Service 3.x, the Publication is used by an application to write
instances of data for publication and has parameters and properties associated with it
that dictate behavior. A Publication is created for each Topic to be published and can
stand alone or be added to a Publisher.

In RTI Data Distribution Service 4.0, a DataWriter is very similar to a Publication in RTI
Data Distribution Service 3.x from a functional perspective and acts as a liaison between
an application and a Publisher, with which it is always associated. The DataWriter

Figure 2.2 RTI Data Distribution Service 4.0/DDS Object Model

Identified by means
of a Topic.

Identified by means
of a Topic.

Data-Object

Subscription

 Data values

Subscription

 Data values

DataReader

DataReader
 Publication

 Data values

DataWriter

Publisher

Subscriber

Subscriber
2-4 Proprietary Information of Real-Time Innovations, Inc.

2.4 Subscriptions and DataReaders
2. O

b
je

c
t M

o
d

e
l

informs the Publisher about the Topic (name, data type, existence) and provides the
Publisher with each data sample. The Publisher is responsible for sending the data.

The application writes data using the ‘write’ operation of the DataWriter, which informs
RTI Data Distribution Service that there is a new value for the data object. It does not nec-
essarily cause any immediate network communications. The actual generation of mes-
sages is controlled by the Publisher and the QoS.

The association of a DataWriter to a Publisher is called a Publication. A Publication indi-
cates that the application intends to publish the data described by the DataWriter by
using the Publisher. What is referred to as a “Publication” in RTI Data Distribution Ser-
vice 4.0 is unlike the Publication object in RTI Data Distribution Service 3.x. An RTI Data
Distribution Service 3.x Publication is an actual object with which the user interacts. In
RTI Data Distribution Service 4.0, a “publication” is a logical concept only; there is no
object by that name.

2.4 Subscriptions and DataReaders
In RTI Data Distribution Service 3.x, a Subscription is used by an application to subscribe
to an RTI Data Distribution Service Topic and thus declare the data it wishes to receive. In
essence, it provides an interface with RTI Data Distribution Service in order to receive
incoming published data. A Subscription can stand alone and refers to exactly one Topic
that identifies the data to be read. An application may also manage a group of Subscrip-
tions with a Subscriber.

In RTI Data Distribution Service 4.0, a DataReader acts as a liaison between an application
and a Subscriber and is analogous to a Subscription in RTI Data Distribution Service 3.x.
The Subscriber is responsible for receiving the data and making it accessible to the
DataReader. The DataReader allows the application to declare the Topic it wishes to
receive and to access the data received by the attached Subscriber. The application must
then use the DataReader’s ‘read‘ or ‘take’ operations to gain access to the received data.
A DataReader and Subscriber are inseparable: each DataReader must belong to exactly
one Subscriber. The association of a DataReader to a Subscriber in RTI Data Distribution
Service 4.0 is called a Subscription. A Subscription indicates that the application wants to
receive the data described by the DataReader by using the Subscriber. It is important to
note that what is referred to as a “Subscription” in RTI Data Distribution Service 4.0 is
unlike the Subscription object in RTI Data Distribution Service 3.x.

To access incoming data, you use a DataReader’s Listener. Listeners are a type of call-
back mechanism for asynchronous notification of data arrival (and other important
Proprietary Information of Real-Time Innovations, Inc. 2-5

Chapter 2 Object Model Comparative Analysis
events). Any type of DCPS entity can have an associated Listener. When specific events
occur (such as the arrival of data, QoS changes, or changes in status), RTI Data Distribu-
tion Service invokes the appropriate object’s Listener method. Each object has just one
Listener, which is used to process all incoming events. (Of course, that Listener can be
designed to have its own set of callback routines, to further refine event processing.)
Similar listener functionality was supported in RTI Data Distribution Service 3.x.

The data is accessed by invoking the appropriate operation, such as ‘read’ or ‘take’ on
the related DataReader. The ‘read’ method leaves the data in place, whereas ‘take’
removes the issue from RTI Data Distribution Service’s queue.

A future version of the product will implement Conditions and Wait-sets, which will
provide a way for an application to block until specific events occur. This mechanism
will allow the application to process events synchronously, within its own execution
thread.

2.5 Publishers
In RTI Data Distribution Service 3.x, an application may create several Publications. Man-
aging each Publication separately can be cumbersome and inefficient. Publishers are
optional, but allow applications to manage several Publications, and provide additional
modes of configuration in order to support the real-time requirements of multi-threaded
applications (i.e. Signaled and Asynchronous publishing). Once a Publisher is created
and Publications are added, they are managed as a group and the published messages
are coalesced when disseminated for network bandwidth efficiency.

In RTI Data Distribution Service 4.0, a Publisher is an object responsible for sending data.
You can use the same Publisher to handle the publishing of multiple topics of different
data types. A Publisher is a mandatory object responsible for data distribution and
allows applications to manage DataWriters as a group. DataWriters are automatically
associated with the Publisher when the DataWriter is created. The Publisher acts on
behalf of one or several DataWriter objects. When it is informed of a change to the data
associated with one of its DataWriter objects, it is responsible for determining when to
send, and actually sending the data. This behavior is driven by the attached QoS poli-
cies. Note that DataWriters, unlike Publications in RTI Data Distribution Service 3.x, can-
not stand alone and must be associated with a Publisher. In summary, the concept of
Publisher in 3.x and 4.0 is very similar. Both play the same role.
2-6 Proprietary Information of Real-Time Innovations, Inc.

2.6 Subscribers
2. O

b
je

c
t M

o
d

e
l

2.6 Subscribers
In RTI Data Distribution Service 3.x, an application may create several Subscriptions.
Managing each Subscription individually can be cumbersome. A Subscriber allows
applications to manage several Subscriptions, and can also support pattern Subscrip-
tions, which allow an application to subscribe to a set of Topics. RTI Data Distribution
Service uses regular expression patterns and pattern matching rules by default. The pat-
tern matching behavior is consistent with the filename expansion rules used by most
UNIX shells.

In RTI Data Distribution Service 4.0, a Subscriber is an object responsible for receiving
published data and making it available (according to the Subscriber’s QoS policies) to
the receiving application and may receive and dispatch data of different specified types.
To access the received data, the application must use a typed DataReader attached to the
Subscriber. A Subscriber is associated with zero or more DataReaders. In summary, the
concept of a Subscriber in 3.x and 4.0 is very similar as they both play the same role.

2.7 Topics
In RTI Data Distribution Service 3.x, Topics identify the publications in the distributed
system and represent the information that other nodes subscribe to. Topics are impor-
tant in that they are the primary means of connecting the information flow within your
application. Topics are user-provided strings that identify both Publications and Sub-
scriptions.

In RTI Data Distribution Service 4.0, the Topic is an actual entity and not simply a string.
Topics allow Publications to be known in such a way that Subscriptions can refer to
them unambiguously. A Topic associates a name (unique in the Domain), a data-type,
and QoS related to the data itself. The Topic entity provides support for keys, QoS poli-
cies, and Listeners. In RTI Data Distribution Service 3.x, a Topic/type instance was singu-
lar. In RTI Data Distribution Service 4.0, a Topic/type can have multiple instances,
distinguishable by a user supplied key. In summary, the concept of a Topic in RTI Data
Distribution Service 3.x and RTI Data Distribution Service 4.0 is very similar and is identi-
fied by a string (name) and its associated type.

The main difference is that in RTI Data Distribution Service 4.0 there is an explicit Topic
object that represents the association of the name and the type and can also have QoS
and listeners associated with it.
Proprietary Information of Real-Time Innovations, Inc. 2-7

Chapter 2 Object Model Comparative Analysis
2.8 DataTypes
The concept of a DataType in RTI Data Distribution Service 3.x and 4.0 is very similar. In
both cases it represents the format of the data-structure that the application wants to
publish/subscribe. The format is represented by a name and described to the middle-
ware by means of a set of functions that encode how to marshal/unmarshal the type.
These functions are auto-generated by the bundled utility “nddsgen” from a text docu-
ment that describes the type in a platform-neutral language.

2.9 Properties, Parameters, and QoS
In RTI Data Distribution Service 3.x, we use the terms Properties and Parameters, in RTI
Data Distribution Service 4.0, we refer to Quality of Service (QoS) and QoS policies. The
overall QoS of the system is comprised of individual QoS policies for each object. QoS
policies allow developers to configure RTI Data Distribution Service to exhibit extremely
flexible behavior. QoS policies control many aspects of how and when data is distrib-
uted between applications. See Chapter 3: Configuration Parameters and Chapter 4:
Object Properties for more details.

2.10 Listeners
Listeners provide a mechanism for RTI Data Distribution Service to asynchronously alert
the application of the occurrence of relevant events, such as arrival of data correspond-
ing to a Subscription, or a remote application coming online. Listeners are interfaces
that the application implements. Each object Listener class provides several virtual
methods that correspond to relevant events that the application may wish to respond to.
It is the application’s responsibility to implement the Listener methods’ functionality.

In RTI Data Distribution Service 3.x, Listeners can be associated with Publications, Sub-
scriptions, and Domains. Each Listener class provides specific virtual methods appro-
priate for the object of interest.

RTI Data Distribution Service 4.0 also provides the listener mechanism as a means to
notify the application of relevant events. Listeners can be associated with Topics,
DataWriters, DataReaders, Publishers, Subscribers, and DomainParticipants. As men-
2-8 Proprietary Information of Real-Time Innovations, Inc.

2.11 The ‘Manager’
2. O

b
je

c
t M

o
d

e
l

tioned above, Topics now support their own Listener as well. Each listener class pro-
vides specific methods appropriate for the object of interest. (A future version of RTI
Data Distribution Service will include an additional mechanism for receiving data which
will allow the application to block/wait for the events of interest.)

In RTI Data Distribution Service 4.0, Listeners are organized in a hierarchical manner
where the SubscriberListener generalizes the DataReaderListener, the PublisherListener
generalizes the DataWriterListener, and the DomainParticipantListener generalizes all
other listeners. The purpose of this hierarchical organization is to allow a more general
listener to provide a “default” action in case the more specific Listener does not handle
the event. In this manner, the DomainParticipantListener becomes the Listener of last
resort that is notified of all status changes not captured by more specific listeners
attached to the specific Domain Entity objects. As an example, when a relevant status
change occurs associated with a DataReader, RTI Data Distribution Service will first
attempt to notify the Listener attached to the concerned DataReader if one is installed.
Otherwise, RTI Data Distribution Service will notify the Listener attached to the Sub-
scriber, or lastly, the DomainParticipant.

2.11 The ‘Manager’
In RTI Data Distribution Service 3.x, the manager process (called the NDDS Manager) is
responsible for discovering remote applications. Each time an application is created or
destroyed, the manager process propagates the event information to all other remote
managers within the Domain. The manager is a separate process (on operating systems
with a process-model such as UNIX® and Windows® NT, Windows 2000, and Windows
XP) or a task (VxWorks®). Under normal circumstances, RTI Data Distribution Service
applications automatically start the manager. Each Domain will have a separate man-
ager process.

In RTI Data Distribution Service 4.0, there is no separate manager process. The responsi-
bilities previously performed by the manager process are automatically managed by the
RTI Data Distribution Service libraries linked to each application.
Proprietary Information of Real-Time Innovations, Inc. 2-9

Chapter 2 Object Model Comparative Analysis
2.12 Client-Server
RTI Data Distribution Service 4.0 does not provide Client-Server functionality; it is not
specified within the DDS Specification. Client-Server functionality will be introduced in
a future release of the product.

2.13 Applications and Threads

2.13.1 Threads in RTI Data Distribution Service 3.x

In RTI Data Distribution Service 3.x, an application is comprised of user threads as well as
several RTI Data Distribution Service specific threads. There can be several applications
active on a single computing node, as well as distributed throughout the network. Each
RTI Data Distribution Service application will consist of the following threads:

Alarm Thread (AT) — The Alarm Thread (AT) is responsible for waking up other threads
at periodic rates. For example, a subscription's deadline is a periodic event that
can occur every 2 seconds. There is only one AT thread per application per
Domain. As an example, if one application instantiated three Domains, three AT’s
would be created. Conversely, if two applications participated within one
Domain, two AT’s would be created. This thread never enters the user's context
and is created during initialization.

Receive Thread (RT) — The Receive Thread (RT) receives all user data sent by publica-
tions, subscriptions, clients and servers. In the case of reliable subscriptions, the
RT will also be responsible for sending acknowledgements. In the case of immedi-
ate subscriptions, this is the thread that calls the user's issue listener. There may be
more than one RT, depending on whether or not multicast or shared memory is
enabled. This thread is created during initialization.

Send Thread (ST) — The Send Thread (ST) is responsible for sending user data. An appli-
cation can have several STs depending on the number of Publishers and their
modes. Each signaled Publisher creates a separate ST. An additional single ST is
created for all asynchronous publishers. This thread is created with the first asyn-
chronous publisher. Note that Publications, Clients and Servers and synchronous
Publishers do not need an ST. In these cases the data is sent in the user thread.
2-10 Proprietary Information of Real-Time Innovations, Inc.

2.13 Applications and Threads
2. O

b
je

c
t M

o
d

e
l

Database Thread (DT) — The Database Thread (DT) propagates and manages RTI Data
Distribution Service's internal database. Each node maintains a database that
reflects the entire distributed system. This thread is responsible for ensuring that
the internal database is consistent with its peers. This thread is created during ini-
tialization.

User Thread (UT) — These represent the application threads used by the user-applica-
tions. These threads may be used to send data in the case where the application
sends information by means of a Publication, or else if the application used a Pub-
lisher that has been configured as a “SYNCHRONOUS” Publisher.

In addition to these RTI Data Distribution Service-specific threads, each domain requires
that an RTI Data Distribution Service manager process be spawned. For operating sys-
tems that do not support the process model, such as the VxWorks 5.x operating environ-
ment, each thread is spawned as a task—including the RTI Data Distribution Service
manager.

2.13.2 Threads in RTI Data Distribution Service 4.0

In RTI Data Distribution Service 4.0, an application on a specific computer may instantiate
one or more DomainParticipant objects within the same or in different domains.
DomainParticipants are associated with a specific domainId, have a participantIndex,
and cannot contain other DomainParticipants. Several DomainParticipants can co-exist
on a single node (computer) within a single Domain (domainId) as long as their partici-
pantIndex is unique. DomainParticipants belonging to the same domainId on different
computers can use the same participantIndex. A DomainParticipant spawns several RTI
Data Distribution Service-specific threads. The following threads will exist per Domain-
Participant:

Event Thread (ET) — one ET is created per Application. The ET performs several duties,
all related to periodic activity within the application. The ET duties include but
are not limited to the following:

• Check for DataReader/Writer Deadline expiration, and call Listener when
appropriate.

• Sending data issues in response to a NACK from a DataReader. (Note:
sending data issues in response to a NACK may be done by a Receive
Thread if the extended QoS specifying the time to delay a response to a
NACK is zero)

• Check for Liveliness lapses.
Proprietary Information of Real-Time Innovations, Inc. 2-11

Chapter 2 Object Model Comparative Analysis
The ET handles duties previously performed by the Alarm Thread, NDDS Man-
ager, and the Database Thread in RTI Data Distribution Service 3.x.

Database Thread (DT) — is used solely for the purposes of cleaning up the database. This
thread no longer disseminates declaration data as it did in RTI Data Distribution
Service 3.x.

Receive Threads (RT) — there are several receive threads created per application. The
number of receive threads needed depends on the number of "Receive Resources"
required. These resources are dependent on the transports installed and, depend-
ing on the kind of transport, the entry-ports through which reception is expected.
For example, the “intra” transport requires only a single receive resource regard-
less of how many entryports there are; therefore, a single RT is needed to handle
all intra communications. For the shared memory transport, a receive resource is
needed for each unique "port", so there may be multiple receive threads for
shared memory. For IP and IP multicast, a receive resource is needed for each
unique port and transport level QoS, and thus we see multiple receive threads for
IP and IP multicast (e.g. user-data and meta-traffic) as these are on different ports.
We have the following for the default IP transport:

• Intra-transport read thread - handles same CPU pub/sub communica-
tions.

• Incoming IP meta-traffic (unicast) - handles unicast receive activity previ-
ously handled by the Manager and Database Thread in RTI Data Distribu-
tion Service 3.x.

• Incoming IP user-data (unicast) - handles receive activity previously han-
dled by the Receive Thread in RTI Data Distribution Service 3.x.

All outgoing (non-application-specific data) traffic is handled by the Event
Thread, e.g. the responses to NACKs. This also means some outgoing traffic may
be handled by a Receive Thread, depending on the extended QoS settings (as
mentioned above). Outgoing application-specific user-data will be sent by the
user's thread as a result of a write() call; however, it is important to note that out-
going meta-traffic is also sent by the user's thread as a result of creating a new
local entity.

There is one additional point that should be considered. We only mentioned the
outgoing traffic as it pertains to actual application data (RTPS ISSUEs and
VARs). There is also additional outgoing support traffic (RTPS ACKs, HBs, and
GAPs) that applies for both metatraffic and user-data, although sometimes in dif-
ferent cases, and are being sent by the Event Thread and Receive Threads.
2-12 Proprietary Information of Real-Time Innovations, Inc.

2.13 Applications and Threads
2. O

b
je

c
t M

o
d

e
l

User Threads (UT) — These represent the threads that are used by the application. RTI
Data Distribution Service 4.0 will use these threads when the application calls
“write” on a DataWriter.
Proprietary Information of Real-Time Innovations, Inc. 2-13

Chapter 2 Object Model Comparative Analysis
2-14 Proprietary Information of Real-Time Innovations, Inc.

3. Pa
ra

m
e

te
rs
Chapter 3

Configuration Parameters

Both RTI Data Distribution Service 3.x and 4.0 allow you to tailor the middleware’s
behavior to your application’s specific requirements. In RTI Data Distribution Service 3.x,
there are two places where you can specify how RTI Data Distribution Service behaves.
First, when you create various objects like subscriptions and publications, you pass
important parameters like strength, persistence, and deadline to the API that creates the
object. Second, you may alter other aspects of these objects directly in their property
structures. In RTI Data Distribution Service 4.0, all object behavior is controlled through
Quality of Service (QoS) policies.

This chapter discusses the RTI Data Distribution Service 4.0 equivalents of the parameters
explicitly passed when creating the objects. The fields set in 3.x property structures are
discussed in Chapter 4.

This chapter includes the following sections:

❏ Object Parameters in RTI Data Distribution Service 3.x (Section 3.1)

❏ Object Parameters in RTI Data Distribution Service 4.0 (Section 3.2)

3.1 Object Parameters in RTI Data Distribution Service 3.x
When you create a Publication in RTI Data Distribution Service 3.x, you set its Strength
and Persistence; when you create a Subscription, you set its Minimum Separation and
Proprietary Information of Real-Time Innovations, Inc. 3-1

Chapter 3 Configuration Parameters
Deadline, and specify whether unicast or multicast will be used. These parameters
define the behavior, or QoS, for the object. To use reliable communication, you use a sep-
arate ‘reliable’ API to create the Subscription, still setting the same parameters as men-
tioned above. The Subscription dictates whether the communication is best-effort or
reliable, unicast or multicast.

3.2 Object Parameters in RTI Data Distribution Service 4.0
In RTI Data Distribution Service 4.0, you control the behavior of an object by setting QoS
policies. QoS policies are set on all entities (Topics, DataWriters, DataReaders, Publish-
ers, Subscribers, and DomainParticipants).

In certain cases, for communications to occur properly, the QoS policy of the Publisher
must be compatible with the corresponding policy of the Subscriber. For example, if a
Subscriber requests to receive data reliably while the corresponding Publisher only
offers best-effort, communication will not be established. To address this issue and
maintain the desirable decoupling of Publication and Subscription, the specification for
QoS policy follows the Subscriber-requested, Publisher-offered pattern. In this pattern,
the Subscriber can specify an ordered list of “requested” values for a particular QoS pol-
icy in decreasing order of preference. The Publisher specifies a set of “offered” values
for that QoS policy. RTI Data Distribution Service selects the most-preferred value
requested by the Subscriber that is offered by the Publisher, or it may reject the estab-
lishment of communications between the two objects if the QoS requested and the QoS
offered cannot be reconciled. This is a new feature inherent within DDS.

On the publishing side, the QoS of each Topic, DataWriter, and Publisher all play a part
in controlling how and when data samples are sent to RTI Data Distribution Service. Sim-
ilarly, on the subscribing side, behavior is controlled by the QoS of the Topic,
DataReader, and Subscriber. These QoS policies control a variety of behavior, such as
how often a DataReader expects to see samples, how to arbitrate when multiple
DataWriters send updates for the same Topic and whether a Publisher should save sam-
ples in case new Subscriptions later join the network.

The QoS policies in RTI Data Distribution Service 4.0 provide a super-set of the control
features offered by the object properties in RTI Data Distribution Service 3.x. As seen in
Table 3.1, some QoS policies map directly from RTI Data Distribution Service 3.x parame-
ters to RTI Data Distribution Service 4.0 QoS policies. You will note that RTI Data Distribu-
tion Service 4.0 has several more QoS policies that do not map directly to anything in RTI
Data Distribution Service 3.x. For more information on these new features, see the RTI
Data Distribution Service 4.0 User’s Manual or online documentation.
3-2 Proprietary Information of Real-Time Innovations, Inc.

3.2 Object Parameters in RTI Data Distribution Service 4.0
3. Pa

ra
m

e
te

rs
Table 3.1 Controlling Service Behavior

3.x Parameter 4.0 QoS Policy

deadline

DEADLINE

RTI Data Distribution Service 4.0 supports the notion of the Publisher
having a ‘deadline’ QoS policy along with the Subscriber. In RTI Data
Distribution Service 3.x, the ‘deadline’ QoS was a policy associated only
with the Subscription.

minimum
separation

TIME_BASED_FILTER

RTI Data Distribution Service 4.0 also supports the
TIME_BASED_FILTER QoS policy for reliable communications. In RTI
Data Distribution Service 3.x, the minimum separation QoS policy only
applied to best-effort communication.

persistence LIVELINESS (LEASE_DURATION)

reliability
(via subscription
api call)

RELIABILITY

strength

OWNERSHIP_STRENGTH

OWNERSHIP can be either EXCLUSIVE or SHARED. The application
can achieve RTI Data Distribution Service 3.x publication strength
behavior by using OWNERSHIP_STRENGTH and
OWNERSHIP_EXCLUSIVE policies on DataWriters. If the application
selects OWNERSHIP_SHARED, then multiple DataWriters may alter the
Topic issue, and the DataReader will receive all instances of the Topic
regardless of ownership strength.

sendqueuesize,
timetokeepperiod

DURABILITY, HISTORY, and LIFESPAN

RTI Data Distribution Service 4.0 QoS are more general and
accommodate additional use-cases.
Proprietary Information of Real-Time Innovations, Inc. 3-3

Chapter 3 Configuration Parameters
No Direct
Mapping

DATA_READER_PROTOCOL

DATA_READER_RESOURCE_LIMITS

DATA_WRITER_PROTOCOL

DATA_WRITER_RESOURCE_LIMITS

DATABASE

DESTINATIONORDER

DISCOVERY_CONFIG

DISCOVERY

DOMAIN_PARTICIPANT_RESOURCE_LIMITS

ENTITYFACTORY

EVENT

EXCLUSIVE_AREA

GROUPDATA

HISTORY

LATENCYBUDGET

LIFESPAN

PARTITION

PRESENTATION

READERDATALIFECYCLE

RECEIVER_POOL

RESOURCELIMITS

SYSTEM_RESOURCE_LIMITS

TOPICDATA

TRANSPORT

TRANSPORTPRIORITY

USERDATA

WIRE_PROTOCOL

WRITERDATALIFECYCLE

Table 3.1 Controlling Service Behavior

3.x Parameter 4.0 QoS Policy
3-4 Proprietary Information of Real-Time Innovations, Inc.

