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Abstract. Applications such as fleet management, mobile task force coordination, logis-
tics or traffic control can largely benefit from the on-line detection of collective mobility 
patterns of vehicles, goods or persons. However, collective mobility pattern analysis is 
exponential by nature, requires the high-throughput processing of large volumes of 
mobile sensor data, and thus generates huge communication and processing load to a 
monitoring system. Considering the benefits of the event-based asynchronous pro-
cessing model for on-line monitoring applications, in this paper we argue that several 
collective mobility patterns can be elegantly described as a composition of reusable 
Complex Event Processing (CEP) rules, and specifically focus on the detection of the 
cluster mobility pattern. We also present a DDS-based mobile middleware that sup-
ports a distributed deployment of these CEP rules for such collective mobility pattern 
detection. As means of evaluating our approach we show that using our middleware it 
is possible to detect this mobility pattern for thousands of mobile nodes, with a latency 
that is adequate for most monitoring applications. 

Keywords: Monitoring applications; collective mobility patterns; on-line detection; 
Complex Event Processing; Event Processing Network; EPL rule composition 

Resumo. Aplicações como gerenciamento de frotas, coordenação de forças-tarefa mó-
veis, logística ou controle de tráfego podem ser amplamente beneficiadas pela detecção 
on-line de padrões de mobilidade coletivos de veículos, bens ou pessoas. Entretanto, a 
análise de padrões de mobilidade coletivos é exponencial por natureza, requer proces-
samento com alta vazão de grandes volumes de dados de sensores móveis, e portanto 
gera enormes cargas de comunicação e processamento para um sistema de monitora-
mento. Considerando os benefícios do modelo de processamento assíncrono baseado 
em eventos para aplicações de monitoramento on-line, neste trabalho defendemos que 
diversos padrões de mobilidade coletivos podem ser elegantemente descritos como 
uma composição de regras de Complex Event Processing (CEP), e focamos especifica-
mente na detecção do padrão de mobilidade de agrupamento (cluster). Nós apresen-
tamos também um middleware para dispositivos móveis baseado na tecnologia DDS 
que suporta a implantação distribuída destas regras CEP para tal detecção de padrões 
móveis. Como uma forma de avaliar nossa abordagem, mostramos que utilizando nos-
so middleware é possível detectar este padrão de mobilidade para milhares de nós 
móveis, com uma latência adequada para aplicações de monitoramento on-line. 

Palavras-chave: Aplicações de monitoramento; padrões de mobilidade coletiva; detec-
ção on-line; Complex Event Processing; Event Processing Network; composição de re-
gras EPL 
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1  Introduction 
In several distributed applications, such as fleet or mobile task force management, traf-
fic control or surveillance in mass events, it may be important to perform on-line moni-
toring of mobile node movement and to be able to detect when a given set of nodes are 
collectively moving according to a certain pattern, such as flock-in (clustering), flock-
out, parallel tracks (i.e. in same direction and with same speed) or convoy. This re-
quirement of coordinated movement detection is motivated by reasons such as ensur-
ing safety of the nodes (which may be vehicles, people or unmanned aerial vehicles - 
UAVs), ensuring availability of enough resources, optimizing global operation of the 
nodes, or mutual navigation support among the nodes. Unlike the offline analysis of 
the mobile node’s trajectories [1]–[3], which may be necessary for identifying bottle-
necks or just understanding the movement behavior of vehicles or crowds over a long-
er time span, on-line detection provides means of Situational Awareness [4], [5] re-
quired for rapid decision making about immediate reactions - by the managing staff – 
to promptly solve or mitigate the related problem. There are several examples of collec-
tive mobility patterns that are relevant for applications such as public transportation, 
logistics, traffic management, air traffic control, security and others. All these applica-
tions rely on the continuous and periodic transmission of mobile sensor data from all 
mobile nodes, which may be as simple as the geographic coordinates plus a timestamp, 
or may include also other data such as the velocity vector, the operational status of the 
node, or data about the node’s current activity. 