4.1 Domain and Infrastructure Properties
4. O

b
je

c
t Pro

p
e

rtie
s

Chapter 4

Object Properties

In addition to the parameters explicitly set when creating a Publisher or Subscriber (like
the strength, persistence, and deadline parameters discussed in Chapter 3), RTI Data
Distribution Service 3.x also allows you to modify properties that control the infrastruc-
ture’s internal behavior. As a result, more performance can be ‘tuned’ into the system
depending on the topology of the application’s specific requirements. These object
properties are set when the object is created.

This chapter lists the properties you can set for each object in RTI Data Distribution Ser-
vice 3.x, and how they map to associated RTI Data Distribution Service 4.0 QoS policies.

This chapter includes the following sections:

❏ Domain and Infrastructure Properties (Section 4.1)

❏ Publication and Subscription Properties (Section 4.2)

❏ Client and Server Properties (Section 4.3)

4.1 Domain and Infrastructure Properties

4.1.1 NDDSDomainProperties

Table 4.1 provides information on how to map the fields in an NDDSDomainProperties
structure.

4.1.2 NDDSTasksProperties

Table 4.2 provides information on how to map the fields in an NDDSTasksProperties
structure.
Proprietary Information of Real-Time Innovations, Inc. 4-1

Chapter 4 Object Properties
Table 4.1 Mapping NDDSDomainProperties

3.x Field Name Description 4.0 Equivalent

tasks
Stack size and priorities of the
tasks automatically started by
NDDS

See Section 4.1.2

multicast
Properties controlling the use of
multicasting

See Section 4.1.3

object
Whether or not clients/servers
can create additional clients/serv-
ers

Not supported. RTI Data Distribu-
tion Service 4.0 does not support a
Client/Server API. This feature set
will be introduced in a future version
of the product.

client
Default properties for all clients
the application creates

server
Default properties for all servers
the application creates

publication
Default properties for all publica-
tions the application creates

See Section 4.2.1

subscription
Default properties for all subscrip-
tions the application creates

See Section 4.2.2

dgram Socket properties See Section 4.1.4

maxSizeSerialize

Maximum size of any NDDS issue
the application may send or
receive. This parameter is typi-
cally increased along with send-
BufferSize and recvBufferSize
when sending large packets
greater than 8k bytes.

Not required; specific transports can
be configured to handle messages of
different sizes.

decl Controls declarations See Section 4.1.5

nackRetryMin

Minimum time to wait before
resending a NACK for a missing
issue in reliable communication
mode

DDS_DataWriterQos.protocolX.rtps.
reliable_writer.
min_nack_response_delay

nicIPAddressCount
Number of entries in nicProper-
ties

Transport configuration API

nicProperties
IP addresses for all NICS on this
node

See Section 4.1.6
4-2 Proprietary Information of Real-Time Innovations, Inc.

4.1 Domain and Infrastructure Properties
4. O

b
je

c
t Pro

p
e

rtie
s

4.1.3 NDDSMulticastProperties

Multicast support is not available in RTI Data Distribution Service 4.0.

nddsTopicLength
Maximum length of an NDDS
topic

Not supportednddsTypeLength
Maximum length of an NDDS
type.

nddsServiceName-
Length

Maximum length of an NDDS Ser-
vice Name

sharedMemory-
Communication-
Enabled

Whether or not to use shared
memory or the network stack for
inter-process communication Transport configuration API.

intraProcessCom-
municationEnabled

Whether or not to use intra-pro-
cess communication

hostList
Controls where RTI Data Distri-
bution Service looks to determine
the list of hosts

DDS_DomainParticipantQos.
discoveryX.initial_peer_locators[]

domainBase
Control RTI Data Distribution
Service’s database properties

See Section 4.1.7

internalMulti-
castAddress

Multicast address reserved for
internal use

Not required

wire
Properties to change RTPS proto-
col 1.0 functionality

See Section 4.1.8

version
Provides a way to retrieve the
product version number

Not supported

lowerCpuUsage-
Favored

Controls the function path in
NDDSdBase::IssueListAdd.

If RTI_FALSE, “ForAllMatches”
will be used to achieve low
latency. Otherwise (the default),
“Find” will be used.

Not required

Table 4.1 Mapping NDDSDomainProperties

3.x Field Name Description 4.0 Equivalent
Proprietary Information of Real-Time Innovations, Inc. 4-3

Chapter 4 Object Properties
4.1.4 NDDSDGramProperties

The datagram properties allow the size of the OS socket send and receive buffers to be
altered. The application can reduce this number to conserve memory or increase to han-
dle large messages coming in at high repetition rate. Note: increase this value if the
application is dropping declarations during a declaration storm. The dgram field also
specifies the size of the message queue used for communication over shared memory
message queues (used between applications running on the same node). See
Table 4.3.

Table 4.2 Mapping NDDSTaskProperties

3.x Field
Name Description 4.0 Equivalent

realTimeEn-
abled

Enables support
for real-time
threading

Not required

atStackSize
Alarm Thread's
stack size

DDS_DomainParticipantQoS.eventX.thread.stack_size

atPriority
Alarm Thread's
priority

DDS_DomainParticipantQoS.eventX.thread.priority

rtStackSize
Receive Thread's
stack size

DDS_DomainParticipantQoS.receiver_poolX.
thread.stack_size

rtPriority
Receive Thread's
priority

DDS_DomainParticipantQoS.receiver_poolX.
thread.priority

stStackSize
Send Thread’s
stack size

Not supported; Sending Threads are no longer created
stPriority

Send Thread’s
priority

dtStackSize
Database Thread’s
stack size

DDS_DomainParticipantQoS.databaseX.thread.stack_size

dtPriority
Database Thread’s
priority

DDS_DomainParticipantQoS.databaseX.thread.priority

asyncStackSize
Asynchronous
Publisher's stack
size

Not available; Publishers do not support asynchronous
mode.
4-4 Proprietary Information of Real-Time Innovations, Inc.

4.1 Domain and Infrastructure Properties
4. O

b
je

c
t Pro

p
e

rtie
s

4.1.5 NDDSDeclProperties

Table 4.4 provides information on how to map the fields in an NDDSDeclProperties
structure.

4.1.6 NDDSNICProperties

Table 4.5 provides information on how to map the fields in an NDDSNICProperties
structure.

Table 4.3 Mapping NDDSDGramProperties

3.x Field Name Description 4.0 Equivalent

recvBufferSize
Size of the receive buffer associated
with the operating systems stack queue

DDS_DomainParticipantQoS.
receiver_poolX.buffer_size

sendBufferSize
Size of the send buffer associated with
the operating systems stack queue

Transport Config API

Table 4.4 Mapping NDDSDeclProperties

3.x Field Name Description 4.0 Equivalent

bytesPerPacket
Maximum bytes of declaration data to
send in a single message

Not supported

bytesPerFastPeriod
Number of bytes to send out per appli-
cation per fastPeriod

Not requiredenabled
Internal parameter for RTI Data Dis-
tribution Service

metatrafficPort
Port that the Database Thread binds to
in order to send metatraffic data

push
Whether or not declaration data are
immediately distributed when they are
created

DDS_DataWriterQos.
protocolX.push_on_write

ackSuppression-
Delta

Time within which an ACK received is
identical to a previous ACK

Not supported
Proprietary Information of Real-Time Innovations, Inc. 4-5

Chapter 4 Object Properties
Table 4.5 Mapping NDDSNICProperties

3.x Field
Name Description 4.0 Equivalent

ifFlags
Network interface
card flag settings

Configured via the TransportConfig API

ipAddress
Network interface
card IP address

Configured via the TransportConfig API

DDS_DomainParticipantQoS.discoveryX.
initial_peer_locators.address
can be used to specify the available network interfaces on
the computing node
4-6 Proprietary Information of Real-Time Innovations, Inc.

4.1 Domain and Infrastructure Properties
4. O

b
je

c
t Pro

p
e

rtie
s

4.1.7 NDDSDomainBaseProperties

Table 4.6 provides information on how to map the fields in an NDDSDomainBaseProp-
erties structure.

Table 4.6 Mapping NDDSDomainBaseProperties

3.x Field Name Description 4.0 Equivalent

slowPeriod

Period at which the Database
Thread periodically parses the
internal database looking for
stale entries

DDS_DomainParticipantQos.
databaseX.cleanup_period

fastPeriod
Fastest rate at which the Data-
base Thread will verify the
internal database state

Not required

refreshPeriod
How often to refresh the RTI
Data Distribution Service
manager’s presence

expirationTime
How long the application
should be considered valid

DDS_DomainParticipantQos.
discovery_configX.
participant_liveliness_lease_duration

appAnnounceRetries
Maximum retries allowed to
contact the application manager

Not required
appAnnouncePeriod

Period at which to contact the
application manager

publisherAsyncPeriod

Period at which the RTI Data
Distribution Service asynchro-
nous Publisher thread checks
for new issues to publish

rtt
Parameters related to the data-
base’s round trip calculations

Not supported

spawnedManager See Section 4.1.9 See Section 4.1.9
Proprietary Information of Real-Time Innovations, Inc. 4-7

Chapter 4 Object Properties
4.1.8 RTPSWireProtocolProperties

Table 4.7 provides information on how to map the fields in an RTPSWireProtocolProper-
ties structure.

Table 4.7 Mapping RTPSWireProtocolProperties

3.x Field Name Description 4.0 Equivalent

appId
Manually assigned application
ID

DDS_DomainParticipantQoS.
wire_protocolX.rtps_app_id

metaMulticastIP
Manually assigns the metatraf-
fic multicast IP address

DDS_DomainParticipantQoS.
discoveryX.multicast_groups[]

ackMulticastApplicationEn-
abled

Whether or not RTPS_ACK
message should contain a mul-
ticast IP address

Not required

ackMulticastManagerEnabled
Whether or not RTPS_ACK
message should contain a mul-
ticast IP address

multicastThreshold
How ACKs, HBs, and VARs are
sent

Not supported
appGroupRemoteProperties RTPS protocol functionality

mgrGroupRemoteProperties RTPS protocol functionality
4-8 Proprietary Information of Real-Time Innovations, Inc.

4.1 Domain and Infrastructure Properties
4. O

b
je

c
t Pro

p
e

rtie
s

4.1.9 NDDSAppManagerProperties

Table 4.8 provides information on how to map the fields in an NDDSAppManagerProp-
erties structure.

Table 4.8 Mapping NDDSAppManagerProperties

3.x Field Name Description 4.0 Equivalent

stackSize NDDS manager’s stack size

Not required; there is no RTI Data
Distribution Service manager process

priority
Priority of the NDDS manager’s
thread

terminate
Whether or not the NDDS man-
ager spawned by the local appli-
cation will terminate

sendBufferSize
Size of received messages that the
NDDS manager can receive

recvBufferSize
Size of messages to be dissemi-
nated by the NDDS manager

multicast

Whether or not the manager
should send and received using
multicast addressing, and if so,
with what properties

purgePeriod

Rate at which the NDDS manager
will clean up stale objects within
the internal database at this spec-
ified rate

refreshPeriod
Rate at which the NDDS man-
ager’s presence is updated

expirationTime NDDS manager’s expiration time

pushDelayMax

Maximum delay the NDDS man-
ager will wait prior to pushing
manager changes to fellow man-
agers

pushAttempMax
Number of times to push changes
in the NDDS manager to fellow
managers

wire
RTPS wire protocol properties.
See Section 4.1.8

See Section 4.1.8
Proprietary Information of Real-Time Innovations, Inc. 4-9

Chapter 4 Object Properties
hostList

Fellow managers that should be
communicated with for inter-
manager protocol communica-
tion

Not required; there is no RTI Data
Distribution Service manager process

initialAnnounceEn-
abled

Enables or disables firing off the
announcement of the local appli-
cation’s existence to all the other
managers prior to executing the
local application

numNics
Number of valid IP addresses in
the
nicIPAddress field

DDS_DomainParticipantQoS.
discoveryX.multicast_groups_count

DDS_DomainParticipantQoS.
discoveryX.initial_peer_locators_count

nic[]
Valid IP addresses the NDDS
manager should use

Not required; there is no manager pro-
cess.

As mentioned in Section 4.1.6,
DDS_DomainParticipantQoS.
discoveryX.initial_peer_locators
can be used to specify the available
network interfaces on the computing
node.

Table 4.8 Mapping NDDSAppManagerProperties

3.x Field Name Description 4.0 Equivalent
4-10 Proprietary Information of Real-Time Innovations, Inc.

4.2 Publication and Subscription Properties
4. O

b
je

c
t Pro

p
e

rtie
s

4.2 Publication and Subscription Properties

4.2.1 NDDSPublicationProperties

Table 4.9 provides information on how to map the fields in an NDDSPublicationProper-
ties structure.

Table 4.9 Mapping NDDSPublicationProperties

3.x Field Name Description 4.0 Equivalent

timeToKeepPeriod
How long a Publication should keep
issues it has already published

Similar functionality is available in
the DURABILITY TRANSIENT
LOCAL and LIFESPAN QoS poli-
cies

persistence

Expiration time. Before this time
expires, a Subscription ignores issues
from redundant Publications of lesser
strength. After this time, a Subscription
will accept the next lower-strength Pub-
lication as the valid data source.

DDS_DataWriterQos.liveliness.
lease_duration

strength

Controls arbitration among multiple
Publishers of the same RTI Data Dis-
tribution Service Topic. Publication
strength allows the Subscriber the abil-
ity to arbitrate among multiple Publica-
tions.

DDS_DataWriterQos.
ownership_strength.value

serializeOption

Allows custom information to be
passed to the serialization routine; it is
not interpreted by RTI Data Distribu-
tion Service.

Not supported

sendQueueSize Number of previous issues to save

The ability to set the publishing
queue size is facilitated by setting
DDS_DataWriterQos.
resource_limits.max_samples.

Note: the HISTORY and
RESOURCE_LIMITS QoS policies
must also be considered when set-
ting up instance sizing.
Proprietary Information of Real-Time Innovations, Inc. 4-11

Chapter 4 Object Properties
threadId
Unique thread ID for each publication
thread within a Publisher; this guaran-
tees thread-safe operation.

Not required when using multiple
DataWriters in a single Publisher

sendSocketHandle
Socket handle to be used by RTI Data
Distribution Service

Not supported
lowWaterMark

Point at which RTI Data Distribution
Service should indicate that the reliable
publication’s send queue’s low water
mark has been reached

highWaterMark

Point at which RTI Data Distribution
Service should indicate that the reliable
publication’s send queue’s high-water
mark has been reached

heartBeatTimeout

How often to send a heart beat message
to the reliable Subscription at the nor-
mal rate when the send queue size is
below the highWaterMark

DDS_DataWriterQos.
protocolX.heartbeat_period

heartBeatFastTim-
eout

How often to send a heart beat message
to the reliable Subscription at the fast
rate when the send queue size is above
the highWaterMark Not supported

sendMaxWait
Maximum time that a Publication can
be blocked while sending data

heartBeatRetries
Number of times to send a heart beat
without receiving a response from the
Subscription

DDS_DataWriterQos.protocolX.
max_heartbeat_retries

heartBeatPerSend-
Queue

Number of heartbeats to insert in
between issues each time ‘sendQueue-
Size’ issues are published

DDS_DataWriterQos.protocolX.
heartbeats_per_queue

nackReplySup-
pressionTime

Amount of time for which RTI Data
Distribution Service will suppress
replying to a heartbeat already received

DDS_DataWriterQos.protocolX.
min_nack_response_delay
and
DDS_DataWriterQos.protocolX.
max_nack_response_delay

Table 4.9 Mapping NDDSPublicationProperties

3.x Field Name Description 4.0 Equivalent
4-12 Proprietary Information of Real-Time Innovations, Inc.

4.2 Publication and Subscription Properties
4. O

b
je

c
t Pro

p
e

rtie
s

4.2.2 NDDSSubscriptionProperties

Table 4.10 provides information on how to map the fields in an NDDSSubscriptionProp-
erties structure.

Table 4.10 Mapping NDDSSubscriptionProperties

3.x Field
Name Description 4.0 Equivalent

mode

Subscription’s mode of operation
(either IMMEDIATE or POLLED).
Determines when RTI Data Distri-
bution Service invokes the Sub-
scription Listener. For an
IMMEDIATE Subscription, RTI
Data Distribution Service 3.x
invokes the Listener when the issue
is received. The Listener is invoked
in the context of an RTI Data Dis-
tribution Service internal thread.
For a POLLED Subscription, the
Listener is only invoked when the
application polls the Subscription.

The immediate mode is supported by
using the listener.

The polling mode is not supported in
RTI Data Distribution Service 4.0. (In a
future version, polling will be imple-
mented by using the DDS concept of
Conditions and Wait-sets).

deadline
Guaranteed time by which the pro-
vided callback will be invoked

The deadline parameter is not specified
when creating the Subscription (or
DataReader). Deadline is a QoS policy
and can be established on a per
DataWriter/DataReader basis by setting
DDS_DataWriterQos.deadline.period
and
DDS_DataReaderQos.deadline.period

minimumSepa-
ration

Minimum amount of time between
invocations of a Subscription’s call-
back routine

Similar to the deadline property, in RTI
Data Distribution Service 4.0, the mini-
mumSeparation is not specified when
creating the Subscription (or
DataReader).

The time_based_filter QoS policy can be
set for a DataReader
(DDS_DataReaderQos.time_based_filter.
minimum_separation)
Proprietary Information of Real-Time Innovations, Inc. 4-13

Chapter 4 Object Properties
4.3 Client and Server Properties
RTI Data Distribution Service 4.0 does not support a Client/Server API. This feature set
will be introduced in a future version of the product.

receiveQueue-
Size

Maximum number of issues the
Subscription should store

DDS_DataReaderQos.resource_limits.
max_samples, in conjunction with the
HISTORY and RESOURCE_LIMITS QoS
policies

enabled
Whether or not a Subscription is
enabled

Domain’s enable() operation

Table 4.10 Mapping NDDSSubscriptionProperties

3.x Field
Name Description 4.0 Equivalent
4-14 Proprietary Information of Real-Time Innovations, Inc.

5. C

 A
PI
Chapter 5

Comparing the C APIs

This chapter describes how the RTI Data Distribution Service 3.x C API maps to the RTI
Data Distribution Service 4.0 API. It focuses on how to port an RTI Data Distribution Ser-
vice 3.x C application to RTI Data Distribution Service 4.0. This chapter addresses each RTI
Data Distribution Service 3.x object and its supported routines and attempts to map the
functionality to equivalent RTI Data Distribution Service 4.0 routines and/or functional-
ity. Where direct or indirect mappings do not exist, we’ll recommend alternate
approaches for you to consider. Example source code (using both versions) will be used
and will assume best-effort QoS and unicast network addressing. For additional exam-
ples of reliable communications, see Appendix A, which lists the buildable example
source code that is available online.

This chapter includes the following sections:

❏ Examples (Section 5.1)

❏ Domain API (Section 5.2)

❏ Publication API (Section 5.3)

❏ Subscription API (Section 5.4)

❏ Publisher API (Section 5.5)

❏ Subscriber API (Section 5.6)

❏ Client and Server APIs (Section 5.7)

❏ Listeners (Section 5.8)
Proprietary Information of Real-Time Innovations, Inc. 5-1

Chapter 5 Comparing the C APIs
5.1 Examples
We’ll start with examples of how to instantiate a domain, and send and receive data.

5.1.1 Domain Instantiation
RTI Data Distribution Service 3.x:
int nddsDomain = NDDS_DOMAIN_DEFAULT;
int nddsVerbosity = NDDS_VERBOSITY_DEFAULT;
NDDSDomain domain;

NddsVerbositySet(nddsVerbosity);
domain = NddsInit(nddsDomain, NULL, NULL);

RTI Data Distribution Service 4.0:
DDS_DomainParticipantFactory *factory = NULL;
struct DDS_DomainParticipantQos participant_qos;
DDS_DomainParticipant *participant = NULL;
if(!(factory=DDS_DomainParticipantFactory_get_instance())) {
 return RTI_FALSE;
}
DDS_DomainParticipantFactory_get_default_participant_qos(factory,

&participant_qos);
participant_qos.discoveryX.participant_index = participantIndex;
if (peerHost != NULL) {

if (!RTINetioAddress_getIpv4AddressByName((RTINetioAddress *)
 &participant_qos.discoveryX.initial_peer_locators[0].address,
 peerHost)) {

 return RTI_FALSE;
 }
participant_qos.discoveryX.initial_peer_locators[0].participant_index_limit =

peerMaxIndex;
participant_qos.discoveryX.initial_peer_locators_count = 1;

}

if(!(participant = DDS_DomainParticipantFactory_create_participant(factory,
nddsDomain,

 &participant_qos, NULL))) {
 return RTI_FALSE;
};
5-2 Proprietary Information of Real-Time Innovations, Inc.

5.1 Examples
5. C

 A
PI
Notice that there are a few more ‘infrastructure’ calls that must be used in RTI Data Dis-
tribution Service 4.0 prior to the ‘create_participant’ routine that instantiates the actual
DomainParticipant. The RTI Data Distribution Service 3.x and 4.0 routines to instantiate a
domain are shown in Table 5.1 for comparison purposes.

Only a few routines are required to actually create the Domain itself. Once the Domain
exists, the application is provided a rich set of routines that can be used to support
application functionality. In the following sections, you’ll find example source code of
how an application publishes and subscribes data using both RTI Data Distribution Ser-
vice 3.x and 4.0.

5.1.2 Publishing Data

In RTI Data Distribution Service 3.x, a Publication can stand alone. It can also be added to
a Publisher if so desired. As you’ll see in RTI Data Distribution Service 4.0 source code,
the Publisher is instantiated first, followed by the DataWriter.

RTI Data Distribution Service 3.x:

int publisherMain(int nddsDomain, int nddsVerbosity)
{
 Int count = 0;
 RTINtpTime send_period_sec = {0,0};
 RTINtpTime persistence = {0,0};
 Int strength = 1;
 NDDSPublication publication;
 NDDSPublisher publisher;
 HelloMsg *instance = NULL;
 NDDSDomain domain;

 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */
 RtiNtpTimePackFromNanosec(persistence, 15, 0); /* 15 seconds */

 NddsVerbositySet(nddsVerbosity);
 domain = NddsInit(nddsDomain, NULL, NULL);

 HelloMsgNddsRegister();

Table 5.1 C Routines for Creating a Domain

3.x 4.0

NDDSInit

DDS_DomainParticipantFactory_get_instance

DDS_DomainParticipantFactory_get_default_participant_qos

DDS_DomainParticipantFactory_create_participant
Proprietary Information of Real-Time Innovations, Inc. 5-3

Chapter 5 Comparing the C APIs
 printf("Allocate HelloMsg type.\n");
 instance = HelloMsgAllocate();

 publisher = NddsPublisherCreate(domain, NDDS_PUBLISHER_SIGNALLED);
 publication = NddsPublicationCreate(domain, "Example HelloMsg",

HelloMsgNDDSType, instance, persistence, strength);

 NddsPublisherPublicationAdd(publisher, publication);

 for (count=0;;count++) {
 printf("Sampling publication, count %d\n", count);

 /* Modify data to be published */
 sprintf(instance->msg, "Hello Universe! (%d)", count);

 NddsPublisherSend(publisher);
 NddsUtilitySleep(send_period_sec);
 }
 return RTI_TRUE;
};

RTI Data Distribution Service 4.0:
int publisherMain(int nddsDomain, int participantIndex, const char *peerHost,

int peerMaxIndex)
{
 DDS_DomainParticipantFactory *factory = NULL;
 struct DDS_DomainParticipantQos participant_qos;
 DDS_DomainParticipant *participant = NULL;
 DDS_Publisher *publisher = NULL;
 DDS_Topic *topic = NULL;
 HelloMsgDataWriter *writer = NULL;
 HelloMsg *instance = NULL;
 DDS_ReturnCode_t retcode;
 DDS_InstanceHandle_t instance_handle = DDS_HANDLE_NIL;
 int count = 0;
 RTINtpTime send_period_sec = {0,0};

 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */

 if(!(factory=DDS_DomainParticipantFactory_get_instance())) {
return RTI_FALSE;

 }

 DDS_DomainParticipantFactory_get_default_participant_qos(factory,
 &participant_qos);

 participant_qos.discoveryX.participant_index = participantIndex;
 if (peerHost != NULL) {
5-4 Proprietary Information of Real-Time Innovations, Inc.

5.1 Examples
5. C

 A
PI
 if (!RTINetioAddress_getIpv4AddressByName((RTINetioAddress *)
 &participant_qos.discoveryX.initial_peer_locators[0].address,
 peerHost)) {

 return RTI_FALSE;
 }
 participant_qos.discoveryX.initial_peer_locators[0].participant_index_limit

= peerMaxIndex;
 participant_qos.discoveryX.initial_peer_locators_count = 1;
 }

 if(!(participant = DDS_DomainParticipantFactory_create_participant(factory,
nddsDomain, &participant_qos, NULL))) {

 return RTI_FALSE;
 };

 if(!(publisher = DDS_DomainParticipant_create_publisher(participant,
DDS_PUBLISHER_QOS_DEFAULT, NULL))) {

 return RTI_FALSE;
 };

 retcode = HelloMsgTypeSupport_register_type(participant, HelloMsgTYPENAME);
 if (retcode != DDS_RETCODE_OK) {
 return RTI_FALSE;
 }

 if(!(topic = DDS_DomainParticipant_create_topic(participant, "Example Hel-
loMsg", HelloMsgTYPENAME, DDS_TOPIC_QOS_DEFAULT, NULL))) {

 return RTI_FALSE;
 }

 if(!(writer = (HelloMsgDataWriter *)DDS_Publisher_create_datawriter(pub-
lisher, topic, DDS_DATAWRITER_QOS_DEFAULT, NULL))) {

 return RTI_FALSE;
 }

 if(!(instance = HelloMsgTypeSupport_createX())) {
 return RTI_FALSE;
 }

 for (count=0;count>=0;count++) {
 RtiDebugPrint(

"C API: Publishing best-effort/unicast example, count %d\n", count);

 /* Modify data to be published */
 sprintf(instance->msg,

"C API: Publishing best-effort/unicast example, count %d", count);
Proprietary Information of Real-Time Innovations, Inc. 5-5

Chapter 5 Comparing the C APIs
 retcode = HelloMsgDataWriter_write(writer, instance, &instance_handle);
 if (retcode != DDS_RETCODE_OK) {
 return RTI_FALSE;
 }

 RtiThreadSleep(&send_period_sec);
 }
 return RTI_TRUE;
};

The RTI Data Distribution Service 3.x and 4.0 routines used in the above example are
shown in Table 5.2 for comparison purposes.

Compilable versions of both the RTI Data Distribution Service 3.x and 4.0 source code
shown above, as well as other examples, are available for download (see Appendix A).

5.1.3 Subscribing To Data

In RTI Data Distribution Service 3.x, a Subscription can stand alone. It can also be added
to a Subscriber if so desired. As you’ll see in the RTI Data Distribution Service 4.0 source
code, the Subscriber is instantiated first, followed by the DataReader.

Table 5.2 C Routines for Publishing Data

3.x routines 4.0 routines

NDDSInit

DDS_DomainParticipantFactory_get_instance

DDS_DomainParticipantFactory_get_default_participant_qos

DDS_DomainParticipantFactory_create_participant

NddsPublisherCreate DDS_DomainParticipant_create_publisher

NddsPublicationCreate

HelloMsgTypeSupport_register_type

HelloMsgNddsRegister DDS_DomainParticipant_create_topic

NddsPublisherPublication-
Add

DDS_Publisher_create_datawriter

HelloMsgDataType_createX

NddsPublisherSend HelloMsgDataWriter_write
5-6 Proprietary Information of Real-Time Innovations, Inc.

5.1 Examples
5. C

 A
PI
RTI Data Distribution Service 3.x:

RTIBool HelloMsgCallback(const NDDSRecvInfo *issue, NDDSInstance *instance, void
*callBackRtnParam)

{
 if (issue->status == NDDS_FRESH_DATA) {
 HelloMsg *item = (HelloMsg *)instance;

 HelloMsgPrint(item, 0);
 return RTI_TRUE;
 }
};

int subscriberMain(int nddsDomain, int nddsVerbosity)
{
 RTINtpTime deadline = {0,0};
 RTINtpTime min_separation = {0,0};
 NDDSSubscription subscription;
 NDDSSubscriber subscriber;
 NDDSSubscriptionProperties properties;
 HelloMsg *instance = NULL;
 NDDSDomain domain;
 char deadlineString[RTI_NTP_TIME_STRING_LEN];

 RtiNtpTimePackFromNanosec(deadline, 10, 0);
 RtiNtpTimePackFromNanosec(min_separation, 0, 0);

 NddsVerbositySet(nddsVerbosity);
 domain = NddsInit(nddsDomain, NULL, NULL);

 HelloMsgNddsRegister();

 printf("Allocate HelloMsg type.\n");
 instance = HelloMsgAllocate();

 subscriber = NddsSubscriberCreate(domain);

 subscription = NddsSubscriptionCreate(domain, NDDS_SUBSCRIPTION_IMMEDIATE,
"Example HelloMsg", HelloMsgNDDSType, instance, deadline,
min_separation, HelloMsgCallback, NULL, NDDS_USE_UNICAST);

 NddsSubscriptionPropertiesGet(subscription, &properties);
 properties.receiveQueueSize = 8;
 NddsSubscriptionPropertiesSet(subscription, &properties);

 NddsSubscriberSubscriptionAdd(subscriber, subscription);
Proprietary Information of Real-Time Innovations, Inc. 5-7

Chapter 5 Comparing the C APIs
 while (1) {
 printf("Sleeping for %s sec...\n",
 RtiNtpTimeToString(&deadline, deadlineString));
 NddsUtilitySleep(deadline);
 }
 return RTI_TRUE;
};

RTI Data Distribution Service 4.0

void MyListener_on_requested_deadline_missed(void* listener_data,
DDS_DataReader* reader,
const struct DDS_RequestedDeadlineMissedStatus *status) { }

void MyListener_on_requested_incompatible_qos(void* listener_data,
DDS_DataReader* reader,
const struct DDS_RequestedIncompatibleQosStatus *status) { }

void MyListener_on_sample_rejected(void* listener_data,
DDS_DataReader* reader,

 const struct DDS_SampleRejectedStatus *status) { }

void MyListener_on_liveliness_changed(void* listener_data,
DDS_DataReader* reader,
const struct DDS_LivelinessChangedStatus *status) { }

void MyListener_on_sample_lost(void* listener_data,
DDS_DataReader* reader,
const struct DDS_SampleLostStatus *status) { }

void MyListener_on_subscription_match(void* listener_data,
DDS_DataReader* reader,
const struct DDS_SubscriptionMatchStatus *status) { }

void MyListener_on_data_available(void* listener_data, DDS_DataReader* reader)
{
 HelloMsgDataReader *HelloMsgReader = (HelloMsgDataReader *)reader;
 struct HelloMsgSeq data_seq = DDS_NEW_EMPTY_SEQUENCE;
 struct DDS_SampleInfoSeq info_seq =DDS_NEW_EMPTY_SEQUENCE;
 DDS_ReturnCode_t retcode;
 int i;

 retcode = HelloMsgDataReader_take(HelloMsgReader, &data_seq, &info_seq,
 DDS_LENGTH_UNLIMITED, DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE,
 DDS_ANY_INSTANCE_STATE);
 if (retcode != DDS_RETCODE_OK) {
 return;
 }
5-8 Proprietary Information of Real-Time Innovations, Inc.

5.1 Examples
5. C

 A
PI
 for (i = 0; i < HelloMsgSeq_get_length(&data_seq); ++i) {
 HelloMsgTypeSupport_printX(HelloMsgSeq_get_address(&data_seq, i));
 }

 HelloMsgDataReader_return_loan(HelloMsgReader, &data_seq, &info_seq);
}

int subscriberMain(int nddsDomain, int participantIndex, const char *peerHost,
int peerMaxIndex)

{
 DDS_DomainParticipantFactory *factory = NULL;
 struct DDS_DomainParticipantQos participant_qos;
 DDS_DomainParticipant *participant = NULL;
 DDS_Subscriber *subscriber = NULL;
 DDS_Topic *topic = NULL;
 struct DDS_DataReaderListener listener = DDS_DATAREADER_LISTENER_DEFAULT;
 HelloMsgDataReader *reader = NULL;
 DDS_ReturnCode_t retcode;
 RTINtpTime receive_period_sec = {0,0};
 char deadlineString[RTI_NTP_TIME_STRING_LEN];
 int count = 0;

 RtiNtpTimePackFromNanosec(receive_period_sec, 4, 0); /* 4 seconds */

 if(!(factory=DDS_DomainParticipantFactory_get_instance())) {
 return RTI_FALSE;
 }

 DDS_DomainParticipantFactory_get_default_participant_qos(factory,
&participant_qos);

 participant_qos.discoveryX.participant_index = participantIndex;

 if (peerHost != NULL) {
 if (!RTINetioAddress_getIpv4AddressByName((RTINetioAddress *)

&participant_qos.discoveryX.initial_peer_locators[0].address, peerHost))
{

 return RTI_FALSE;
 }
 participant_qos.discov-

eryX.initial_peer_locators[0].participant_index_limit = peerMaxIndex;

participant_qos.discoveryX.initial_peer_locators_count = 1;
 }

 if(!(participant = DDS_DomainParticipantFactory_create_participant(factory,
 nddsDomain, &participant_qos, NULL))) {

 return RTI_FALSE;
 }
Proprietary Information of Real-Time Innovations, Inc. 5-9

Chapter 5 Comparing the C APIs
 if(!(subscriber = DDS_DomainParticipant_create_subscriber(participant,
DDS_SUBSCRIBER_QOS_DEFAULT, NULL))) {

 return RTI_FALSE;
 }

 retcode = HelloMsgTypeSupport_register_type(participant, HelloMsgTYPENAME);
 if (retcode != DDS_RETCODE_OK) {
 return RTI_FALSE;
 }

 if(!(topic = DDS_DomainParticipant_create_topic(participant,
"Example HelloMsg", HelloMsgTYPENAME, DDS_TOPIC_QOS_DEFAULT, NULL))) {

 return RTI_FALSE;
 }

 listener.on_requested_deadline_missed =
MyListener_on_requested_deadline_missed;

 listener.on_requested_incompatible_qos =
MyListener_on_requested_incompatible_qos;

 listener.on_sample_rejected = MyListener_on_sample_rejected;
 listener.on_liveliness_changed = MyListener_on_liveliness_changed;
 listener.on_sample_lost = MyListener_on_sample_lost;
 listener.on_subscription_match = MyListener_on_subscription_match;
 listener.on_data_available = MyListener_on_data_available;

 if(!(reader = (HelloMsgDataReader *)DDS_Subscriber_create_datareader(
subscriber, DDS_Topic_as_TopicDescription(topic),
DDS_DATAREADER_QOS_DEFAULT, &listener))) {

 return RTI_FALSE;
 }

 for (count=0;count>=0;count++) {
 RtiDebugPrint("Sleeping for %s sec...\n",

RtiNtpTimeToString(&receive_period_sec, deadlineString));
 RtiThreadSleep(&receive_period_sec);
 }
 return RTI_TRUE;
};

The RTI Data Distribution Service 3.x and 4.0 routines used in the above example are
shown in Table 5.3 for comparison purposes.

Compilable versions of both the RTI Data Distribution Service 3.x and 4.0 source code
shown above, as well as other examples, are available for download (see Appendix A).
5-10 Proprietary Information of Real-Time Innovations, Inc.

5.2 Domain API
5. C

 A
PI
5.2 Domain API
Recall that a domain is a distributed concept that links all applications that are able to
communicate with each other and represents a communication plane. Only the Publish-
ers and the Subscribers attached to the same domain may interact. A Domain is a man-
ager (or factory) of every RTI Data Distribution Service object. Domains are global in
nature and represent a communication plane.

Table 5.4 lists the RTI Data Distribution Service 3.x domain routines (in alphabetical
order). Next we will look at how they map to RTI Data Distribution Service 4.0 functional-
ity.

There are also several data-type specific routines, see Section 5.2.7.

Table 5.3 C Routines for Subscribing to Data

3.x 4.0
NDDSInit DDS_DomainParticipantFactory_get_instance

DDS_DomainParticipantFactory_get_default_participant
_qos

DDS_DomainParticipantFactory_create_participant

HelloMsgNddsRegister

NddsSubscriberCreate DDS_DomainParticipant_create_subscriber

NddsSubscriptionCreate

HelloMsgTypeSupport_register_type

DDS_DomainParticipant_create_topic

NddsSubscriptionPropertiesGet

NddsSubscriptionPropertiesSet

NddsSubscriberSubscriptionAdd DDS_Subscriber_create_datareader
Proprietary Information of Real-Time Innovations, Inc. 5-11

Chapter 5 Comparing the C APIs
5.2.1 Domain Create/Delete Routines

NddsDestroy — Destroys the domain specified. In RTI Data Distribution Service 4.0, use
DDS_DomainParticipantFactory_delete_participant().

NddsInit — Initializes RTI Data Distribution Service, instantiates a domain of a specified
index, returns a domain handle given a domain number. In RTI Data Distribution
Service 4.0, use these routines:

❏ DDS_DomainParticipantFactory_get_instance()

❏ DDS_DomainParticipantFactory_get_default_participant_qos()

❏ DDS_DomainParticipantFactory_create_participant()

5.2.2 Domain Index and Handle Retrieval Routines

NddsDomainIndexGet — Returns the Domain’s index. In RTI Data Distribution Service
4.0, use DDS_DomainParticipant_get_domain_id().

Table 5.4 Domain C API

3.x Reference to 4.0 Information

NddsClientPropertiesDefaultGet Section 5.2.6

NddsDBaseRemove

Section 5.2.8NddsDBaseFind

NddsDBaseAdd

NddsDestroy Section 5.2.1

NddsDomainHandleGet
Section 5.2.2

NddsDomainIndexGet

NDDSDomainListener Section 5.8.1

NddsInit Section 5.2.1

NddsPublicationPropertiesDefaultGet

Section 5.2.6NddsServerPropertiesDefaultGet

NddsSubscriptionPropertiesDefaultGet
5-12 Proprietary Information of Real-Time Innovations, Inc.

5.2 Domain API
5. C

 A
PI
NddsDomainHandleGet — Returns a domain handle given a domain number and pro-
vides a convenient means for retrieving an already created domain. In RTI Data
Distribution Service 4.0, use DDS_DomainParticipantFactory_get_instance().

5.2.3 Domain Wait Routine

NddsDomainWait — Internally, RTI Data Distribution Service manages a database of all of
the remote publications and subscriptions. When the system with a complex
architecture boots up, the propagation of the database information can take some
time. This routine can be used to "wait" for internal states to settle. This routine is
not supported in RTI Data Distribution Service 4.0.

5.2.4 Wire Protocol Properties Routine

NddsWireProtocolPropertiesGet — Returns the wire protocol properties. See
Section 4.1.8.

5.2.5 Manager and Application Host Routines

NddsManagerHostsGet — Returns the list of NDDS Managers. This is not required in
RTI Data Distribution Service 4.0.

NddsAppHostsSet — Allows a list of application hosts to be defined. In RTI Data Distri-
bution Service 4.0, use DDS_DiscoveryQosPolicyX.discov-
eryX.initial_peer_locators[].

NddsAppHostsGet — Retrieves the list of application hosts allowed to participate in the
RTI Data Distribution Service-enabled network. In RTI Data Distribution Service 4.0,
use DDS_DiscoveryQosPolicyX.discoveryX.initial_peer_locators[].

5.2.6 Default Properties Routines

NddsServerPropertiesDefaultGet — Not supported in RTI Data Distribution Service 4.0.

NddsClientPropertiesDefaultGet — Not supported in RTI Data Distribution Service 4.0.
Proprietary Information of Real-Time Innovations, Inc. 5-13

Chapter 5 Comparing the C APIs
NddsPublicationPropertiesDefaultGet — Retrieves the publication’s property structure so
that modifications can be made to the properties and subsequently create a publi-
cation in one atomic action. The properties associated with a Publication in RTI
Data Distribution Service 3.x do not map directly to DataWriter properties in RTI
Data Distribution Service 4.0, but object QoS can be retrieved for a given
DataWriter by using the DDS_DomainParticipant_get_default_datawriter_qosX
routine.

NddsSubscriptionPropertiesDefaultGet — Retrieves the Subscription’s property structure
so that modifications can be made to the properties and subsequently create a
Subscription in one atomic action. The properties associated with a Subscription
in RTI Data Distribution Service 3.x do not map directly to DataReader properties
in RTI Data Distribution Service 4.0, but object QoS can be retrieved for a given
DataReader by calling the
DDS_DomainParticipant_get_default_datareader_qosX routine.

5.2.7 Type API

The Type API provides a set of functions that allow data types to be registered with the
RTI Data Distribution Service middleware infrastructure. Table 5.5 lists the RTI Data Dis-
tribution Service 3.x data-type routines. Next we will look at how they map to RTI Data
Distribution Service 4.0 functionality.

See Appendix A for examples of both the data-type definition and resulting source code
generated by the ‘nddsgen’ utility for both RTI Data Distribution Service 3.x and 4.0.

Table 5.5 Data-Type Routines

3.x Reference to 4.0 Information

SerializeMethodType
Section 5.2.7.1

DeserializeMethodType

PrintMethodType Section 5.2.7.2

FreeMethodType
Section 5.2.7.3

MaxSizeMethodType

ScopeRegisterMethodType Section 5.2.7.4

NddsTypeRegister Section 5.2.7.3

NddsTypeScopeRegister Section 5.2.7.4

NddsTypeDestroy Section 5.2.7.3
5-14 Proprietary Information of Real-Time Innovations, Inc.

5.2 Domain API
5. C

 A
PI
In both RTI Data Distribution Service 3.x and 4.0, use of the provided ‘nddsgen’ utility is
optional. You may choose to write the data-type routines yourself if so desired.

5.2.7.1 Serialization Routines

SerializeMethodType — Provides the prototype for the serialize routine required to seri-
alize an object instance into the NDDSCDRStream when sending a message to a
peer. All data types must provide this functionality when a data type is registered.
In RTI Data Distribution Service 3.x, nddsgen automatically creates this routine and
provides the source code. In RTI Data Distribution Service 4.0, nddsgen will create
the equivalent serialization source code.

DeserializeMethodType — Provides the prototype for the deserialize routine required to
deserialize the incoming data in the NDDSCDRStream into the object instance
when receiving a message from a peer. In RTI Data Distribution Service 3.x, ndds-
gen automatically creates this routine and provides the source code. In RTI Data
Distribution Service 4.0, nddsgen will create the equivalent deserialization source
code.

5.2.7.2 Print Routine

PrintMethodType — Provides the prototype for the print routine used to print the con-
tents of the particular NDDSType. In RTI Data Distribution Service 3.x, the ‘ndds-
gen’ utility automatically creates this routine and provides the source code. In RTI
Data Distribution Service 4.0, nddsgen will create the equivalent print source code.

5.2.7.3 Other Type-Related Routines

Unless otherwise noted, the RTI Data Distribution Service 4.0 ‘nddsgen’ utility will create
the equivalent source code for each of the following functions:

FreeMethodType — Provides the prototype for the routine required to free the instance
of the particular NDDSType. In RTI Data Distribution Service 3.x, the ‘nddsgen’
utility automatically creates this routine prototype and stubs out the routine. The
actual functionality of the call is left to the user to implement.

MaxSizeMethodType — Provides the prototype for the maximum size routine used to
determine the maximum size of an NDDSType object. This routine is used to
inform RTI Data Distribution Service how much buffer space to allocate for publica-
tions, subscriptions, servers, and clients that will use this NDDSType. In RTI Data
Distribution Service 3.x, RTI Data Distribution Service calls this routine to decide
Proprietary Information of Real-Time Innovations, Inc. 5-15

Chapter 5 Comparing the C APIs
how much buffer space to allocate for an instance of this NDDSType. In RTI Data
Distribution Service 3.x, the ‘nddsgen’ utility automatically creates this routine and
provides the source code.

NddsTypeRegister — Provides the prototype to actually register an NDDSType to RTI
Data Distribution Service. It binds the necessary (and some optional) routines to an
NDDSType. In RTI Data Distribution Service 3.x, if you use the ‘nddsgen’ utility,
you don't have to use this function directly because ‘nddsgen’ generates the
required routines and creates a wrapper function to register the type.

NddsTypeDestroy — Provides the prototype to destroy all registered C types. All appli-
cations that register an NDDSType should call this function before exiting to
ensure that the memory used to register the NDDSTypes is freed. Note: nddsgen
in RTI Data Distribution Service 3.x does not generate this functionality.

5.2.7.4 WaveScope Registration Routines

These routines are not supported in RTI Data Distribution Service 4.0. They are men-
tioned here only for completeness:

ScopeRegisterMethodType — Provides the prototype that allows the NDDSType to be
registered for use with the NDDSScope graphical debug tool. In RTI Data Distribu-
tion Service 3.x, the ‘nddsgen’ utility automatically creates this routine and pro-
vides the source code.