In road traffic control, for example, it is important to early detect some traffic bottle-
neck due to a total or partial obstruction of a street/road. In this case, the associated 
collective mobility pattern is characterized by two regions: one with a high density of 
vehicles moving at unusual low speed, and another region with fewer vehicles, but 
moving at higher speed, or accelerating. A related mobility pattern is the recurrent un-
expected maneuver by nodes at a given geographic position. In this case, several but 
not necessarily all vehicles exhibit a driving/movement behavior not expected from 
normal traffic at this place, such as sudden, intense de-acceleration of short duration 
(braking) or change of lanes. It can indicate a temporary obstruction of part of the road, 
such as an animal on the road, a hole in the asphalt, or an object/box that fell from a 
vehicle. Other examples can be found in public transportation management, where 
regularity, punctuality and smooth operation are paramount. Hence, in this field it 
may be important to detect, as early as possible, if there is some undesired aggregation 
of demanding nodes (e.g. passengers at a tram/bus stop) or of the providing nodes 
(e.g. the trams or busses) at some places in the city. In the former case, clusters of pas-
sengers at specific stops may indicate that some tram/bus line is not satisfying the cur-
rent demand of passengers, so that the number of circulating busses should be in-
creased. In the second case, it may be an indicator that the busses are not traveling ac-
cording to the pre-established schedule, or that some serious obstruction happened in 
in their itinerary. Also in logistics, collective mobility patterns - of goods and materials 
- play an important role. As logistics is concerned with the detailed planning and or-
ganization of a large complex operation, involving the scheduled flow of items (raw 
materials, intermediate items, and finished goods) through an organization or supply 
chain, aggregation and irregular flow of vehicles or objects (e.g. tracked and with RFID 
tags) should be detected as soon as possible. 

As can be seen from all previous examples, unexpected flock-in (clustering) or out-of-
schedule visits of nodes at places are recurrent collective mobility patterns in several 
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application domains, and early detection of these patterns is fundamental to mitigate 
transportation problems or minimize their impacts. 

Online detection of collective movement patterns however, poses several challenges to 
a monitoring application. First, a high throughput of the sensor data streams (includ-
ing position and other data) produced by a large set of mobile nodes has to be handled 
and processed (i.e., analyzed) in a timely manner. Secondly, efficient algorithms and a 
parallel approach have to be employed to cope with the intrinsic exponential complexi-
ty of the mutual comparisons of the position, speed or other data of pairs of mobile 
nodes. Thirdly, it has to be taken into account that the set of monitored mobile nodes 
sometimes is open and variant, i.e. new elements may join, while others may leave the 
set (e.g. new vehicles entering and leaving a city perimeter), so that the pattern bound-
aries may be unclear or difficult to detect. Moreover, mobile sensor data usually comes 
with a measurement error, which implies that collective movement patterns cannot be 
defined in terms of exact relative differences between the sensor data, but instead must 
be defined in terms of interval relations. For example, if L is the threshold that defines 
if two nodes are close to each other, and ε is the position error, then a cluster pattern 
should be detected as long as the mutual measured distances among a set of nodes is 
less-equal than L+2ε. And finally, the pattern detection and notifications should be re-
liable, precise and fast, otherwise they may become useless for an adequate and timely 
response by a coordinating central or by the mobile nodes themselves. 

The first two challenges demand the use of a data stream processing [6] approach, 
where the detection logic is defined in terms of continuous queries or detection rules. 
Among the several available stream processing approaches and technologies, Complex 
Event Processing (CEP) [7] is the most promising one due to its support for describing 
mobility patterns in terms of complex events and rules, which in turn are defined terms 
of simpler events and rules. Hence CEP allows one to build a hierarchy of composite 
events and rules that can be reused, combined, and executed in a distributed manner in 
a network of Event Processing Agents (EPAs). However, in order to support a distrib-
uted CEP solution that is scalable, it must be based on a high-performance distributed 
communication middleware, enabling EPAs to transfer events among each other at 
high throughput and low latency. 

In this paper we describe a middleware for mobile communications and complex event 
processing based on the Data-Distribution Service for Real-Time Systems (OMG DDS) 
[8] specification that supports on-line detection of mobility patterns in a mobile cloud 
architecture. Its main advantages include the ability to scale in the number of mobile 
connections, support a scalable and parallel execution of the CEP rules on a dynamic 
set of Processing Nodes in the cloud, and divide the entire sensor data stream into re-
gional sub-flows. The middleware uses the RTI Connext DDS [9] on the core of its 
communication backbone. 

Moreover, we focus on the cluster (flock-in) mobility pattern and show how this collec-
tive pattern can be described as a composition of complex events and rules, where 
some CEP rules can, in principle, be (re)-used as building blocks for other collective 
mobility patterns.  We also present some preliminary performance results of our mid-
dleware at it is used for detecting the Cluster pattern for hundreds to thousands of 
simulated mobile nodes. 

In the next section we discuss related work focused on online mobility pattern moni-
toring and in Section 3 we explain basic concepts and technologies underlying our ap-
proach. In Section 4 we then summarize the main layers and components of our mid-
dleware system and in Section 5 describe how the Cluster mobility pattern can be de-
scribed by a composition of CEP rules. In Section 6 we then explain the experimental 
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set-up and the performance results (the latency and precision of detection) obtained 
when monitoring large sets of mobile nodes, and in Section 7 we finalize with conclud-
ing remarks. 

2  Related Work 
Collective mobility patterns have been subject of research in engineering, natural and 
social sciences, usually in the study of animal, vehicle traffic and human collective be-
havior. However, most of them either focus at offline analysis of aggregations or trajec-
tories [10] or at the control and feedback mechanisms employed by the mobile ele-
ments to coordinate their movements in real-time. In this work, we assume that collec-
tive movement patterns emerge spontaneously, and are interested in detecting the pat-
terns in real-time, i.e. right after they emerge, and monitoring its evolution over time. 
We refer to this type of detection as on-line detection of mobility patterns. 

In [11] the detection of mobility patterns is also performed, and as in our work, the 
flock-in (Cluster) pattern is studied. However, the presented algorithm is only applica-
ble off-line, since it requires knowledge of future movement data. 

Dense [12] is a middleware platform for cluster detection based on a peer to peer over-
lay network. However, in contrast to our work, their focus is on reducing the frequency 
of location updates sent by mobile nodes, by using a series of sampling algorithms. 

Mobiiscape [13] is a middleware platform for online detection of mobility patterns in a  
city-wide scenario. The middleware uses a language called Moving Object Monitoring 
Query Language (MQL) to define mobility patterns, and also use Complex Event Pro-
cessing (CEP) for the pattern detection. The difference from out approach is that it fo-
cuses on pre-defined geographic regions, and it defines four primitives - enter, leave, 
stay and pass - to represent basic events that each MN produces while moving around. 
Moreover, Mobiiscape is geared towards the detection of individual, rather than collec-
tive, mobility patterns. 

The work of [14] proposes an extension of a complex event processing engine with 
fuzzy spatial relations between events to enable the definition of qualitative spatio-
temporal patterns. In particular, they address the fuzzy distance relation between two 
events in order to consider vagueness and uncertainty, which is not the focus of our 
work. 

There are also commercial products that implement spatial extensions to CEP engines 
to enable the processing of spatiotemporal events: SpatialRules, from ObjectFX is a 
CEP engine for geospatial data that is compliant with OGC geospatial specifications 
[15] and where event processing rules have built-in geospatial and temporal operators. 
GCEP from SURNA INC. is an extension of Esper that allows the use of OGC Geospa-
tial Functions for filtering and supports 12 topological functions. Finally, the RuleCore 
CEP Server1 is a complex event processing engine used for real-time detection of com-
plex event patterns that enables defining rules using location information (data collect-
ed from GPS sensors). The engine allows creation of data streams of events coming 
from specific geographic zones. However, the detection capability of RuleCore is main-
ly focused on spatiotemporal patterns of individual nodes (e.g. delays and excepts in 
supply chains, or vehicle/driver not complying with working hours regulation), rather 
than collective mobility patterns. 