NddsTypeScopeRegister — Provides the prototype to register an NDDSType to NDDSS-
cope, which is a graphical debug tool. This routine binds the optional scope regis-
ter routine to an NDDSType. In RTI Data Distribution Service 3.x, if you use
‘nddsgen’, you don't have to use this function directly because ‘nddsgen’ gener-
ates the required routines and creates a wrapper function to register the scope reg-
ister routine of the type.

5.2.8 Database API

The RTI Data Distribution Service C API provides a set of functions that allow you to
manipulate the RTI Data Distribution Service internal database if so desired. These rou-
tines are not supported in RTI Data Distribution Service 4.0:

NddsDBaseRemove — Provides the prototype to retrieve and remove an object from the
RTI Data Distribution Service internal database.
5-16 Proprietary Information of Real-Time Innovations, Inc.

5.3 Publication API
5. C

 A
PI
NddsDBaseFind — Provides the prototype to locate an object in the RTI Data Distribution
Service internal database.

NddsDBaseAdd — Provides the prototype to add an object to the RTI Data Distribution
Service internal database.

5.3 Publication API
This section discusses the RTI Data Distribution Service 3.x publication function calls and
how they map to the RTI Data Distribution Service 4.0 functionality. As indicated earlier,
some of the routines will map directly, others will require some redesign of the applica-
tion. Table 5.6 lists the RTI Data Distribution Service 3.x Publication routines (in alphabet-
ical order). Next we will look at how they map to RTI Data Distribution Service 4.0
functionality.

Table 5.6 Publication C API

3.x Reference to 4.0 Information

NddsPublicationCreate

Section 5.3.1NddsPublicationCreateAtomic

NddsPublicationDestroy

NddsPublicationInstanceGet Section 5.3.5

NddsPublicationListenerGet

Section 5.3.6NddsPublicationListenerSet

NddsPublicationListenerDefaultGet

NddsPublicationPropertiesGet
Section 5.3.2

NddsPublicationPropertiesSet

NddsPublicationReliableStatusGet Section 5.3.4

NddsPublicationTopicGet Section 5.3.5

NddsPublicationSend

Section 5.3.3NddsPublicationSubscriptionWait

NddsPublicationWait
Proprietary Information of Real-Time Innovations, Inc. 5-17

Chapter 5 Comparing the C APIs
5.3.1 Publication Create/Delete Routines

NddsPublicationCreateAtomic — Allows you to create a new publication and provide
all the associated publication parameters at once.

In RTI Data Distribution Service 4.0, the equivalent functionality is supported by
using both a DataWriter and a Publisher. So an indirect mapping to RTI Data Dis-
tribution Service 4.0 exists in that you create a DataWriter
(DDS_Publisher_create_datawriter) after you create a Publisher
(DDS_DomainParticipant_create_publisher). In RTI Data Distribution Service 4.0,
atomic behavior is handled by default.

NddsPublicationCreate — A Publication is used by the application to write instances of
data for publication.

In RTI Data Distribution Service 4.0, the equivalent functionality is supported by
using both a DataWriter and a Publisher. So an indirect mapping to RTI Data Dis-
tribution Service 4.0 exists in that you create a DataWriter
(DDS_Publisher_create_datawriter) after you create a Publisher
(DDS_DomainParticipant_create_publisher).

NddsPublicationDestroy — As discussed in Section 2.3, an RTI Data Distribution Service
3.x Publication is used by the application to write instances of data for publication
and does not require being added to a Publisher.

In RTI Data Distribution Service 4.0, this same functionality is supported by using
both a DataWriter and a Publisher. If the RTI Data Distribution Service 3.x applica-
tion in question is employing a Publisher, and only a specific Publication is to be
destroyed, then you need to used the DDS_Publisher_delete_datawriter routine.
If on the other hand, the RTI Data Distribution Service 3.x application was not
employing a Publisher (only a Publication), then you need to delete both the RTI
Data Distribution Service 4.0 Publisher and DataWriter by using
DDS_DomainParticipant_delete_publisher and DDSPublisher_delete_datawriter.

5.3.2 Publication Properties Routines

NddsPublicationPropertiesGet — The properties associated with a Publication in RTI
Data Distribution Service 3.x do not map directly to DataWriter properties in RTI
Data Distribution Service 4.0, but object QoS properties can be retrieved for a given
DataWriter by using the extended QoS
DDS_Publisher_get_default_datawriter_qos routine.
5-18 Proprietary Information of Real-Time Innovations, Inc.

5.3 Publication API
5. C

 A
PI
NddsPublicationPropertiesSet — The properties associated with a Publication in RTI Data
Distribution Service 3.x do not map directly to DataWriter properties in RTI Data
Distribution Service 4.0, but object QoS properties can be established for a given
DataWriter by using the extended QoS
DDS_Publisher_set_default_datawriter_qos routine.

5.3.3 Publication Send and Wait Routines

NddsPublicationSend — Sends or writes the publication issue. In RTI Data Distribution
Service 4.0, for purposes of discussion, we’ll refer to a representative user-defined
data type topic named HelloMsg. The application would then repeatedly call the
HelloMsgDataWriter_write routine to disseminate the publication.

NddsPublicationWait — Waits for send queue level to reach the same or lower level spec-
ified within the Wait routine. There is no RTI Data Distribution Service 4.0
DataWriter or Publisher routine that will perform this specific functionality.

NddsPublicationSubscriptionWait — Waits for the existence of a specified number of Sub-
scriptions. There is no RTI Data Distribution Service 4.0 DataWriter or Publisher
routine that will perform this specific functionality.

5.3.4 Publication Status Routines

NddsPublicationReliableStatusGet — When a Publication is publishing to a reliable Sub-
scription, NddsPublicationReliableStatusGet() provides detailed information per-
taining to the reliable status of the Publication:

typedef struct NDDSPublicationReliableStatus {
NDDSPublicationReliableEvent event;// The reliable event
const char *nddsTopic;
int unacknowledgedIssues;// Number of unacknowledged issues
int subscriptionReliable;// number of reliable subscriptions
int subscriptionUnreliable;// number of unreliable subscriptions

} NDDSPublicationReliableStatus;

❏ event — Provides the latest event on the publication's reliable stream, where the
events are defined as:

• NDDS_BEFORERTN_VETOED — The sendBeforeRtn vetoed the Publication.
Data was not serialized. This information is unavailable in RTI Data Distri-
bution Service 4.0.
Proprietary Information of Real-Time Innovations, Inc. 5-19

Chapter 5 Comparing the C APIs
• NDDS_QUEUE_EMPTY — The send queue is empty. This information is
unavailable in RTI Data Distribution Service 4.0.

• NDDS_LOW_WATER_MARK — The send queue level fell to the low water
mark. This information is unavailable in RTI Data Distribution Service 4.0.

• NDDS_HIGH_WATER_MARK — The send queue level rose to the high water
mark. This information is unavailable in RTI Data Distribution Service 4.0.

• NDDS_QUEUE_FULL — The send queue is full. This information is unavail-
able in RTI Data Distribution Service 4.0.

• NDDS_SUBSCRIPTION_NEW — A new reliable subscription has appeared.
The Built-in Topics feature in RTI Data Distribution Service 4.0 can provide
this information. See Section 5.8.1.

• NDDS_SUBSCRIPTION_DELETE — A reliable Subscription disappeared. Note
that the Publication only detects the disappearance of a reliable Subscrip-
tion after the expirationTime of the last refreshed subscription declaration
expires and the Publication checks its database. The Built-in Topics feature
in RTI Data Distribution Service 4.0 can provide this information. See
Section 5.8.1.

❏ nddsTopic — The NDDSTopic of the Publication. This information is unavailable
in RTI Data Distribution Service 4.0.

❏ subscriptionReliable — The number of reliable Subscriptions subscribed to this
publication. This information is unavailable in RTI Data Distribution Service 4.0.

❏ subscriptionUnreliable — The number of unreliable Subscriptions subscribed to
this Publication. This information is unavailable in RTI Data Distribution Service
4.0.

❏ unacknowledgedIssues — The number of unacknowledged issues. This informa-
tion is unavailable in RTI Data Distribution Service 4.0.

5.3.5 Publication Topic and Instance Routines

NddsPublicationTopicGet — Retrieves the Publication’s Topic. In RTI Data Distribution
Service 4.0, the DataWriter provides the DDS_DataWriter_get_topic routine which
returns the Topic associated with the DataWriter. This is the same Topic that was
used to create the DataWriter.
5-20 Proprietary Information of Real-Time Innovations, Inc.

5.4 Subscription API
5. C

 A
PI
NddsPublicationInstanceGet — Obtains a pointer to the Publication instance. In RTI
Data Distribution Service 4.0, a Publisher can use the
DDS_Publisher_lookup_datawriter routine to obtain the DataWriter’s instance.

5.3.6 Publication Listener Routines

NDDSPublicationListener — See Section 5.8.1.2 for further details.

NddsPublicationListenerGet — Retrieves the Publication’s Listener hooks. In RTI Data
Distribution Service 4.0, a DataWriter’s Listener can be obtained by using the
DDS_DataWriter_get_listener routine.

NddsPublicationListenerSet — Allows the Publication’s Listener to be modified. In RTI
Data Distribution Service 4.0, a DataWriter’s Listener can be modified by using the
DDSDataWriter_set_listener routine.

NddsPublicationListenerDefaultGet — Allows the Publication’s default Listener hooks to
be retrieved. In RTI Data Distribution Service 4.0, a DataWriter’s default listener
can be retrieved by invoking the DDS_DataWriter_get_listener routine prior to
creating the DataWriter object.

5.4 Subscription API
This section discusses the RTI Data Distribution Service 3.x subscription function calls
and how they map to the RTI Data Distribution Service 4.0 functionality. As indicated ear-
lier, some of the routines will map directly, others will require some redesign of the
application. Table 5.7 lists the RTI Data Distribution Service 3.x Subscription routines (in
alphabetical order). Next we will look at how they map to RTI Data Distribution Service
4.0 functionality.

Table 5.7 Subscription API

3.x Reference to 4.0 Information

NDDSIssueListener Section 5.4.1

NddsSubscriptionDestroy Section 5.4.2

NddsSubscriptionInstanceGet Section 5.4.6
Proprietary Information of Real-Time Innovations, Inc. 5-21

Chapter 5 Comparing the C APIs
5.4.1 Issue Listener Routines

NDDSIssueListener — See Section 5.8.3 for further details.

NddsSubscriptionIssueListenerDefaultGet — Allows the Subscripton’s default Listener
hooks to be retrieved. In RTI Data Distribution Service 4.0, a DataReader’s default
listener can be obtained by using the DDS_DataReader_get_listener routine prior
to creating the DataReader object.

NddsSubscriptionIssueListenerGet — Retrieves the Subscription’s Listener. In RTI Data
Distribution Service 4.0, the DDS_DataReader_get_listener routine can be used to
retrieve the DataReader’s listener.

NddsSubscriptionIssueListenerSet — Modifies the Subscription’s Listener. In RTI Data
Distribution Service 4.0, the DDS_DataReader_set_listener routine can be used to
modify the DataReader’s listener.

NddsSubscriptionIssueListenerGet.
Section 5.4.1

NddsSubscriptionIssueListenerSet

NddsSubscriptionPublicationWait Section 5.4.5

NddsSubscriptionTopicGet Section 5.4.6

NddsSubscriptionCreate
Section 5.4.2

NddsSubscriptionCreateAtomic

NddsSubscriptionIssueListenerDefaultGet Section 5.4.1

NddsSubscriptionPoll Section 5.4.5

NddsSubscriptionPropertiesGet Section 5.4.3

NddsSubscriptionPropertiesSet Section 5.4.3

NddsSubscriptionReliableCreate

Section 5.4.7

NddsSubscriptionReliableCreateAtomic

NDDSSubscriptionReliableListener

NddsSubscriptionReliableListenerGet

NddsSubscriptionReliableListenerSet

NddsSubscriptionReliableStatusGet

NDDSSubscriptionReliableStatusRtn

NddsSubscriptionStatusGet Section 5.4.4

Table 5.7 Subscription API

3.x Reference to 4.0 Information
5-22 Proprietary Information of Real-Time Innovations, Inc.

5.4 Subscription API
5. C

 A
PI
5.4.2 Subscription Create/Delete Routines

NddsSubscriptionCreateAtomic — Allows the user to create a new subscription and pro-
vide all the associated subscription parameters at once. In RTI Data Distribution
Service 4.0, the equivalent functionality is supported by creating both a
DataReader and a Subscriber. So an indirect mapping to RTI Data Distribution Ser-
vice 4.0 exists in that a DataReader would need to be created after the creation of a
Subscriber. So both the DDS_DomainParticipant_create_subscriber and
DDS_Subscriber_create_datareader routines are required. In RTI Data Distribution
Service 4.0, atomic behavior is handled by default.

NddsSubscriptionCreate — As discussed in Section 2.4, a Subscription is supported by
creating both a DataReader and a Subscriber. So an indirect mapping to RTI Data
Distribution Service 4.0 exists in that a DataReader would need to be created after
the Subscriber has been created. So both the
DDS_DomainParticipant_create_subscriber and
DDS_Subscriber_create_datareader routines are required.

NddsSubscriptionDestroy — As discussed in Section 2.4, an RTI Data Distribution Service
3.x Subscription can stand alone and refers to exactly one Topic that identifies the
data to be read. RTI Data Distribution Service 3.x also allows the application to
manage a group of Subscriptions with a Subscriber. If a Subscriber is used within
the RTI Data Distribution Service 3.x application, and one of the Subscription’s is to
be destroyed, then one would use the DDS_Subscriber_delete_datareader routine.
If on the other hand, the RTI Data Distribution Service 3.x application was not
using a Subscriber (only a Subscription), then you would need to both delete the
RTI Data Distribution Service 4.0 Subscriber and DataReader by using
DDS_DomainParticipant_delete_subscriber and
DDS_Subscriber_delete_datareader.

5.4.3 Subscription Properties Routines

NddsSubscriptionPropertiesSet — Modifies the current Subscription properties. The
properties associated with a Subscription in RTI Data Distribution Service 3.x do
not map directly to DataReader properties in RTI Data Distribution Service 4.0, but
object QoS properties can be established for a given DataReader by using the
DDS_Subscriber_set_default_datareader_qos routine.

NddsSubscriptionPropertiesGet — The properties associated with a Subscription in RTI
Data Distribution Service 3.x do not map directly to DataReader properties in RTI
Data Distribution Service 4.0, but object QoS properties can be retrieved for a given
DataReader by using the DDS_Subscriber_get_default_datareader_qos routine.
Proprietary Information of Real-Time Innovations, Inc. 5-23

Chapter 5 Comparing the C APIs
5.4.4 Subscription Status Routine

NddsSubscriptionStatusGet — Allows the status of an issue received on a subscription to
be examined. The information provided by this call is the same information that is
presented to the Subscription’s callback routine. This function simply allows the
application to retrieve the Subscription's current status (see Section 5.8.3).

5.4.5 Subscription Poll and Wait Routines

NddsSubscriptionPoll — Polls the Subscription for newly received issues since the last
poll.

In RTI Data Distribution Service 4.0, an application uses Listeners to receive data.
Listeners provide asynchronous notification of data-sample arrival.

NddsSubscriptionPublicationWait — Actively probes for a given number of Publications
for this Subscription. This functionality is not currently supported in RTI Data
Distribution Service 4.0.

5.4.6 Subscription Topic and InstanceRoutines

NddsSubscriptionTopicGet — Returns the Topic subscribed to. In RTI Data Distribution
Service 4.0, the DataReader provides the DDS_DataReader_get_topicdescription
routine which returns the topic description associated with the DataReader.

NddsSubscriptionInstanceGet — Obtains a pointer to a Subscription’s instance. In RTI
Data Distribution Service 4.0, the DDS_Subscriber_lookup_datareader can be used
to retrieve the instance of a DataReader attached to a Topic.

5.4.7 Reliable Subscription Routines

NDDSSubscriptionReliableStatusRtn — Provides the ability to monitor the status of the
reliable stream on the subscription side. If one registers a subscription reliable sta-
tus routine, RTI Data Distribution Service 3.1x will invoke the routine upon occur-
rence of events pertaining to the reliable communication on the subscription side.
You can then take appropriate actions based on the event and other parameters.
The routine provides the following:

❏ event — can be either:
5-24 Proprietary Information of Real-Time Innovations, Inc.

5.4 Subscription API
5. C

 A
PI
• NDDS_ISSUES_DROPPED – One (or more) issues have been missed by the
subscription. In RTI Data Distribution Service 4.0, the application can
employ the Subscriber Listener on_sample_lost routine to determine infor-
mation pertaining to dropped data issues. One can also access the Sample
Lost Status (plain communication status type) allowing the application to
determine the total cumulative count of all samples lost across all pub-
lished instances of a specific Topic.

• NDDS_PUBLICATION_NEW – the reliable issue is coming from a publication
different from the one that sent the previous issue. This functionality is not
currently supported in RTI Data Distribution Service 4.0.

❏ issuesDropped — Provides the number of issues dropped. In RTI Data Distribu-
tion Service 4.0, the application can use the Subscriber Listener on_sample_lost
routine or the DDS_DataReader_get_sample_lost_status routine to access both
the total_count and total_count_change data fields. The total_count provides the
cumulative count of all samples lost across all instances of topics subscribed to
by this Subscriber. The total_count_change provides the incremental number of
samples lost since the last time the Listener was called or the status was read.
These routines provided dropped issue counts for the entire Subscriber, not on a
DataReader basis.

❏ nddsTopic — Provides the subscription’s topic. In RTI Data Distribution Service
4.0, once the Subscriber Listener’s on_sample_lost routine is invoked, the infor-
mation associated with dropped issues is provided only on a Subscriber basis.
There is currently no mechanism available to determine which dropped issues
are associated with which Topic.

NDDSSubscriptionReliableListener — See the NDDSSubscriptionReliableStatusRtn rou-
tine discussion above.

NddsSubscriptionReliableListenerSet — Allows the application to register a reliable lis-
tener class for a reliable subscription. The functionality provided by this listener
has been discussed above with the NDDSSubscriptionReliableStatusRtn routine.

NddsSubscriptionReliableListenerGet — Retrieves the current reliable listener for a reli-
able subscription. In RTI Data Distribution Service 4.0, the DataReader Listener
functionality does not map directly to what was provided in RTI Data Distribution
Service 3.x, but nevertheless, the Listener can be retrieved by using the
DDS_DataReader_get_listener routine.

NddsSubscriptionReliableCreateAtomic — Creates a reliable subscription with the
desired properties and listener. In RTI Data Distribution Service 4.0, there is no sep-
arate API call to create a reliable Subscribers/DataReader. Simply use the routines
identified above when instantiating a Subscription, then employ the
Proprietary Information of Real-Time Innovations, Inc. 5-25

Chapter 5 Comparing the C APIs
DDS_DataReader_set_qos routine to specify a QoS policy of
DDS_QOS_RELIABILITY_RELIABLE. In RTI Data Distribution Service 4.0, atomic
behavior is handled by default.

NddsSubscriptionReliableCreate — A reliable subscription is similar to a regular sub-
scription except the issues are received reliably and in the order in which they
were published. In RTI Data Distribution Service 4.0, there is no separate API call to
create a reliable Subscriber/DataReader. Simply use the routines articulated
above to instantiate a DataReader, then use the DDS_DataReader_set_qos routine
to specify a QoS policy of DDS_QOS_RELIABILITY_RELIABLE.

NddsSubscriptionReliableStatusGet — See the NDDSSubscriptionReliableStatusRtn rou-
tine discussion above.

5.5 Publisher API
This section discusses the RTI Data Distribution Service 3.x Publisher routines and how
they map to the RTI Data Distribution Service 4.0 functionality. Some of the routines will
map directly, others will require redesign of the application. Table 5.8 lists the RTI Data
Distribution Service 3.x Publisher routines (in alphabetical order). Next we will look at
how they map to RTI Data Distribution Service 4.0 functionality.

Table 5.8 Publisher API

3.x Reference to 4.0 Information

NddsCustomSocketPublisherCreate

Section 5.5.1NddsPublisherCreate

NddsPublisherDestroy

NddsPublisherIterate Section 5.5.4

NddsPublisherPublicationAdd Section 5.5.2

NddsPublisherPublicationFind Section 5.5.4

NddsPublisherPublicationRemove Section 5.5.2

NddsPublisherSend
Section 5.5.3

NddsPublisherSubscriptionWait
5-26 Proprietary Information of Real-Time Innovations, Inc.

5.5 Publisher API
5. C

 A
PI
The Publisher object in RTI Data Distribution Service 3.x also supported Signaled and
Asynchronous modes of operation; these are not supported in RTI Data Distribution Ser-
vice 4.0.

5.5.1 Publisher Create/Delete Routines

NddsPublisherCreate — A Publisher manages a group of Publications. In RTI Data Dis-
tribution Service 4.0, the DDS_DomainParticipant_create_publisher routine can be
used to create a Publisher. The application would then need to further create a
DataWriter to allow the application to ‘publish’ data.

NddsCustomSocketPublisherCreate — Allows the application to create a publisher using
a socket provided as a parameter. No such functionality currently exists within
RTI Data Distribution Service 4.0.

NddsPublisherDestroy — In RTI Data Distribution Service 3.x this function destroys a pub-
lisher. It is important to note that Publications within the Publisher are NOT
destroyed so they’ll have to be destroyed separately. The actual deallocation of
memory for the publisher may not occur immediately to ensure safety among the
different tasks. After calling this function the Publisher is invalid and should not
be used.

In RTI Data Distribution Service 4.0, the DDS_DomainParticipant_delete_publisher
routine would be used after all associated DataWriter entities were destroyed via
the DDS_Publisher_delete_datawriter. Note that within RTI Data Distribution Ser-
vice 4.0, DataWriter’s cannot exist without a Publisher, unlike RTI Data Distribu-
tion Service 3.x where a Publication can exist with or without a Publisher.

5.5.2 Publisher Add/Remove Routines

NddsPublisherPublicationAdd — Adds a Publication to a Publisher. In RTI Data Distribu-
tion Service 4.0, since a DataWriter cannot be instantiated independent of a Pub-
lisher, the equivalent functionality would be to use the
DDS_Publisher_create_datawriter routine. This not only creates the DataWriter
object, but adds it to the Publisher entity.

NddsPublisherPublicationRemove — Removes a Publication from being managed by a
Publisher. In RTI Data Distribution Service 4.0, since a DataWriter must be associ-
ated with a Publisher, this functionality is not supported unless multiple
DataWriters exist within the Publisher. If this is the case, then one of the
DataWriter’s may be removed by using the DDS_Publisher_delete_datawriter
routine.
Proprietary Information of Real-Time Innovations, Inc. 5-27

Chapter 5 Comparing the C APIs
5.5.3 Publisher Send and Wait Routines

NddsPublisherSend — Takes a snapshot of all the Publications managed by the Publisher
and then sends the issues at once, coalescing individual Publications into a single
message to maximum network bandwidth utilization. A direct mapping of this
routine does not exist within RTI Data Distribution Service 4.0. Each DataWriter’s
write routine must be invoked individually to cause the Topic issue to be dissemi-
nated via the Publisher.

NddsPublisherSubscriptionWait — Forces the calling thread to wait for at least the num-
ber of Subscriptions to appear for each Publication managed by the Publisher.
There is no RTI Data Distribution Service 4.0 DataWriter or Publisher routine cur-
rently available that will perform this specific functionality.

5.5.4 Publisher Find and Iterate Routines

NddsPublisherPublicationFind — Finds the Publication, of a supplied Topic string, that is
managed by the Publisher. In RTI Data Distribution Service 4.0, the
DDS_Publisher_lookup_datawriter routine would be used. This routine allows
the application to supply a Topic string so that the associated DataWriter handle
can be retrieved.

NddsPublisherIterate — Iterates over all managed Publications. This functionality is sup-
ported within the DDS Specification, but will not be implemented in RTI Data Distribu-
tion Service 4.0.

5.6 Subscriber API
This section discusses the RTI Data Distribution Service 3.x Subscriber routines and how
they map to the RTI Data Distribution Service 4.0 functionality. Some of the routines will
map directly, others will require redesign of the application. Table 5.9 lists the RTI Data
Distribution Service 3.x Subscriber routines (in alphabetical order). Next we will look at
how they map to RTI Data Distribution Service 4.0 functionality.
5-28 Proprietary Information of Real-Time Innovations, Inc.

5.6 Subscriber API
5. C

 A
PI
5.6.1 Subscriber Create/Delete Routines

NDDSSubscriberCreate — A Subscriber manages a group of Subscriptions. In RTI Data
Distribution Service 4.0, the DDS_DomainParticipant_create_subscriber routine
would be used. The application would then need to further create a DataReader
to allow the application to ‘subscribe’ to the data of interest.

NDDSSubscriberDestroy — Destroys a Subscriber. Subscriptions that have been added
with the NDDSSubscriberSubscriptionAdd routine are not destroyed, but Sub-
scriptions automatically created through Pattern Subscription are destroyed. In
RTI Data Distribution Service 4.0, the DDS_DomainParticipant_delete_subscriber
routine would be used after all associated DataReader entities were destroyed via
the DDS_Subscriber_delete_datareader routine. In RTI Data Distribution Service
4.0, DataReaders cannot exist without a Subscriber, unlike RTI Data Distribution
Service 3.x where a Subscription can exist with or without a Subscriber.

5.6.2 Subscriber Pattern Routines

These routines have no equivalent mapping in RTI Data Distribution Service 4.0.

NDDSSubscriberPatternAdd — Adds a Pattern Subscription to the Subscriber. Patterns
allow users to subscribe to a large set of publications. Pattern Subscriptions differ
from single Subscriptions in that the topicPattern and typePattern are string pat-
terns. Patterns usually contain wild characters such as "*". If you specify the sub-

Table 5.9 Subscriber API

3.x Reference to 4.0 Information

NDDSSubscriberCreate
Section 5.6.1

NDDSSubscriberDestroy

NDDSSubscriberIterate Section 5.6.5

NDDSSubscriberPatternAdd
Section 5.6.2

NDDSSubscriberPatternRemove

NDDSSubscriberPoll Section 5.6.4

NDDSSubscriberSubscriptionAdd Section 5.6.3

NDDSSubscriberSubscriptionFind Section 5.6.5

NDDSSubscriberSubscriptionRemove Section 5.6.3
Proprietary Information of Real-Time Innovations, Inc. 5-29

Chapter 5 Comparing the C APIs
scription type NDDS_SUBSCRIPTION_POLLED then you must call
NddsSubscriberPoll to receive the issues. OnMatch() is called if the subscriber
doesn't already contain the subscription.

NDDSSubscriberPatternRemove — Removes a previously added pattern, but does not
delete the pattern listener passed in during the pattern registration.

5.6.3 Subscriber Add/Remove Routines

NDDSSubscriberSubscriptionAdd — Adds a Subscription to the Subscriber. In RTI Data
Distribution Service 4.0, since a DataReader cannot be instantiated independent of
a Subscriber, the equivalent routine would be to use the
DDS_Subscriber_create_datareader routine. This not only creates the DataReader
object, but automatically adds it to the Subscriber.

NDDSSubscriberSubscriptionRemove — Removes a Subscription from being managed by
a Subscriber. In RTI Data Distribution Service 4.0, since a DataReader must be asso-
ciated with a Subscriber, this functionality is not supported, unless there are mul-
tiple DataReaders created within the Subscriber. If this is the case, then one of the
DataReader’s may be removed by using the DDS_Subscriber_delete_datareader
routine.

5.6.4 Subscriber Poll Routine

NDDSSubscriberPoll — Polls all Subscriptions. In RTI Data Distribution Service 4.0, there is
no routine that provides this equivalent functionality directly. The user could cre-
ate specific conditions to wait on, and attach them to a Wait-Set for each
DataReader of interest. The application could then achieve polling functionality
by repeatedly invoking the DDS_WaitSet_wait routine with a specified timeout
value.

5.6.5 Subscriber Find and Iterate Routines

NDDSSubscriberSubscriptionFind — Finds the Subscription, of a supplied Topic string,
that is managed by the Subscriber. In RTI Data Distribution Service 4.0, the
DDS_Subscriber_lookup_datareader routine would be used. This function allows
the application to supply a Topic string so that the associated DataReader handle
can be retrieved.
5-30 Proprietary Information of Real-Time Innovations, Inc.

5.7 Client and Server APIs
5. C

 A
PI
NDDSSubscriberIterate — Iterates over all aggregated Subscriptions. This functionality is
supported within the DDS Specification, but will not be implemented in RTI Data Distri-
bution Service 4.0.

5.7 Client and Server APIs
None of the Client and Server APIs are supported in RTI Data Distribution Service 4.0.
This feature set will be introduced in a future release of the product.

5.8 Listeners
Listeners provide a mechanism for RTI Data Distribution Service to asynchronously alert
the application of the occurrence of relevant asynchronous events, such as arrival of
data corresponding to a Subscription. Listeners are callback routines that the application
implements. Each dedicated listener presents a list of callback functions that correspond
to relevant events that the application may wish to respond to.

To continue with our API comparison, let’s examine RTI Data Distribution Service listen-
ers. Recall that in RTI Data Distribution Service 3.x, Listeners can be associated with a
Domain, Publication, and Subscription. The DDS specification indicates that all DCPS
entities support their own specialized listener, so RTI Data Distribution Service 4.0 will
provide Listener support for each Entity.

5.8.1 Domain Listeners

The Domain Listener in RTI Data Distribution Service 3.x allows the application the abil-
ity to be notified upon the appearance and disappearance of Managers, Applications,
Publications, Subscriptions, and Servers. This section looks at the RTI Data Distribution
Service 3.x Domain Listener callback functions and how they can be mapped into the RTI
Data Distribution Service 4.0 functionality.

The DomainParticipant Listener in RTI Data Distribution Service 4.0 does not provide the
same callback function prototypes that are provided in the RTI Data Distribution Service
3.x Domain Listener. In order for an RTI Data Distribution Service 4.0-based application
to implement similar RTI Data Distribution Service 3.x Domain Listener functionality, the
‘built-in Topic’ must be used. The DDS specification introduces a set of Built-in Topics
Proprietary Information of Real-Time Innovations, Inc. 5-31

Chapter 5 Comparing the C APIs
and corresponding DataReader objects that can be used by the application to monitor
and keep track of new DCPS entities as they are discovered. The Built-in Topics can then
be accessed.

5.8.1.1 Domain Listener Callback Routines

There is no direct mapping of these routines to RTI Data Distribution Service 4.0, but
equivalent functionality can be implemented using RTI Data Distribution Service 4.0, as
described below:

NDDSOnApplicationRemoteNewHook — Equivalent functionality can be provided by
‘subscribing’ to the built-in Topic DCPSParticipant. The application can then gain
access to the built-in Subscriber and associated DataReaders by using the
DDS_DomainParticipant_get_builtin_subscriber routine provided by the
DomainParticipant. The built-in DataReader objects can then be retrieved by
using the DDS_Subscriber_get_datareaders routine. This allows the application to
make decisions based on the remote Participant’s activity such as not allowing the
remote participant to participate within the network by using the
DDS_DomainParticipant_ignore_participant routine.

NDDSOnApplicationRemoteDeleteHook — Equivalent functionality can be provided by
‘subscribing’ to the built-in Topic DCPSParticipant. The application can then gain
access to the built-in Subscriber and associated DataReaders by using the
DDS_DomainParticipant_get_builtin_subscriber routine provided by the
DomainParticipant. The built-in DataReader objects can then be retrieved by
using the DDS_Subscriber_get_datareaders routine. This allows the application to
make decisions based on the remote Participant’s activity such as not allowing the
remote participant to participate within the network by using the
DDS_DomainParticipant_ignore_participant routine.

NDDSOnPublicationRemoteNewHook — Equivalent functionality can be provided by
‘subscribing’ to the built-in Topic DCPSPublication. The application can then
gain access to the built-in Subscriber and associated DataReaders by using the
DDS_DomainParticipant_get_builtin_subscriber routine provided by the
DomainParticipant. The built-in DataReader objects can then be retrieved by
using the DDS_Subscriber_get_datareaders routine. This allows the application
to gain access to the Built-in DCPSPublication Topic and monitor all traffic related
to remote DataWriter activity. This allows the application to make decisions
based on the remote Participant’s activity such as not allowing the remote pub-
lisher to participate within the network by using the
DDS_DomainParticipant_ignore_publication routine.
5-32 Proprietary Information of Real-Time Innovations, Inc.

5.8 Listeners
5. C

 A
PI
NDDSOnPublicationRemoteDeleteHook — Equivalent functionality can be provided by
‘subscribing’ to the built-in Topic DCPSPublication. The application can then
gain access to the built-in Subscriber and associated DataReaders by using the
DDS_DomainParticipant_get_builtin_subscriber routine provided by the
DomainParticipant. The built-in DataReader objects can then be retrieved by
using the DDS_Subscriber_get_datareaders routine. This allows the application
to gain access to the Built-in DCPSPublication Topic and monitor all traffic related
to remote DataWriter activity. This allows the application to make decisions
based on the remote Participant’s activity such as not allowing the remote pub-
lisher to participate within the network by using the
DDS_DomainParticipant_ignore_publication routine.

NDDSOnServerRemoteNewHook — There is no functionally equivalent capability within
RTI Data Distribution Service 4.0 as client/server is not support. This feature set is
planned for a future release.

NDDSOnServerRemoteDeleteHook — There is no functionally equivalent capability
within RTI Data Distribution Service 4.0 as client/server is not support. This feature
set is planned for a future release.

NDDSOnSubscriptionRemoteNewHook — Equivalent functionality can be provided by
‘subscribing’ to the built-in Topic DCPSSubscription. The application can then
gain access to the built-in Subscriber and associated DataReaders by using the
DDS_DomainParticipant_get_builtin_subscriber routine provided by the
DomainParticipant. The built-in DataReader objects can then be retrieved by
using the DDS_Subscriber_get_datareaders routine. This allows the application
to gain access to the Built-in DCPSSubscription Topic and monitor all traffic
related to remote DataReader activity. This allows the application to make deci-
sions based on the remote Participant’s activity such as not allowing the remote
subscriber to participate within the network by using the
DDS_DomainParticipant_ignore_subscription routine.

NDDSOnSubscriptionRemoteDeleteHook — Equivalent functionality can be provided by
‘subscribing’ to the built-in Topic DCPSSubscription. The application can then
gain access to the built-in Subscriber and associated DataReaders by using the
DDS_DomainParticipant_get_builtin_subscriber routine provided by the
DomainParticipant. The built-in DataReader objects can then be retrieved by
using the DDS_Subscriber_get_datareaders routine. This allows the application
to gain access to the Built-in DCPSSubscription Topic and monitor all traffic
related to remote DataReader activity. This allows the application to make deci-
sions based on the remote Participant’s activity such as not allowing the remote
subscriber to participate within the network by using the
DDS_DomainParticipant_ignore_subscription routine.
Proprietary Information of Real-Time Innovations, Inc. 5-33

Chapter 5 Comparing the C APIs
5.8.1.2 Domain Listener Retrieval Routines

NddsDomainListenerDefaultGet — Retrieves the domain's default listener hooks. Default
callbacks are necessary to initialize the domain listener structure before one can
modify the fields for application specific functionality. In RTI Data Distribution
Service 4.0, this domain listener functionality is supported via built-in topics.

NddsDomainListenerGet — Retrieves the default domain listener hooks. Sets the hooks
called whenever declarations for remote publications, subscriptions, clients, and
servers are received. In RTI Data Distribution Service 4.0, this domain listener func-
tionality is supported via built-in topics.

5.8.2 Publication Listeners

The RTI Data Distribution Service 3.x Publication Listener allows an application to tailor
its behavior in response to middleware activity associated with individual publication
events. The Publication Listener interface provides the following callback functions:

NDDSAfterSendRtn — This routine, if implemented by the application, is invoked by RTI
Data Distribution Service directly after an issue is sent. In RTI Data Distribution Ser-
vice 4.0, there is currently no direct mapping of this functionality.

NDDSSendBeforeRtn — This routine, if implemented by the application, is invoked by
RTI Data Distribution Service prior to an issue being sent. In RTI Data Distribution
Service 4.0, there is currently no direct mapping of this functionality.

NddsPublicationReliableStatusRtn — When a Publication is publishing to at least one reli-
able Subscription, this routine provides detailed information pertaining to the
reliable status of the Publication. The following is a list of the status information
the routine returns:

❏ event — provides the latest event on the publication's reliable stream where the
events are defined as:

• NDDS_BEFORERTN_VETOED — the sendBeforeRtn vetoed the Publication.
Data was not serialized. This information is not available in RTI Data Dis-
tribution Service 4.0.

• NDDS_QUEUE_EMPTY — the send queue is empty. This information is not
available in RTI Data Distribution Service 4.0.
5-34 Proprietary Information of Real-Time Innovations, Inc.

5.8 Listeners
5. C

 A
PI
• NDDS_LOW_WATER_MARK — the send queue level fell to the low water
mark. If the low water mark is 0, only NDDS_QUEUE_EMPTY will be
called when the queue becomes empty. This information is not available in
RTI Data Distribution Service 4.0.

• NDDS_HIGH_WATER_MARK — the send queue level rose to the high water
mark. If the high water mark is the same as the send queue size, only
NDDS_QUEUE_FULL will be called when the queue becomes full. This
information is not available in RTI Data Distribution Service 4.0.

• NDDS_QUEUE_FULL — the send queue is full. This information is not avail-
able in RTI Data Distribution Service 4.0.

• NDDS_SUBSCRIPTION_NEW — a new reliable subscription has appeared. The
Built-in Topics feature in RTI Data Distribution Service 4.0 can provide this
information. See Section 5.8.1.

• NDDS_SUBSCRIPTION_DELETE — a reliable Subscription disappeared. Note
that the Publication only detects the disappearance of a reliable Subscrip-
tion after the expirationTime of the last refreshed subscription declaration
expires and the Publication checks its database. The Built-in Topics feature
in RTI Data Distribution Service 4.0 can provide this information.

❏ nddsTopic — the NDDSTopic of the Publication. This information is not available
in RTI Data Distribution Service 4.0.

❏ subscriptionReliable — the number of reliable Subscriptions subscribed to this
publication. This information is not available in RTI Data Distribution Service 4.0.

❏ subscriptionUnreliable — the number of unreliable Subscriptions subscribed to
this Publication. This information is not available in RTI Data Distribution Service
4.0.

❏ unacknowledgedIssues — the number of unacknowledged issues. This informa-
tion is not available in RTI Data Distribution Service 4.0.

5.8.3 Issue Listeners

The RTI Data Distribution Service 3.x Issue Listener provides the ability for the applica-
tion to tailor its behavior in response to middleware activity associated with individual
subscription events, including the reception of publications. The Issue Listener interface
provides the following callback function prototype:
Proprietary Information of Real-Time Innovations, Inc. 5-35

Chapter 5 Comparing the C APIs
NDDSRecvCallBackRtn — this routine is provided by the application and is registered
when the subscription is created and is invoked by RTI Data Distribution Service at
different times depending on the subscription mode. If configured for IMMEDI-
ATE Subscription, this routine is invoked as soon as the data issue is received. If
configured for POLLED Subscription, this routine is invoked when the receiving
application explicitly polls. If there are more than one issues received since the
last poll, this routine will be executed multiple times for each issue. In RTI Data
Distribution Service 4.0, the DataReaderListener’s on_data_available routine
would be used to receive incoming data. The NDDSRecvCallBackRtn’s function
prototype provides access to both received issue data and issue data status. The
status that is available on a per issue basis is listed below:

❏ localTimeWhenReceived — Local time when the issue was received. This infor-
mation is unavailable in RTI Data Distribution Service 4.0.

❏ nddsTopic — tTopic of the Subscription receiving the issue. In RTI Data Distribu-
tion Service 4.0, the DDS_DataReader_get_topicdescription routine can be used
to determine the DataReader’s topic.

❏ nddsType — Type of the Subscription receiving the issue. This information is not
currently available in RTI Data Distribution Service 4.0.

❏ publicationId — Publication's unique ID. This information is unavailable in RTI
Data Distribution Service 4.0.

❏ publSeqNumber — Sending (Publication) high and low sequence number. This
information is unavailable in RTI Data Distribution Service 4.0.

❏ recvSeqNumber — Receiving sequence high and low sequence number. This
information is unavailable in RTI Data Distribution Service 4.0.

❏ remoteTimeWhenPublished — Remote time when the issue was published. Once
the read or take routine is used within the DataReader to gain access to the
received data issue, the SampleInfo source_timestamp routine can be employed
which provides the time-stamp provided by the DataWriter at the time the sam-
ple was produced.

❏ senderAppId — Sender's application ID. This information is unavailable in RTI
Data Distribution Service 4.0.

❏ senderHostId — Sender's host ID. This information is unavailablein RTI Data Dis-
tribution Service 4.0.

❏ senderNodeIP — Sender's IP address. This information is unavailable in RTI Data
Distribution Service 4.0.
5-36 Proprietary Information of Real-Time Innovations, Inc.

5.8 Listeners
5. C

 A
PI
❏ validRemoteTimeWhenPublished — Whether or not a valid remote time was
received. This information is unavailable in RTI Data Distribution Service 4.0.

❏ status — Status affects which fields are valid and returns:

• NDDS_DESERIALIZATION_ERROR — Deserialization routine for the NDDS-
Type returned an error. This information is not available in RTI Data Distri-
bution Service 4.0.

• NDDS_FRESH_DATA — A new issue received. In RTI Data Distribution Service
4.0, the application can determine the status of the received issue by
inspecting the information provided by SampleInfo. SampleInfo informa-
tion is provided along with each data issue and provides detailed informa-
tion pertaining to that data instance. One can determine the state of the
arriving issue by taking advantage of the information provided by the
sample_state (READ or NOT_READ), view_state (NEW or NOT_NEW),
and instance_state (ALIVE, NOT_ALIVE_DISPOSED, or
NOT_ALIVE_NO_WRITERS).

• NDDS_NEVER_RECEIVED_DATA — Never received an issue, but a deadline
occurred. In RTI Data Distribution Service 4.0, one would use the
DataReader Listener on_requested_deadline_missed routine. RTI Data
Distribution Service will invoke this operation when the deadline has been
missed. The application can also consult the entities status by directly
using the DDS_DataReader_get_requested_deadline_missed_status rou-
tine.

• NDDS_NO_NEW_DATA — Received at least one issue, and a deadline has
occurred since the last issue was received. One can use a combination of
features described above.

• NDDS_UPDATE_OF_OLD_DATA — Received a new issue, whose time stamp is
the same or older than the time stamp of the last fresh issue received. This
information is unavailable in RTI Data Distribution Service 4.0.

5.8.4 Subscription Reliable Listeners

The RTI Data Distribution Service 3.x Subscription Reliable Listener provides the ability
for the application to tailor its behavior in response to activity associated with individ-
ual reliable subscription events. The Reliable Subscription Listener interface defines the
following function prototype:
Proprietary Information of Real-Time Innovations, Inc. 5-37

Chapter 5 Comparing the C APIs
NDDSSubscriptionReliableStatusRtn — Provides the ability to monitor the status of a reli-
able stream on the subscribing node. If you register a subscription reliable status
routine in RTI Data Distribution Service 3.x, RTI Data Distribution Service will
invoke the routine upon occurrence of events pertaining to the reliable communi-
cation on the subscription side. The NDDSSubscriptionReliableStatusRtn pro-
vides access to the following information:

❏ event — Provides the event concerning the reliable subscription. The event can
be either:

• NDDS_ISSUES_DROPPED — One (or more) issues have been missed by the
subscription. In RTI Data Distribution Service 4.0, the application can
employ the Subscriber Listener on_sample_lost routine to determine infor-
mation pertaining to dropped data issues.

• NDDS_PUBLICATION_NEW — The reliable issue is coming from a publication
different from the one that sent the previous issue. This functionality is not
currently supported in RTI Data Distribution Service 4.0

❏ issuesDropped — Number of issues dropped. In RTI Data Distribution Service 4.0,
the application can use the Subscriber Listener on_sample_lost routine or the
DDS_DataReader_get_sample_lost_status routine to access both the total_count
and total_count_change data fields. The total_count provides the cumulative
count of all samples lost across all instances of topics subscribed to by this Sub-
scriber. The total_count_change provides the incremental number of samples
lost since the last time the Listener was called or the status was read. These rou-
tines provided dropped issue counts for the entire Subscriber, not on a
DataReader basis.

❏ nddsTopic — Subscription’s topic. In RTI Data Distribution Service 4.0, once either
the Subscriber Listener on_sample_lost routine or the
DDS_DataReader_get_sample_lost_status routine is invoked, the information
associated with dropped issues is provided only on a Subscriber basis. There is
currently no mechanism available to determine which dropped issues are associ-
ated with which Topic.

5.8.5 Publisher and Subscriber Listeners

The RTI Data Distribution Service 3.x product does not support Publisher or Subscriber
Listener interfaces.
5-38 Proprietary Information of Real-Time Innovations, Inc.

5.8 Listeners
5. C

 A
PI
5.8.6 Client and Server Listeners

The RTI Data Distribution Service 3.x Client and Server Listeners allow an application to
tailor its behavior in response to middleware activity associated with individual Client
and Server events. RTI Data Distribution Service 4.0 does not support a Client-Server
API.
Proprietary Information of Real-Time Innovations, Inc. 5-39

Chapter 5 Comparing the C APIs
5-40 Proprietary Information of Real-Time Innovations, Inc.

6. C
++ A

PI
Chapter 6

Comparing the C++ APIs

This chapter describes how the RTI Data Distribution Service 3.x C++ API maps to the
RTI Data Distribution Service 4.0 API. It focuses on how to port an RTI Data Distribution
Service 3.x C++ application to RTI Data Distribution Service 4.0. This chapter addresses
each RTI Data Distribution Service 3.x object and its supported routines and attempts to
map the functionality to equivalent RTI Data Distribution Service 4.0 routines and/or
functionality. Where direct or indirect mappings do not exist, we’ll recommend alter-
nate approaches for you to consider. Example source code (using both versions) will be
used and will assume best-effort QoS and unicast network addressing. For additional
examples of reliable communications, see Appendix A, which lists the buildable exam-
ple source code that is available online.

This chapter includes the following sections:

❏ Examples (Section 6.1)

❏ Domain Methods (Section 6.2)

❏ Publication Methods (Section 6.3)

❏ Publisher Methods (Section 6.4)

❏ Subscription Methods (Section 6.5)

❏ Subscriber Methods (Section 6.6)

❏ Client and Server Methods (Section 6.7)

❏ Listeners (Section 6.8)
Proprietary Information of Real-Time Innovations, Inc. 6-1

Chapter 6 Comparing the C++ APIs
6.1 Examples
We’ll start with examples of how to instantiate a domain, and send and receive data.

6.1.1 Domain Instantiation
RTI Data Distribution Service 3.x:
int nddsDomain = NDDS_DOMAIN_DEFAULT;
int nddsVerbosity = NDDS_VERBOSITY_DEFAULT;
NDDSDomainClass *domain = NULL;

NddsVerbositySet(nddsVerbosity);

if(!(domain = NDDSDomainClass::Create(nddsDomain, NULL, NULL))) {
 printf("Unable to create the domain.\n");
 return RTI_FALSE;
};

RTI Data Distribution Service 4.0:

DDSDomainParticipantFactory *factory = NULL;
DDS_DomainParticipantQos participant_qos;
DDSDomainParticipant *participant = NULL;
int nddsDomain = 0;
int participantIndex = 0;
char *peerHost = “10.10.10.1”;
int peerMaxIndex = 1;

if(!(factory = DDSDomainParticipantFactory::get_instance())) {
 return RTI_FALSE;
}

factory->get_default_participant_qos(participant_qos);
participant_qos.discoveryX.participant_index = participantIndex;
if (peerHost != NULL) {
 if (!RTINetioAddress_getIpv4AddressByName((RTINetioAddress
 *)&participant_qos.discoveryX.initial_peer_locators[0].address,

peerHost)) {
 return RTI_FALSE;
 }
 participant_qos.discoveryX.initial_peer_locators[0].participant_index_limit

= peerMaxIndex;
 participant_qos.discoveryX.initial_peer_locators_count = 1;
}

6-2 Proprietary Information of Real-Time Innovations, Inc.

6.1 Examples
6. C

++ A
PI
if(!(participant = factory->create_participant(nddsDomain, participant_qos,
NULL))) {

 return RTI_FALSE;
}

Notice that there are a few more ‘infrastructure’ calls that must be used in RTI Data Dis-
tribution Service 4.0 prior to the ‘create_participant’ method that instantiates the actual
DomainParticipant. The RTI Data Distribution Service 3.x and 4.0 methods used to instan-
tiate a domain are shown in Table 6.1 for comparison purposes.

Only a few methods are required to actually create the Domain itself. Once the Domain
exists, the application is provided a rich set of methods that can be used to support
application functionality. Below you’ll find example source code of how an application
publishes and subscribes data using both RTI Data Distribution Service 3.x and 4.0. We’ll
cover each of the Domain methods available in RTI Data Distribution Service 3.x and dis-
cuss how they map to the RTI Data Distribution Service 4.0 DDS compliant product.

6.1.2 Publishing Data

In RTI Data Distribution Service 3.x, a Publication can stand alone. It can also be added to
a Publisher if so desired. As you’ll see in RTI Data Distribution Service 4.0 source code,
the Publisher is initially instantiated, with the DataWriter creation to follow.

RTI Data Distribution Service 3.x:

extern "C" int publisherMain(int nddsDomain, int nddsVerbosity)
{
 int count = 0;
 RTINtpTime send_period_sec = {0,0};
 NDDSPublicationProperties properties;
 NDDSDomainClass *domain = NULL;
 HelloMsg *instance = NULL;
 NDDSPublicationClass *publication = NULL;
 NDDSPublisherClass *publisher = NULL;

 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */
 NddsVerbositySet(nddsVerbosity);

Table 6.1 C++ Methods for Creating a Domain

3.x Method 4.0 Method

NDDSDomainClass::Create

DDSDomainParticipantFactory::get_instance

factory->get_default_participant_qos

factory->create_participant
Proprietary Information of Real-Time Innovations, Inc. 6-3

Chapter 6 Comparing the C++ APIs
 // Create the domain.
 if(!(domain = NDDSDomainClass::Create(NDDS_DOMAIN_DEFAULT, NULL, NULL))) {
 printf("Unable to create domain.\n");
 return RTI_FALSE;
 };

 if(!(instance = new HelloMsg())) {
 return RTI_FALSE;
 };

 domain->PublicationPropertiesGet(&properties);
 RtiNtpTimePackFromNanosec(properties.persistence, 15, 0); /* 15 seconds */
 properties.strength = 1;

 if(!(publication = domain->PublicationCreate("Example HelloMsg", instance,
&properties))) {

 printf("Unable to create publication\n");
 return RTI_FALSE;
 };

 publisher = domain->PublisherCreate(NDDS_PUBLISHER_SIGNALLED);
 publisher->PublicationAdd(publication);

 for (count=0;;count++) {
 printf("Sampling publication, count %d\n", count);

 /* modify the data to be sent here */
 sprintf(instance->msg, "Hello Universe! (%d)", count);

 publisher->Send();
 NddsUtilitySleep(send_period_sec);
 }
 return RTI_TRUE;
};

RTI Data Distribution Service 4.0:

extern "C" int publisherMain(int nddsDomain, int participantIndex, const char
*peerHost, int peerMaxIndex)

{
 DDSDomainParticipantFactory*factory = NULL;
 DDS_DomainParticipantQos participant_qos;
 DDSDomainParticipant *participant = NULL;
 DDSPublisher *publisher = NULL;
 DDSTopic *topic = NULL;
 HelloMsgDataWriter *writer = NULL;
 HelloMsg *instance = NULL;
 DDS_ReturnCode_t retcode;
 DDS_InstanceHandle_t instance_handle = DDS_HANDLE_NIL;
6-4 Proprietary Information of Real-Time Innovations, Inc.

6.1 Examples
6. C

++ A
PI
 int count = 0;
 RTINtpTime send_period_sec = {0,0};

 RtiNtpTimePackFromNanosec(send_period_sec, 4, 0); /* 4 seconds */

 if(!(factory = DDSDomainParticipantFactory::get_instance())) {
 return RTI_FALSE;
 }

 factory->get_default_participant_qos(participant_qos);
 participant_qos.discoveryX.participant_index = participantIndex;
 if (peerHost != NULL) {
 if (!RTINetioAddress_getIpv4AddressByName((RTINetioAddress
 *)&participant_qos.discoveryX.initial_peer_locators[0].address,

peerHost)) {
 return RTI_FALSE;
 }
 participant_qos.discov-

eryX.initial_peer_locators[0].participant_index_limit = peerMaxIndex;
 participant_qos.discoveryX.initial_peer_locators_count = 1;
 }
 if(!(participant = factory->create_participant(nddsDomain, participant_qos,

NULL))) {
 return RTI_FALSE;
 }

 if(!(publisher = participant->create_publisher())) {
 return RTI_FALSE;
 }

 retcode = HelloMsgTypeSupport::register_type(participant);
 if (retcode != DDS_RETCODE_OK) {
 return RTI_FALSE;
 }

 if(!(topic = participant->create_topic("Example HelloMsg", HelloMsgTYPE-
NAME))) {

 return RTI_FALSE;
 }

 if(!(writer = (HelloMsgDataWriter *)publisher->create_datawriter(topic))) {
 return RTI_FALSE;
 }

 if(!(instance = HelloMsgTypeSupport::createX())) {
 return RTI_FALSE;
 }
Proprietary Information of Real-Time Innovations, Inc. 6-5

Chapter 6 Comparing the C++ APIs
 for (count=0;count>=0;count++) {
 RtiDebugPrint("C++ API: Publishing best-effort/unicast example, count

%d\n", count);

 /* modify the data to be sent here */
 sprintf(instance->msg, "C++ API: Publishing best-effort/unicast exam-

ple, count %d", count);

 retcode = writer->write(*instance, instance_handle);
 if (retcode != DDS_RETCODE_OK) {
 return RTI_FALSE;
 }
 RtiThreadSleep(&send_period_sec);
 }

 return RTI_TRUE;
};

The RTI Data Distribution Service 3.x and 4.0 methods used in the above example are
shown in Table 6.2 for comparison purposes.

Compilable versions of both the RTI Data Distribution Service 3.x and 4.0 source code
shown above, as well as other examples, are available for download at the RTI website.
A list of example, fully-compilable source code projects is available in Appendix A.

Table 6.2 C++ Methods for Publishing Data

3.x Method 4.0 Method

DDSDomainParticipantFactory::get_instance

factory->get_default_participant_qos

NDDSDomainClass::Create factory->create_participant

domain->PublicationPropertiesGet

domain->PublicationCreate

domain->PublisherCreate participant->create_publisher

HelloMsgTypeSupport::register_type

participant->create_topic

publisher->get_default_datawriter_qos

publisher->PublicationAdd publisher->create_datawriter

HelloMsgTypeSupport::createX

publisher->Send writer->write
6-6 Proprietary Information of Real-Time Innovations, Inc.

6.1 Examples
6. C

++ A
PI
6.1.3 Subscribing to Data

In RTI Data Distribution Service 3.x, a Subscription can stand alone. It can also be added
to a Subscriber if so desired. As you’ll see in the RTI Data Distribution Service 4.0 source
code, the Subscriber is initially instantiated, with the DataReader creation to follow.

RTI Data Distribution Service 3.x:

class MyListener : public HelloMsgListener {
public:
 virtual RTIBool OnIssueReceived(const NDDSRecvInfo *issue,

 class NDDSTypeClass *instance);
};

RTIBool MyListener::OnIssueReceived(const NDDSRecvInfo *issue,
 class NDDSTypeClass *instance)

{
 if (issue->status == NDDS_FRESH_DATA) {
 instance->Print(0);
 return RTI_TRUE;
 }
};

extern "C" int subscriberMain(int nddsDomain, int nddsVerbosity)
{
 NDDSSubscriptionProperties properties;
 NDDSSubscriptionClass*subscription = NULL;
 MyListener *listener = NULL;
 NDDSDomainClass *domain = NULL;
 HelloMsg *instance = NULL;
 NDDSSubscriberClass *subscriber = NULL;
 char deadlineString[RTI_NTP_TIME_STRING_LEN];

 NddsVerbositySet(nddsVerbosity);

 if(!(domain = NDDSDomainClass::Create(NDDS_DOMAIN_DEFAULT,NULL,NULL))) {
 printf("Unable to create the domain.\n");
 return RTI_FALSE;
 };

 domain->SubscriptionPropertiesGet(&properties);
 RtiNtpTimePackFromNanosec(properties.minimumSeparation,0,0);
 RtiNtpTimePackFromNanosec(properties.deadline,10,0);
 properties.mode = NDDS_SUBSCRIPTION_IMMEDIATE;

 if(!(instance = new HelloMsg())) {
 return RTI_FALSE;
 }
Proprietary Information of Real-Time Innovations, Inc. 6-7

Chapter 6 Comparing the C++ APIs
 if(!(listener = new MyListener())) {
 return RTI_FALSE;
 }

 if(!(subscription = domain->SubscriptionCreate("Example HelloMsg", instance,
listener, &properties, NDDS_USE_UNICAST))){

 return RTI_FALSE;
 }

 subscriber = domain->SubscriberCreate();
 subscriber->SubscriptionAdd(subscription);

 while (1) {
 printf("Sleeping for %s sec...\n",
 RtiNtpTimeToString(&properties.deadline, deadlineString));
 NddsUtilitySleep(properties.deadline);
 }
 return RTI_TRUE;
};

RTI Data Distribution Service 4.0:

class MyListener : public DDSDataReaderListener {
 public:
 virtual void on_data_available(DDSDataReader* reader);
};

void MyListener::on_data_available(DDSDataReader* reader)
{
 HelloMsgDataReader *HelloMsgreader = (HelloMsgDataReader *)reader;
 HelloMsgSeq data_seq;
 DDS_SampleInfoSeq info_seq;
 DDS_ReturnCode_t retcode;
 int i;

 retcode = HelloMsgreader->take(data_seq, info_seq, DDS_LENGTH_UNLIMITED,
 DDS_ANY_SAMPLE_STATE, DDS_ANY_VIEW_STATE, DDS_ANY_INSTANCE_STATE);
 if (retcode != DDS_RETCODE_OK) {
 return;
 }

 for (i = 0; i < data_seq.length(); ++i) {
 HelloMsgTypeSupport::printX(&data_seq[i]);
 }

 HelloMsgreader->return_loan(data_seq, info_seq);
}

6-8 Proprietary Information of Real-Time Innovations, Inc.

6.1 Examples
6. C

++ A
PI
extern "C" int subscriberMain(int nddsDomain, int participantIndex, const char
*peerHost, int peerMaxIndex)

{
 DDSDomainParticipantFactory *factory = NULL;
 DDS_DomainParticipantQos participant_qos;
 DDSDomainParticipant *participant = NULL;
 DDSSubscriber *subscriber = NULL;
 DDSTopic *topic = NULL;
 MyListener *listener = NULL;
 HelloMsgDataReader *reader = NULL;
 DDS_ReturnCode_t retcode;
 RTINtpTime receive_period_sec = {0,0};
 Char deadlineString[RTI_NTP_TIME_STRING_LEN];
 int count = 0;

 RtiNtpTimePackFromNanosec(receive_period_sec, 4, 0); /* 4 seconds */

 if(!(factory = DDSDomainParticipantFactory::get_instance())) {
 return RTI_FALSE;
 }

 factory->get_default_participant_qos(participant_qos);
 participant_qos.discoveryX.participant_index = participantIndex;
 if (peerHost != NULL) {
 if (!RTINetioAddress_getIpv4AddressByName((RTINetioAddress *)

 &participant_qos.discoveryX.initial_peer_locators[0].address,
 peerHost)) {

 return RTI_FALSE;
 }

participant_qos.discov-
eryX.initial_peer_locators[0].participant_index_limit = peerMaxIndex;

participant_qos.discoveryX.initial_peer_locators_count = 1;

 }

 if(!(participant = factory->create_participant(nddsDomain, participant_qos,
NULL))) {

 return RTI_FALSE;
 }

 if(!(subscriber = participant->create_subscriber())) {
 return RTI_FALSE;
 }

 retcode = HelloMsgTypeSupport::register_type(participant);
 if (retcode != DDS_RETCODE_OK) {
 return RTI_FALSE;
 }
Proprietary Information of Real-Time Innovations, Inc. 6-9

Chapter 6 Comparing the C++ APIs
 if(!(topic = participant->create_topic("Example HelloMsg",
HelloMsgTYPENAME))) {

 return RTI_FALSE;
 }

 if(!(listener = new MyListener())) {
 return RTI_FALSE;
 }

 if(!(reader = (HelloMsgDataReader *)subscriber->create_datareader(topic,
DDS_DATAREADER_QOS_DEFAULT, listener))) {

 return RTI_FALSE;
 }

 for (count=0;count>=0;count++) {
 RtiDebugPrint("Sleeping for %s sec...\n", RtiNtpTimeTo-

String(&receive_period_sec, deadlineString));
 RtiThreadSleep(&receive_period_sec);
 }
 return RTI_TRUE;
};

The RTI Data Distribution Service 3.x and 4.0 methods used are shown in Table 6.3 for
comparison purposes.

Compilable versions of both the RTI Data Distribution Service 3.x and 4.0 source code
shown above, as well as other examples, are available for download at the RTI website.
A list of example, fully-compilable source code projects is available in Appendix A.

Table 6.3 C++ Methods for Subscribing to Data

3.x Method 4.0 Method

DDSDomainParticipantFactory::get_instance

factory->get_default_participant_qos

NDDSDomainClass::Create factory->create_participant

domain->SubscriptionPropertiesGet

domain->SubscriptionCreate

domain->SubscriberCreate participant->create_subscriber

HelloMsgTypeSupport::register_type

participant->create_topic

publisher->SubscriptionAdd subscriber->create_datareader
6-10 Proprietary Information of Real-Time Innovations, Inc.

6.2 Domain Methods
6. C

++ A
PI
6.2 Domain Methods
Recall that a domain is a distributed concept that links all applications that are able to
communicate with each other and represents a communication plane. Only the Publish-
ers and the Subscribers attached to the same domain may interact. A Domain is a man-
ager (or factory) of every RTI Data Distribution Service object. Domains are global in
nature and represent a communication plane.

Table 6.4 lists the RTI Data Distribution Service 3.x methods for a Domain (in alphabetical
order). Next we will look at how they map to RTI Data Distribution Service 4.0 functional-
ity:

6.2.1 Methods for Creating/Destroying Domains

NDDSDomainClass::Create — Use the DDSDomainParticipantFactory get_instance and
DDSDomainParticipantFactory create_participant methods to instantiate the
DomainParticipant.

Destroy — Use the DDSDomainParticipantFactory class delete_participant method.

Table 6.4 Domain C++ Methods

 3.x Method Reference to 4.0 Information

Domain->ClientCreate
Section 6.2.8

Domain->ClientDestroy

Domain->Destroy Section 6.2.1

Domain->HandleGet Section 6.2.2

Domain->PublicationCreate
Section 6.2.3

Domain->PublicationDestroy

Domain->PublicationPropertiesGet
Section 6.2.7

Domain->PublicationPropertiesSet

Domain->PublisherCreate
Section 6.2.4

Domain->PublisherDestroy

Domain->ServerCreate
Section 6.2.8

Domain->ServerDestroy
Proprietary Information of Real-Time Innovations, Inc. 6-11

Chapter 6 Comparing the C++ APIs
6.2.2 Domain Method for Retrieving a Domain Handle

HandleGet — Use the DDSDomainParticipantFactory class get_instance method.

6.2.3 Domain Methods for Creating/Destroying Publications

PublicationCreate — As discussed in Section 2.3, a Publication is used by the application
to write instances of data for publication. In RTI Data Distribution Service 4.0, the
equivalent functionality is supported by using both a DataWriter and a Publisher.
So an indirect mapping to RTI Data Distribution Service 4.0 exists in that a
DataWriter will need to be created after the Publisher has been created. So both
the DDSDomainParticipant create_publisher and DDSPublisher
create_datawriter methods will be required.

PublicationDestroy — As discussed in Section 2.3, an RTI Data Distribution Service 3.x
Publication is used by the application to write instances of data for publication. In
RTI Data Distribution Service 4.0, this is supported by using both a DataWriter and
a Publisher. If a Publisher is used within the RTI Data Distribution Service 3.x appli-
cation, and only a specific Publication is to be destroyed, then one would use the
DDSPublisher delete_datawriter method. If on the other hand, if the RTI Data Dis-
tribution Service 3.x application does not use a Publisher (only a Publication), then
one would need to both delete the RTI Data Distribution Service 4.0 Publisher and
DataWriter by using the DDSDomainParticipant delete_publisher and DDSPub-
lisher delete_datawriter.

6.2.4 Domain Methods for Creating/Destroying Publishers

PublisherCreate — A Publisher manages a group of Publications. In RTI Data Distribu-
tion Service 4.0, use the DDSDomainParticipant class create_publisher method to
create a Publisher, then create a DataWriter to allow the application to ‘publish’
data.

PublisherDestroy —In RTI Data Distribution Service 3.x this function destroys a publisher.
It is important to note that Publications within the Publisher are NOT destroyed
so they will have to be destroyed separately. The actual deallocation of memory
for the publisher may not occur immediately to ensure safety among the different
tasks. After calling this function the Publisher is invalid and should not be used.
In RTI Data Distribution Service 4.0, use the DDSDomainParticipant class
delete_publisher method after all associated DataWriter entities are destroyed via
6-12 Proprietary Information of Real-Time Innovations, Inc.

6.2 Domain Methods
6. C

++ A
PI
the DDSPublisher class delete_datawriter method. Note that in RTI Data Distribu-
tion Service 4.0, DataWriters cannot exist without a Publisher, unlike RTI Data Dis-
tribution Service 3.x where a Publication can exist with or without a Publisher.

6.2.5 Domain Methods for Creating/Destroying Subscriptions

SubscriptionCreate — As discussed in Section 2.4, a Subscription is supported by using
both a DataReader and a Subscriber. So an indirect mapping to RTI Data Distribu-
tion Service 4.0 exists in that a DataReader will need to be created after the Sub-
scriber has been created. So both the DDSDomainParticipant create_subscriber
and DDSSubscriber create_datareader methods will be required.

SubscriptionDestroy — As discussed in Section 2.4, an RTI Data Distribution Service 3.x
Subscription can stand alone and refers to exactly one Topic that identifies the
data to be read. RTI Data Distribution Service 3.x also allows you to manage a
group of Subscriptions with a Subscriber. If a Subscriber is used within the RTI
Data Distribution Service 3.x application, and only the Subscription is to be
destroyed, then use the DDSSubscriber delete_datareader method. If on the other
hand, that the RTI Data Distribution Service 3.x application was not using a Sub-
scriber (only a Subscription), then you need to delete both the RTI Data Distribu-
tion Service 4.0 Subscriber and DataReader by using the DDSDomainParticipant
delete_subscriber and DDSSubscriber delete_datareader.

SubscriptionReliableCreate — There is no direct mapping for this method. You can use
the DDSDomainParticipant create_subscriber and DDSSubscriber
create_datareader methods and then set the RELIABLE QoS to support reliable
communications.

6.2.6 Domain Methods for Creating/Destroying Subscribers

SubscriberCreate — A Subscriber manages a group of Subscriptions. In RTI Data Distri-
bution Service 4.0, use the DDSDomainParticipant class create_subscriber method
to create a Subscriber, then create a DataReader to allow the application to ‘sub-
scribe’ to data of interest.

SubscriberDestroy —This function destroys a Subscriber. Subscriptions that have been
added with the NDDSSubscriberSubscriptionAdd routine are not destroyed, but
Subscriptions automatically created through Pattern Subscription are destroyed.
In RTI Data Distribution Service 4.0, use the DDSDomainParticipant class
delete_subscriber method after all associated DataReader entities are destroyed
Proprietary Information of Real-Time Innovations, Inc. 6-13

Chapter 6 Comparing the C++ APIs
via the DDSSubscriber class delete_datareader method. In RTI Data Distribution
Service 4.0, DataReaders cannot exist without a Subscriber, unlike RTI Data Distri-
bution Service 3.x where a Subscription can exist with or without a Subscriber.

6.2.7 Domain Methods for Getting/Setting Properties

PublicationPropertiesGet — This routine retrieves the publication’s property structure.
The properties associated with a Publication in RTI Data Distribution Service 3.x do
not map directly to DataWriter properties in RTI Data Distribution Service 4.0, but
object QoS properties can be retrieved by using the DDSPublisher class
get_default_datawriter_qos method.

PublicationPropertiesSet —The properties associated with a Publication in RTI Data Dis-
tribution Service 3.x do not map directly to DataWriter properties in RTI Data Dis-
tribution Service 4.0, but object QoS policies can be established for a given
DataWriter by using the DDSPublisher class set_default_datawriter_qos method.

SubscriptionPropertiesGet — This routine retrieves the Subscription’s property structure.
The properties associated with a Subscription in RTI Data Distribution Service 3.x
do not map directly to DataReader properties in RTI Data Distribution Service 4.0,
but object QoS properties can be retrieved by using the extended QoS DDSSub-
scriber class get_default_datareader_qos method. One can also gain access to the
DataReader’s QoS policies by using the DDSDomainParticipant
get_default_datareader_qosX method.

SubscriptionPropertiesSet — The properties associated with a Subscription in RTI Data
Distribution Service 3.x do not map directly to DataReader properties in RTI Data
Distribution Service 4.0, but object QoS properties can be established for a given
DataReader by using the DDSSubscriber class set_default_datareader_qos
method.

6.2.8 Domain Methods for Clients and Servers

None of the client or server methods in the Domain class are supported in RTI Data Dis-
tribution Service 4.0.
6-14 Proprietary Information of Real-Time Innovations, Inc.

6.3 Publication Methods
6. C

++ A
PI
6.3 Publication Methods
This section discusses the RTI Data Distribution Service 3.x publication methods and how
they map to the RTI Data Distribution Service 4.0 functionality. As indicated earlier, some
of the methods will map directly, others will require redesign of the application.
Table 6.5 lists the Publication class methods (in alphabetical order).

6.3.1 Publication Listener Methods

ListenerGet — Retrieves the Publication’s Listener. In RTI Data Distribution Service 4.0, a
DataWriter’s Listener can be obtained by using the DDSDataWriter class
get_listener method.

ListenerSet — Allows the Publication’s Listener to be modified. In RTI Data Distribution
Service 4.0, a DataWriter’s Listener can be modified by using the DDSDatatWriter
class set_listener method.

Table 6.5 Publication C++ Methods

3.x Method Reference to 4.0 Information

Publication->ListenerSet
Section 6.3.1

Publication->ListenerGet

Publication->NddsInstanceGet
Section 6.3.2

Publication->NddsTopicGet

Publication->PropertiesGet
Section 6.3.3

Publication->PropertiesSet

Publication->ReliableStatusGet Section 6.3.4

Publication->Send

Section 6.3.5Publication->SubscriptionWait

Publication->Wait
Proprietary Information of Real-Time Innovations, Inc. 6-15

Chapter 6 Comparing the C++ APIs
6.3.2 Publication Methods for Retrieving Instances and Topics

InstanceGet — Obtains a pointer to the Publication instance. In RTI Data Distribution
Service 4.0, a Publication can use the DDSPublisher class lookup_datawriter
method to obtain the DataWriter’s instance.

NddsTopicGet — Retrieves the Publication’s Topic. The DDSDomainParticipant class
provides the find_topic method which gives access to an existing enabled Topic,
based on its name. The method expects two arguments: name of the Topic, and a
time-out value.

6.3.3 Publication Methods for Getting/Setting Properties

PropertiesGet — The properties associated with a Publication in RTI Data Distribution
Service 3.x do not map directly to DataWriter properties in RTI Data Distribution
Service 4.0, but QoS policies can be retrieved for a given DataWriter by using the
DDSPublisher class get_default_datawriter_qos method.

PropertiesSet — The properties associated with a Publication in RTI Data Distribution
Service 3.x do not map directly to DataWriter properties in RTI Data Distribution
Service 4.0, but QoS policies can be established for a given DataWriter by using the
DDSPublisher class set_default_datawriter_qos method.

6.3.4 Publication Method for Getting Status

ReliableStatusGet — When a Publication is publishing to at least one reliable Subscrip-
tion, ReliableStatusGet provides detailed information pertaining to the reliable
status of the Publication. The following is a list of the information returned by the
ReliableStatusGet method:

❏ event – Provides the latest event on the publication's reliable stream where the
events are defined as:

• NDDS_BEFORERTN_VETOED — The sendBeforeRtn vetoed the Publication.
Data was not serialized. This information is not available in RTI Data Dis-
tribution Service 4.0.

• NDDS_QUEUE_EMPTY — The send queue is empty. This information is not
available in RTI Data Distribution Service 4.0.
6-16 Proprietary Information of Real-Time Innovations, Inc.

6.3 Publication Methods
6. C

++ A
PI
• NDDS_LOW_WATER_MARK — The send queue level fell to the low water
mark. If the low water mark is 0, only NDDS_QUEUE_EMPTY will be
called when the queue becomes empty. This information is not available in
RTI Data Distribution Service 4.0.

• NDDS_HIGH_WATER_MARK — The send queue level rose to the high water
mark. If the high water mark is the same as the send queue size, only
NDDS_QUEUE_FULL will be called when the queue becomes full. This
information is not available in RTI Data Distribution Service 4.0.

• NDDS_QUEUE_FULL — The send queue is full. This information is not avail-
able in RTI Data Distribution Service 4.0.

• NDDS_SUBSCRIPTION_NEW — A new reliable subscription has appeared.
The Built-in Topics feature in RTI Data Distribution Service 4.0 can provide
this information.

• NDDS_SUBSCRIPTION_DELETE — A reliable Subscription disappeared. Note
that the Publication only detects the disappearance of a reliable Subscrip-
tion after the expirationTime of the last refreshed subscription declaration
expires and the Publication checks its database. The Built-in Topics feature
in RTI Data Distribution Service 4.0 can provide this information.

❏ nddsTopic — NDDSTopic of the Publication. This information is not available in
RTI Data Distribution Service 4.0.

❏ subscriptionReliable — Number of reliable Subscriptions subscribed to this pub-
lication. This information is not available in RTI Data Distribution Service 4.0.

❏ subscriptionUnreliable — Number of unreliable Subscriptions subscribed to this
Publication. This information is not available in RTI Data Distribution Service 4.0.

❏ unacknowledgedIssues — Number of unacknowledged issues. This information
is not available in RTI Data Distribution Service 4.0.

6.3.5 Publication Methods for Sending/Waiting

Send — Sends or writes the publication issue. In RTI Data Distribution Service 4.0, the
equivalent functionality would be to use the DDSDataWriter class write method.

SubscriptionWait — Waits for the existence of Subscriptions. There is no RTI Data Distri-
bution Service 4.0 DataWriter or Publisher method that will perform this specific
functionality.
Proprietary Information of Real-Time Innovations, Inc. 6-17

Chapter 6 Comparing the C++ APIs
Wait — Waits for send queue level to reach the same or lower level specified within the
Wait method. There is no RTI Data Distribution Service 4.0 DataWriter or Publisher
method that will perform this specific functionality.

6.4 Publisher Methods
This section discusses the RTI Data Distribution Service 3.x publisher methods and how
they map to the RTI Data Distribution Service 4.0 functionality. Some of the methods will
map directly, others will require redesign of the application. Table 6.6 lists the Publisher
class methods (in alphabetical order). Next we will look at how they map to RTI Data
Distribution Service 4.0 functionality.

Note: The Publisher object in RTI Data Distribution Service 3.x also supported Signaled
and Asynchronous modes of operation. Neither of these is supported within the RTI
Data Distribution Service 4.0 product at this time.

6.4.1 Publisher Methods for Adding/Removing Publications

PublicationAdd — Adds a Publication to a Publisher. In RTI Data Distribution Service 4.0,
since a DataWriter cannot be instantiated independent of a Publisher, the equiva-
lent method would be to use the DDSPublisher class create_datawriter method.
This not only creates the DataWriter object, but adds it to the Publisher.

PublicationRemove — Removes a Publication from being managed by a Publisher. In
RTI Data Distribution Service 3.x, the notion of being able to remove a Publication
from being managed by a Publisher was supported. In RTI Data Distribution Ser-

Table 6.6 Publisher C++ Methods

3.x Method Reference to 4.0 Information

Publisher->Iterate Section 6.4.4

Publisher->PublicationAdd Section 6.4.1

Publisher->PublicationFind Section 6.4.2

Publisher->PublicationRemove Section 6.4.1

Publisher->Send
Section 6.4.3

Publisher->SubscriptionWait
6-18 Proprietary Information of Real-Time Innovations, Inc.

6.4 Publisher Methods
6. C

++ A
PI
vice 4.0, since a DataWriter must be associated with a Publisher, this functionality
is not supported unless multiple DataWriters exist within the Publisher. In this
case, the DDSPublisher delete_datawriter method would be used.

6.4.2 Publisher Methods for Finding Publications

PublicationFind — Finds the Publication, of a supplied Topic string, that is managed by
the Publisher. In RTI Data Distribution Service 4.0, the DDSPublisher class supports
the lookup_datawriter method. This method allows the application to supply a
Topic string so that the associated DataWriter handle can be retrieved.

6.4.3 Publisher Methods for Sending/Waiting

Send — Takes a snapshot of all the Publications managed by the Publisher and then
sends the issues at once, coalescing individual Publications into a single message
to maximum network bandwidth utilization. In RTI Data Distribution Service 4.0,
the NDDSPublisher class does not provide equivalent functionality. Each
DataWriter’s write method must be used to actually send the data.

SubscriptionWait — Forces the calling thread to wait for at least the number of Subscrip-
tions to appear for each Publication managed by the Publisher. There is no RTI
Data Distribution Service 4.0 DataWriter or Publisher method that will perform this
specific functionality.

6.4.4 Publisher Methods for Iterating

Iterate — Iterates over all managed Publications. This functionality is supported within
the DDS Specification, but will not be implemented within the RTI Data Distribu-
tion Service 4.0 release.

OnMatch — This is a method of the NDDSPublisherIter class. It is called for each publi-
cation matching the NDDSTopic and NDDSType specified in the NDDSPublisher-
Class:Iterate(). This functionality is supported in the DDS Specification, but will not be
supported in RTI Data Distribution Service 4.0.
Proprietary Information of Real-Time Innovations, Inc. 6-19

Chapter 6 Comparing the C++ APIs
6.5 Subscription Methods
This section examines the RTI Data Distribution Service 3.x Subscription methods and
how they map to RTI Data Distribution Service 4.0 functionality. Some of the methods
will map directly, others will require redesign of the application. Table 6.7 lists the RTI
Data Distribution Service 3.x NDDSSubscription class methods (in alphabetical order).

6.5.1 Subscription Method for Getting Instances and Topics

InstanceGet — Obtains a pointer to a Subscription’s instance. In RTI Data Distribution
Service 4.0, use the DDSSubscriber class lookup_datareader method to retrieve the
instance of a DataReader attached to a Topic.

NddsTopicGet — Returns the Topic subscribed to. In RTI Data Distribution Service 4.0, use
the DDSDomainParticipant’s find_topic method to access an existing enabled
Topic, based on its name. The method expects two arguments: name of the Topic,
and a time-out value.

6.5.2 Subscription Method for Checking Reliability

IsReliable — Sees if a given Subscription is reliable or best-effort. In RTI Data Distribution
Service 4.0, use the DDSDataReader’s get_qos method to ascertain the QoS reli-
ability policies.

Table 6.7 Subscription C++ Methods

3.x Method Reference to 4.0 Information

InstanceGet Section 6.5.1

IsReliable Section 6.5.2

IssueListenerGet
Section 6.5.3

IssueListenerSet

NddsTopicGet Section 6.5.1

Poll Section 6.5.4

PropertiesGet
Section 6.5.1

PropertiesSet

PublicationWait Section 6.5.4
6-20 Proprietary Information of Real-Time Innovations, Inc.

6.5 Subscription Methods
6. C

++ A
PI
6.5.3 Subscription Methods for Getting/Setting Listeners

IssueListenerGet — Retrieves the Subscription’s Listener. In RTI Data Distribution Service
4.0, use the DDSDataReader’s get_listener method to retrieve the DataReader’s
listener.

IssueListenerSet — Modifies the Subscription’s Listener. In RTI Data Distribution Service
4.0, use the DDSDataReader’s set_listener method to modify the DataReader’s lis-
tener.

6.5.4 Subscription Methods for Polling and Waiting

Poll — Polls the Subscription for newly received issues since the last poll. In RTI Data
Distribution Service 4.0, you receive data by using Listeners. Listeners provide
asynchronous notification of data-sample arrival. (In a future version, you will be
able to use Condition and Wait-sets, which will provide a way for an application
to block until specific conditions are satisfied.)

PublicationWait — Actively probe for a give number of Publications for this Subscrip-
tion. This functionality is not a supported DDS feature.

6.5.5 Subscription Methods for Getting/Setting Properties

PropertiesGet — Retrieves the current properties of a Subscription. The properties asso-
ciated with a Subscription in RTI Data Distribution Service 3.x do not map directly
to DataReader properties in RTI Data Distribution Service 4.0, but object QoS poli-
cies can be retrieved for a given DataReader by using the DDSDataReader class
get_qos method.

PropertiesSet — Modifies the current Subscription properties. The properties associated
with a Subscription in RTI Data Distribution Service 3.x do not map directly to
DataReader properties in RTI Data Distribution Service 4.0, but object properties
can be established for a given DataReader by using the DDSDataReader class
set_qos method.

6.5.6 Subscription Methods for Getting Status

RecvStatusGet — Allows you to enquire to the subscriptions current status. Returns the
following:
Proprietary Information of Real-Time Innovations, Inc. 6-21

Chapter 6 Comparing the C++ APIs
❏ localTimeWhenReceived — Local time when the issue was received. This infor-
mation is not available in RTI Data Distribution Service 4.0.

❏ nddsTopic — Topic of the Subscription receiving the issue. In RTI Data Distribu-
tion Service 4.0, the DDSDataReader class get_topicdescription method can be
used to determine the DataReader’s topic.

❏ nddsType — Type of the Subscription receiving the issue. This information is not
available in RTI Data Distribution Service 4.0.

❏ publicationId — Publication's unique ID. This information is not currently avail-
able in RTI Data Distribution Service 4.0.

❏ publSeqNumber — Sending (Publication) high and low sequence number. This
information is not currently available in RTI Data Distribution Service 4.0.

❏ recvSeqNumber — Receiving sequence high and low sequence number. This
information is not currently available in RTI Data Distribution Service 4.0.

❏ remoteTimeWhenPublished — Remote time when the issue was published. Once
the read or take routine is used within the DataReader to gain access to the
received data issue, the SampleInfo class source_timestamp method can be
employed which provides the time-stamp provided by the DataWriter at the
time the sample was produced.

❏ senderAppId — Sender's application ID. This information is not available in RTI
Data Distribution Service 4.0.

❏ senderHostId — Sender's host ID. This information is not available in RTI Data
Distribution Service 4.0.

❏ senderNodeIP — Sender's IP address. This information is not available in RTI
Data Distribution Service 4.0.

❏ validRemoteTimeWhenPublished — Whether or not a valid remote time was
received. This information is not available in RTI Data Distribution Service 4.0.

❏ status — Status affects which fields are valid and returns:

• NDDS_DESERIALIZATION_ERROR — Deserialization method for the
NDDSType returned an error. This information is not currently available
in RTI Data Distribution Service 4.0.

• NDDS_FRESH_DATA — A new issue received. In RTI Data Distribution Service
4.0, the application can determine the status of the received issue by
inspecting the information provided by SampleInfo. SampleInfo informa-
tion is provided along with each data issue and provides detailed informa-
tion pertaining to that data instance. You can determine the state of the
arriving issue by taking advantage of the information provided by the
6-22 Proprietary Information of Real-Time Innovations, Inc.

6.6 Subscriber Methods
6. C

++ A
PI
sample_state (READ or NOT_READ), view_state (NEW or NOT_NEW),
and instance_state (ALIVE, NOT_ALIVE_DISPOSED, or
NOT_ALIVE_NO_WRITERS).

• NDDS_NEVER_RECEIVED_DATA — Never received an issue, but a deadline
occurred. In RTI Data Distribution Service 4.0, use the DataReader Listener
on_requested_deadline_missed routine. RTI Data Distribution Service will
invoke this operation when the deadline has been missed. The application
can also consult the entities status by directly using the DDSDataReader
class get_requested_deadline_missed_status method.

• NDDS_NO_NEW_DATA — Received at least one issue, and a deadline has
occurred since the last issue was received. Use a combination of the fea-
tures described above.

• NDDS_UPDATE_OF_OLD_DATA — Received a new issue, whose time stamp is
the same or older than the time stamp of the last fresh issue received. This
information is not available in RTI Data Distribution Service 4.0.

The status of any DomainParticipant entity can be obtained via the StatusCondi-
tion class. Further status can be ascertained by using the DataReader’s
get_liveliness_changed_status, get_requested_deadline_missed_status,
get_requested_incomptibile_qos_status, and get_sample_rejected_status meth-
ods.

6.6 Subscriber Methods
This section examines the RTI Data Distribution Service 3.x Subscriber methods and how
they map to RTI Data Distribution Service 4.0 functionality. Some of the methods will
map directly, others will require redesign of the application. Table 6.8 lists the NDDS-
Subscriber class methods (in alphabetical order).

Table 6.8 Subscriber C++ Methods

3.x Method Reference to 4.0 Information

Iterate Section 6.6.4

PatternAdd
Section 6.6.5

PatternRemove

Poll Section 6.6.3
Proprietary Information of Real-Time Innovations, Inc. 6-23

Chapter 6 Comparing the C++ APIs
6.6.1 Subscriber Methods for Adding/Removing Subscriptions

SubscriptionAdd — Adds a Subscription to the Subscriber. In RTI Data Distribution Ser-
vice 4.0, since a DataReader cannot be instantiated independent of a Subscriber,
the equivalent method would be to use the DDSSubscriber class
create_datareader method. This not only creates the DataReader object, but auto-
matically adds it to the Subscriber.

SubscriptionRemove — removes a Subscription from being managed by a Subscriber. In
RTI Data Distribution Service 3.x, the notion of being able to remove a Subscription
from being managed by a Subscriber was supported. In RTI Data Distribution Ser-
vice 4.0, you can remove a DataReader by using the Subscriber’s
‘delete_datareader’ method.

6.6.2 Subscriber Methods for Finding Subscriptions

SubscriptionFind — Finds the Subscription, of a supplied Topic string, that is managed
by the Subscriber. In RTI Data Distribution Service 4.0, the DDSSubscriber class
provides a lookup_datareader method, which retrieves a previously created
DataReader belonging to the Subscriber that is attached to a Topic with a match-
ing Topic_name.

6.6.3 Subscriber Method for Polling Subscriptions

Poll — Polls all Subscriptions. There is no equivalent mechanism in RTI Data Distribution
Service 4.0. In a future version, similar functionality will be available by using
DDS objects known as Conditions and Wait-sets.

SubscriptionAdd Section 6.6.1

SubscriptionFind Section 6.6.2

SubscriptionRemove Section 6.6.1

Table 6.8 Subscriber C++ Methods

3.x Method Reference to 4.0 Information
6-24 Proprietary Information of Real-Time Innovations, Inc.

6.7 Client and Server Methods
6. C

++ A
PI
6.6.4 Subscriber Method for Iterating

Iterate — Iterates over all aggregated Subscriptions. This functionality is supported
within the DDS Specification, but will not be implemented within the RTI Data
Distribution Service 4.0 release.

6.6.5 Subscriber Methods for Adding/Removing Patterns

The concept of patterns does not exist in RTI Data Distribution Service 4.0, so there is no
equivalent functionality for these methods:

PatternAdd — Adds a pattern Subscription to the Subscriber.

PatternRemove — Removes a previously added pattern, but does not delete the pattern
listener passed in during the pattern registration.

6.7 Client and Server Methods
Client/Server functionality is not supported in RTI Data Distribution Service 4.0. There is
no equivalent functionality for the RTI Data Distribution Service 3.x Client and Server
methods.

6.8 Listeners
Listeners provide a mechanism for RTI Data Distribution Service to asynchronously alert
the application of the occurrence of relevant asynchronous events, such as arrival of
data corresponding to a Subscription. Listeners are interfaces that the application imple-
ments. Each dedicated listener class presents a list of pure virtual methods that corre-
spond to relevant events that the application may wish to respond to.

To continue with our API comparison, let’s examine RTI Data Distribution Service object
listeners. Recall that within RTI Data Distribution Service 3.x, Listeners could be associ-
ated with a Domain, Publication, and Subscription. The DDS specification indicates that
all DCPS entities support their own specialized listener, thus RTI Data Distribution Ser-
vice 4.0 will provide Listener support for each Domain entity.
Proprietary Information of Real-Time Innovations, Inc. 6-25

Chapter 6 Comparing the C++ APIs
6.8.1 Domain Listeners

The Domain Listener in RTI Data Distribution Service 3.x allows the application the abil-
ity to be notified upon the appearance and disappearance of Managers, Applications,
Publications, Subscriptions, and Servers. We’ll discuss the RTI Data Distribution Service
3.x Domain Listener virtual methods that are available and how they can potentially be
mapped into the RTI Data Distribution Service 4.0 functionality, but first we must address
the concept of ‘built-in Topics’ in RTI Data Distribution Service 4.0. The DomainPartici-
pant Listener within RTI Data Distribution Service 4.0 does not provide the same virtual
functions that are provided in the RTI Data Distribution Service 3.x Domain Listener. In
order for an RTI Data Distribution Service 4.0 application to implement similar RTI Data
Distribution Service 3.x Domain Listener functionality, the ‘built-in Topic’ must be used.
The DDS specification introduces a set of Built-in Topics and corresponding DataReader
objects that can be used by the application to monitor and keep track of new DCPS enti-
ties as they are discovered. The Built-in Topics can then be accessed as if it was normal
application data.

Table 6.9 lists the RTI Data Distribution Service 3.x Domain Listeners (in alphabetical
order). Next we will look at how at how they map to RTI Data Distribution Service 4.0
functionality.

Table 6.9 Domain Listeners

3.x Method Reference to 4.0 Information

OnApplicationRemoteNew
Section 6.8.1.1

OnApplicationRemoteDelete

OnManagerRemoteNew
Section 6.8.1.4

OnManagerRemoteDelete

OnPeerRemoteNew Section 6.8.1.1

OnPublicationRemoteNew
Section 6.8.1.2

OnPublicationRemoteDelete

OnServerRemoteNew
Section 6.8.1.5

OnServerRemoteDelete

OnSubscriptionRemoteNew
Section 6.8.1.3

OnSubscriptionRemoteDelete
6-26 Proprietary Information of Real-Time Innovations, Inc.

6.8 Listeners
6. C

++ A
PI
6.8.1.1 Domain Listeners for New/Deleted Applications/Peers

OnApplicationRemoteNew — There is no direct mapping of this method to RTI Data Dis-
tribution Service 4.0. Equivalent functionality can be provided by ‘subscribing’ to
the built-in Topic “DCPSParticipant.” The application can gain access to the built-
in Subscriber and associated DataReaders by using the DomainParticipant
get_builtin_subscriber and get_datareader methods to gain access to the built-in
DCPSParticipant Topic and monitor all traffic related to remote DomainPartici-
pant activity. This allows the application to make decisions based on the remote
Participant’s activity such as not allowing the remote participant to participate
within the network by using the ignore_participant method.

OnApplicationRemoteDelete — There is no direct mapping of this method to RTI Data
Distribution Service 4.0. Equivalent functionality can be provided by ‘subscribing’
to the built-in Topic “DCPSParticipant.” The application can gain access to the
built-in Subscriber and associated DataReaders by using the DomainParticipant
get_builtin_subscriber and get_datareader methods to gain access to the built-in
DCPSParticipant Topic and monitor all traffic related to remote DomainPartici-
pant activity.

OnPeerRemoteNew — See OnApplicationRemoteNew above.

6.8.1.2 Domain Listener for New/Deleted Publications

OnPublicationRemoteNew — there is no direct mapping of this method to RTI Data Dis-
tribution Service 4.0. Equivalent functionality can be provided by ‘subscribing’ to
the built-in Topic DCPSPublication. The application can gain access to the built-in
Subscriber and associated DataReaders by using the DomainParticipant
get_builtin_subscriber and get_datareader methods to gain access to the built-in
“DCPSPublication” Topic and monitor all traffic related to remote DataWriter
activity. This allows the application to make decisions based on the remote Partic-
ipant’s activity such as not allowing the remote participant to participate within
the network by using the ignore_publication method.

OnPublicationRemoteDelete — there is no direct mapping of this method to RTI Data
Distribution Service 4.0. Equivalent functionality can be provided by ‘subscribing’
to the built-in Topic “DCPSPublication.” The application can gain access to the
built-in Subscriber and associated DataReaders by using the DomainParticipant
get_builtin_subscriber and get_datareader methods to gain access to the built-in
“DCPSPublication” Topic and monitor all traffic related to remote DataWriter
activity.
Proprietary Information of Real-Time Innovations, Inc. 6-27

Chapter 6 Comparing the C++ APIs
6.8.1.3 Domain Listener for New/Deleted Subscriptions

OnSubscriptionRemoteNew — there is no direct mapping of this method to RTI Data Dis-
tribution Service 4.0. Equivalent functionality can be provided by ‘subscribing’ to
the built-in Topic “DCPSSubscription.” The application can gain access to the
built-in Subscriber and associated DataReaders by using the DomainParticipant
get_builtin_subscriber and get_datareader methods to gain access to the built-in
“DCPSSubscription” Topic and monitor all traffic related to remote DataWriter
activity. This allows the application to make decisions based on the remote Partic-
ipant’s activity such as not allowing the remote participant to participate within
the network by using the ignore_subscription method.

OnSubscriptionRemoteDelete — there is no direct mapping of this method to RTI Data
Distribution Service 4.0. Equivalent functionality can be provided by ‘subscribing’
to the built-in Topic DCPSSubscription. The application can gain access to the
built-in Subscriber and associated DataReaders by using the DomainParticipant
get_builtin_subscriber and get_datareader methods to gain access to the built-in
“DCPSSubscription” Topic and monitor all traffic related to remote DataWriter
activity.

6.8.1.4 Domain Listeners for NDDS Managers

There is no NDDS Manager in RTI Data Distribution Service 4.0, so there are no equiva-
lent methods for the RTI Data Distribution Service 3.x Manager Listeners (OnManagerRe-
moteNew and OnManagerRemoteDelete).

6.8.1.5 Domain Listeners for Servers

Client/Server functionality is not supported in RTI Data Distribution Service 4.0. There is
no equivalent functionality for the RTI Data Distribution Service 3.x Server Listener meth-
ods (OnServerRemoteNew and OnServerRemoteDelete).

6.8.2 Publication Listeners

The RTI Data Distribution Service 3.x Publication Listener provides the ability for the
application to tailor its behavior in response to middleware activity associated with
individual publication events. The Publication Listener interface provides the following
virtual methods—there is no equivalent functionality in RTI Data Distribution Service 4.0
for any of these:

OnAfterIssueSent — This method, if implemented by the application, is invoked by RTI
Data Distribution Service directly after an issue is sent.
6-28 Proprietary Information of Real-Time Innovations, Inc.

6.8 Listeners
6. C

++ A
PI
OnBeforeIssueSent — This method, if implemented by the application, is invoked by RTI
Data Distribution Service prior to an issue being sent.

OnReliableStatus — This method, if implemented by the application, is invoked when
publication events related to the send queue occur. With this listener method, an
application can monitor a reliable Publication's send queue and control the send
rate by responding to specific events.

6.8.3 Issue Listeners

The RTI Data Distribution Service 3.x Issue Listener provides the ability for the applica-
tion to tailor its behavior in response to middleware activity associated with individual
subscription events. The Issue Listener interface provides the following virtual meth-
ods:

IssueTypeMatch — The RTI Data Distribution Service 3.x product uses this method to
check for type safety when creating a Subscription. This is necessary to ensure
that the Issue Listener can handle the NDDSType the Subscription expects. In RTI
Data Distribution Service 4.0, this functionality is not used within the user’s code.

OnIssueReceived — This method is invoked by RTI Data Distribution Service at different
times depending on the subscription mode. If configured for IMMEDIATE Sub-
scription, this method is invoked as soon as the issue is received. If configured for
POLLED Subscription, this method is invoked when the receiving application
explicitly polls. If there are more than one issues received since the last poll, this
method will be executed multiple times for each issue. In RTI Data Distribution
Service 4.0, the DataReaderListener class on_data_available method would be
used to receive incoming data.

6.8.4 Subscription Reliable Listeners

The RTI Data Distribution Service 3.x Subscription Reliable Listener provides the ability
for the application to tailor its behavior in response to activity associated with individ-
ual reliable subscription events. The Reliable Subscription Listener interface provides
the following virtual method:

OnReliableStatus — This method handles reliable events on the Subscription side and
provides the following information:

❏ event — the event for a reliable Subscription. The event parameter can be
defined as one of the following:
Proprietary Information of Real-Time Innovations, Inc. 6-29

Chapter 6 Comparing the C++ APIs
• NDDS_ISSUES_DROPPED — one (or more) issues have been missed by the
subscription. In RTI Data Distribution Service 4.0, the application can
employ the Subscriber Listener on_sample_lost method to determine
information pertaining to dropped data issues. One can also access the
Sample Lost Status (plain communication status type) allowing the appli-
cation to determine the total cumulative count of all samples lost across all
published instances of a specific Topic.

• NDDS_PUBLICATION_NEW — the reliable issue is coming from a publication
different from the one that sent the previous issue. This is caused by a pub-
lication with a higher value of the strength parameter, or by the expiration
of the persistence of the current publication. This information is not avail-
able in RTI Data Distribution Service 4.0.

❏ issuesDropped — the number of issues dropped. In RTI Data Distribution Service
4.0, the application can use the Subscriber Listener on_sample_lost routine or the
DDSDataReader class get_sample_lost_status method to access both the
total_count and total_count_change data fields. The total_count provides the
cumulative count of all samples lost across all instances of topics subscribed to
by this Subscriber. The total_count_change provides the incremental number of
samples lost since the last time the Listener was called or the status was read.
These routines provided dropped issue counts for the entire Subscriber, not on a
DataReader basis.

❏ nddsTopic — the subscription's topic. In RTI Data Distribution Service 4.0, once the
Subscriber Listener on_sample_lost routine is invoked, the information associ-
ated with dropped issues is provided only on a Subscriber basis. There is cur-
rently no mechanism available to determine which dropped issues are associated
with which Topic.

6.8.5 Publisher and Subscriber Listeners

There are no Publisher or Subscriber Listeners in RTI Data Distribution Service 3.x.

6.8.6 Client and Server Listeners

Client/Server functionality is not supported in RTI Data Distribution Service 4.0. There is
no equivalent functionality for the RTI Data Distribution Service 3.x Server Listener meth-
ods or the Client Listener method.
6-30 Proprietary Information of Real-Time Innovations, Inc.

7.1 Early Access Phase
7. Pro

d
uc

t Life
cycle
Chapter 7

RTI Data Distribution Service Product
Lifecycle

The RTI Data Distribution Service product lifecycle is composed of three phases:

❏ Early Access Phase (Section 7.1)

❏ Production Phase (Section 7.2)

❏ Retirement Phase (Section 7.3)

7.1 Early Access Phase
This phase of product development provides key customers access to pre-production
product with Limited Access Releases (LARs), as well as a Beta cycle (defined by ‘C
Months’). The chart below is not to scale and the specific time-frames associated with A,
B, and C will vary depending on the specific version of the product in question.
Figure 7.1 represents the early access phase of product development.

7.2 Production Phase
This phase of product development provides customer with access to maintenance
releases introduced roughly every 6 months. Maintenance releases include bug fixes
and new compiler support for support operating systems, as well as new features when
appropriate. At the end of product production, a retirement letter will be sent to each
customer articulating the retirement schedule, and maintenance options available to the
customer. Figure 7.2 shows the production phase of product development.
Proprietary Information of Real-Time Innovations, Inc. 7-1

Chapter 7 RTI Data Distribution Service Product Lifecycle
NDDS LAR #1.

“A”
Months

“B”
Months

Time

NDDS LAR #2.
NDDS Beta

Release

“C”
Months

“Early Access Phase of Product Development”

NDDS First
Customer Ship

(FCS)

Figure 7.1 Early Access Phase

~6 Months
Time

Maintenance Release
Version N + 0.1

NDDS Retirement Letter
Issued For Version N.x

“Production Phase of Product Development”

NDDS FCS
Version N

Maintenance Release
Version N + 0.1

. . .

~6 Months

Figure 7.2 Production Phase
7-2 Proprietary Information of Real-Time Innovations, Inc.

7.3 Retirement Phase
7. Pro

d
uc

t Life
cycle
7.3 Retirement Phase
This phase of product development allows customers the ability to plan migration strat-
egies and factor in how long the product will be supported, and maintained. RTI’s stan-
dard retirement policy will focus on older releases of RTI Data Distribution Service with
particular focus on niche architectures, all balanced with current customer usage and
market demand. Figure 7.3 represents the retirement phase of product development.

EOM – End of Maintenance: End of maintenance releases and feature enhancements.

EOBF – End of Bug Fixes.

EONPS – End of New Product Sales: End of web-shipments and design win sales.

EOTS – End of Technical Support. Product is retired.

Services – Customer can purchase a service agreement to further maintain the retired
release.

Each version of RTI Data Distribution Service will have a table similar Table 7.1, which
will be available from your local RTI Sales Team.

Each version’s retirement table will differ, since each product supports a slightly differ-
ent OS/compiler configuration. If you have further questions concerning product retire-
ment, or would like further clarification, please contact sales@rti.com for additional
details.

D Months
Time

EOM

EOTS – Product
Version N.x

Retired.

NDDS
Retirement Letter

Issued For
Version N.x EONPSEOBF

 Services

E Months G Months F Months

Figure 7.3 Retirement Phase
Proprietary Information of Real-Time Innovations, Inc. 7-3

mailto:sales@rti.com

Chapter 7 RTI Data Distribution Service Product Lifecycle
Table 7.1 Sample Retirement Schedule Template

Version N.x D E F G

Windows NT

Windows 2000

Windows XP

Solaris 2.7

Solaris 2.8

Solaris 2.9

LynxOs – x86

LynxOs – PPC

VxWorks 5.4 – x86

VxWorks 5.4 – PPC

VxWorks 5.4 – ARM/StrongArm

VxWorks 5.5 – x86

VxWorks 5.5 – PPC
7-4 Proprietary Information of Real-Time Innovations, Inc.

8. Sum

m
a

ry
Chapter 8

Summary

The goal of this document is to provide sufficient information so that an application
developer familiar with the 3.x API can assess the level of effort necessary to port an
existing application to the RTI Data Distribution Service 4.0 API.

To that end, the document reviewed the RTI Data Distribution Service 3.x API and
mapped the methods to the 4.0 DDS API. In those cases where a direct mapping was not
possible, an indirect mapping was presented. In the cases where no direct or indirect
mapping was available, viable alternatives were suggested. The document also
addressed the extended QoS of the current RTI Data Distribution Service 3.x product and
how one might transition some of RTI Data Distribution Service-specific internal func-
tionality to the DDS-compliant product.

It is important to keep in mind that the document took the vantage point of looking at
the current RTI Data Distribution Service 3.x APIs and parameters. Therefore, some of the
newly introduced DDS functionality was not addressed. To gain a full perspective of the
features provided by DDS, download and review the DDS whitepapers available on the
RTI website, www.rti.com (see the Resources page). The DDS specification is available
at www.omg.org/cgi-bin/doc?ptc/2004-03-07.

The example source code presented in this document for both RTI Data Distribution Ser-
vice 3.x and 4.0 is available from the same URL used to download this document. The
examples are provided as compilable source code.

We welcome your comments, questions, and suggestions concerning the document and
source code examples. Please email them to support@rti.com.
Proprietary Information of Real-Time Innovations, Inc. 8-1

http://www.rti.com/products/ndds/literature.html
http://www.omg.org/cgi-bin/doc?ptc/2004-03-07
mailto:support@rti.com
mailto:support@rti.com

Chapter 8 Summary
8-2 Proprietary Information of Real-Time Innovations, Inc.

A

. Exa
m

p
le

s

Appendix A

Buildable Source Code Examples

The projects listed below can be downloaded from the same URL used to download this
document. The projects include publish/subscribe examples using the RTI Data Distri-
bution Service 3.1a and 4.0 APIs, in C and C++.

Note: The project files for the RTI Data Distribution Service 3.1 examples are compatible
with Visual Studio .NET 2002 (Visual C++ 7.0). The RTI Data Distribution Service 4.0
examples’ project files are compatible with Visual C++ 6.0. Makefiles for additional
environments can be made available upon request.

Table A.1 RTI Data Distribution Service 3.1a C and C++ API Examples

Delivery Mode Description

Best-effort Unicast

Unicast with Publisher/Subscriber

Multicast

Multicast with Multicast Meta-traffic

Reliable Unicast

Multicast

Table A.2 RTI Data Distribution Service 4.0 C and C++ API Examples

Delivery Mode Description

Best-effort Unicast

Reliable Unicast
Proprietary Information of Real-Time Innovations, Inc. A-1

Appendix A Buildable Source Code Examples
A-2 Proprietary Information of Real-Time Innovations, Inc.

Index
A
Alarm Thread 2-10

B
built-in topics 5-32

C
Clients 2-10

D
database routines 5-16
Database Thread 2-11 to 2-12
datagram properties 4-4
DataReaders

defined 2-5
DataTypes 2-8
DataWriters

defined 2-4
DDS specification 8-1
DEADLINE 3-3
deadline 3-3
deserialization 5-15
domain base properties 4-7
Domain Listeners

callbacks 5-32
Domain Participants 2-2
DomainParticipantListener 2-9

Domains
creation example (C) 5-2
creation example (C++) 6-2
defined 2-2

dropped issues 5-25, 5-38
DURABILITY 3-3, 4-11

E
entities

list of 3-2
Event Thread 2-11

H
HISTORY 3-3

I
issue listener routines 5-22
issues 5-35
issues dropped 5-25, 5-38

L
LAR 7-1
LEASE_DURATION 3-3
LIFESPAN 3-3, 4-11
Limited Access Release 7-1
Listeners 2-8

defined 2-5
Proprietary Information of Real-Time Innovations, Inc. Index-1

hierarchical organization 2-9
issues 5-22, 5-35
publications 6-15
reliable subscriptions 5-37

LIVELINESS 3-3

M
manager 2-9, 4-9
minimum separation 3-3
Multicast 4-3

N
NDDS manager 2-9, 4-9
NDDSAppManagerProperties 4-9
NDDSDeclProperties 4-5
NDDSDGramProperties 4-4
NDDSDomainBaseProperties 4-7
NDDSDomainProperties 4-1
NDDSInit 5-3
NDDSNICProperties 4-5
NDDSPublicationProperties 4-11
NDDSTasksProperties 4-1

O
OWNERSHIP_STRENGTH 3-3

P
patterns 5-29
persistence 3-3
platforms 1-2
polling 5-30
print routine 5-15
product retirement 7-3
protocol properties 4-8
Publications

change in terminology 2-5
listener-related routines 5-21
listeners 6-15
properties 4-11
status methods 6-16
status routines 5-19

Publishers
change in terminology 2-6
defined 2-5

Q
QoS policies

compatibility 3-2
defined 3-2

introduction 2-8

R
Receive Thread 2-10, 2-12
receiving data

example (C) 5-6
example (C++) 6-7

Release Notes 1-2
RELIABILITY 3-3
reliability 3-3
retirement 7-3
RTPSWireProtocolProperties 4-8

S
Send Thread 2-10
sending data

example (C) 5-3
example (C++) 6-3

sendqueuesize 3-3
serialization 5-15
Servers 2-10
shared memory 4-3
shared memory message queues 4-4
socket buffers 4-4
strength 3-3
Subscribers

change in terminology 2-7
defined 2-5

Subscriptions
change in terminology 2-5
reliable listeners 5-37

supported platforms 1-2

T
Threads

3.x 2-10
4.0 2-11

TIME_BASED_FILTER 3-3
timetokeepperiod 3-3
Topics 2-7

Listeners for 2-9

U
unacknowledged issues 5-35
User Thread 2-11, 2-13

W
water marks 5-35, 6-17
WaveScope 5-16
Index-2 Proprietary Information of Real-Time Innovations, Inc.

	Contents
	Overview
	Object Model Comparative Analysis
	2.1 Basic Models
	2.2 Domains and DomainParticipants
	2.3 Publications and DataWriters
	2.4 Subscriptions and DataReaders
	2.5 Publishers
	2.6 Subscribers
	2.7 Topics
	2.8 DataTypes
	2.9 Properties, Parameters, and QoS
	2.10 Listeners
	2.11 The ‘Manager’
	2.12 Client-Server
	2.13 Applications and Threads
	2.13.1 Threads in RTI Data Distribution Service 3.x
	2.13.2 Threads in RTI Data Distribution Service 4.0

	Configuration Parameters
	3.1 Object Parameters in RTI Data Distribution Service 3.x
	3.2 Object Parameters in RTI Data Distribution Service 4.0

	Object Properties
	4.1 Domain and Infrastructure Properties
	4.1.1 NDDSDomainProperties
	4.1.2 NDDSTasksProperties
	4.1.3 NDDSMulticastProperties
	4.1.4 NDDSDGramProperties
	4.1.5 NDDSDeclProperties
	4.1.6 NDDSNICProperties
	4.1.7 NDDSDomainBaseProperties
	4.1.8 RTPSWireProtocolProperties
	4.1.9 NDDSAppManagerProperties

	4.2 Publication and Subscription Properties
	4.2.1 NDDSPublicationProperties
	4.2.2 NDDSSubscriptionProperties

	4.3 Client and Server Properties

	Comparing the C APIs
	5.1 Examples
	5.1.1 Domain Instantiation
	5.1.2 Publishing Data
	5.1.3 Subscribing To Data

	5.2 Domain API
	5.2.1 Domain Create/Delete Routines
	5.2.2 Domain Index and Handle Retrieval Routines
	5.2.3 Domain Wait Routine
	5.2.4 Wire Protocol Properties Routine
	5.2.5 Manager and Application Host Routines
	5.2.6 Default Properties Routines
	5.2.7 Type API
	5.2.8 Database API

	5.3 Publication API
	5.3.1 Publication Create/Delete Routines
	5.3.2 Publication Properties Routines
	5.3.3 Publication Send and Wait Routines
	5.3.4 Publication Status Routines
	5.3.5 Publication Topic and Instance Routines
	5.3.6 Publication Listener Routines

	5.4 Subscription API
	5.4.1 Issue Listener Routines
	5.4.2 Subscription Create/Delete Routines
	5.4.3 Subscription Properties Routines
	5.4.4 Subscription Status Routine
	5.4.5 Subscription Poll and Wait Routines
	5.4.6 Subscription Topic and InstanceRoutines
	5.4.7 Reliable Subscription Routines

	5.5 Publisher API
	5.5.1 Publisher Create/Delete Routines
	5.5.2 Publisher Add/Remove Routines
	5.5.3 Publisher Send and Wait Routines
	5.5.4 Publisher Find and Iterate Routines

	5.6 Subscriber API
	5.6.1 Subscriber Create/Delete Routines
	5.6.2 Subscriber Pattern Routines
	5.6.3 Subscriber Add/Remove Routines
	5.6.4 Subscriber Poll Routine
	5.6.5 Subscriber Find and Iterate Routines

	5.7 Client and Server APIs
	5.8 Listeners
	5.8.1 Domain Listeners
	5.8.2 Publication Listeners
	5.8.3 Issue Listeners
	5.8.4 Subscription Reliable Listeners
	5.8.5 Publisher and Subscriber Listeners
	5.8.6 Client and Server Listeners

	Comparing the C++ APIs
	6.1 Examples
	6.1.1 Domain Instantiation
	6.1.2 Publishing Data
	6.1.3 Subscribing to Data

	6.2 Domain Methods
	6.2.1 Methods for Creating/Destroying Domains
	6.2.2 Domain Method for Retrieving a Domain Handle
	6.2.3 Domain Methods for Creating/Destroying Publications
	6.2.4 Domain Methods for Creating/Destroying Publishers
	6.2.5 Domain Methods for Creating/Destroying Subscriptions
	6.2.6 Domain Methods for Creating/Destroying Subscribers
	6.2.7 Domain Methods for Getting/Setting Properties
	6.2.8 Domain Methods for Clients and Servers

	6.3 Publication Methods
	6.3.1 Publication Listener Methods
	6.3.2 Publication Methods for Retrieving Instances and Topics
	6.3.3 Publication Methods for Getting/Setting Properties
	6.3.4 Publication Method for Getting Status
	6.3.5 Publication Methods for Sending/Waiting

	6.4 Publisher Methods
	6.4.1 Publisher Methods for Adding/Removing Publications
	6.4.2 Publisher Methods for Finding Publications
	6.4.3 Publisher Methods for Sending/Waiting
	6.4.4 Publisher Methods for Iterating

	6.5 Subscription Methods
	6.5.1 Subscription Method for Getting Instances and Topics
	6.5.2 Subscription Method for Checking Reliability
	6.5.3 Subscription Methods for Getting/Setting Listeners
	6.5.4 Subscription Methods for Polling and Waiting
	6.5.5 Subscription Methods for Getting/Setting Properties
	6.5.6 Subscription Methods for Getting Status

	6.6 Subscriber Methods
	6.6.1 Subscriber Methods for Adding/Removing Subscriptions
	6.6.2 Subscriber Methods for Finding Subscriptions
	6.6.3 Subscriber Method for Polling Subscriptions
	6.6.4 Subscriber Method for Iterating
	6.6.5 Subscriber Methods for Adding/Removing Patterns

	6.7 Client and Server Methods
	6.8 Listeners
	6.8.1 Domain Listeners
	6.8.2 Publication Listeners
	6.8.3 Issue Listeners
	6.8.4 Subscription Reliable Listeners
	6.8.5 Publisher and Subscriber Listeners
	6.8.6 Client and Server Listeners

	RTI Data Distribution Service Product Lifecycle
	7.1 Early Access Phase
	7.2 Production Phase
	7.3 Retirement Phase

	Summary
	Buildable Source Code Examples
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