                                                        
1 wwww.rulecore.com 
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3  Basic Concepts and Assumptions 
In this section we will present and discuss the main concepts and technologies under-
lying our work. 

3.1  Collective Mobility Patterns and the Cluster Pattern 
In this paper we will concentrate on detecting a specific collective mobility pattern, the 
Cluster pattern, since it has many applications. The cluster pattern is dynamic, transito-
ry and non-precise by nature, and is essentially determined by an unusual density of 
mobile nodes at some geographic point or region, which in turn may be previously de-
fined, or not.  In the first case, the goal is to check for a cluster formation at certain 
points/regions of interests, such as gateways, street sections, city neighborhoods, etc. 
In this work, however, we will focus on identifying clusters anywhere, by comparing 
the locations of mobile nodes relative to one another, since this is clearly a more com-
plex problem. 

The definitions of properties that are relevant to be considered in the detection of clus-
ters, such as the density to be considered as unusual, among other factors, are depend-
ent to application requirements. For example, an application may be interested either 
in detecting: only the occurrence and location of clusters (independent of their size and 
number of nodes); the approximate perimeter (or size) of a cluster; the current number 
of nodes in each detected cluster; or the identities of the nodes that are members of the 
detected clusters. In regard to the evolution of the cluster patterns, applications may be 
interested to trace how the density, perimeter or location of the clusters are changing 
over time. 

For the sake of simplicity, but still quite useful for many applications, in this work we 
concentrate in detecting the occurrence of clusters and theirs locations. Hence, we de-
fine a detectable cluster pattern as follows: 

Definition: Given a threshold distance D, a minimum number of clustered nodes CN 
and a time t, we say that a cluster of MNs was formed at time t iff during some interval 
[t, t+T], with T > ∆, there exists a set S of mobile nodes, where |S| > CN, such that Eu-
cledianDist( posi + ε , posj + ε) ≤ D, and i, j ∈ S. 

Note that D and CN are parameters provided the application and CN/D is the unusual 
density that characterizes a cluster. Moreover, ∆ is the minimum cluster existence time. 

3.2  System Model and Assumptions 
The system is composed of mobile nodes (MN) with wireless connection, and station-
ary nodes. The stationary nodes have Internet connectivity and are reliable (do not 
fail). 

We assume that each MN is able to sense its current position, pos, with a maximum er-
ror E, can probe some other relevant sensors, and is also capable of computing its ap-
proximate speed vector v. Using its wireless connection it transfers a message (carrying 
all collected mobile sensor data with a timestamp) to some stationary machine once 
every ρ time units. Delivery of messages through the wireless medium is reliable, and 
in normal circumstances, the transmission delay is at most δ. If the MN’s wireless 
communication link is experiencing connectivity problems, than the MN is notified of a 
disconnection after k * δ time units, where k * δ < ρ. The sensor probing time by the 
MN is negligible. 
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Among the stationary nodes, Processing Nodes (PN) are in charge of executing the 
mobility pattern detection logic of the monitoring system, while Gateways (GW) are 
entirely dedicated to handling all connectivity issues with a subset of all MNs. 

3.3  Complex Event Processing 
Complex Event Processing (CEP) [7] is an event-based technology that provides an 
asynchronous processing model for the online detection of situations of interest. A CEP 
system receives streams of raw events generated by different sources (e.g. sensors), con-
tinuously processes these event streams and generates derived events, which are sent to 
event consumers (e.g. online monitoring applications) interested in receiving notifica-
tions about the occurrence of detected situations. 

These situations are described by CEP rules, which are set-up in one or more CEP en-
gines to continuously process event streams. CEP rules are Event-Condition-Action 
(ECA) rules that use operators (e.g. logical, quantifying, counting, temporal, causal, 
spatial and sequencing operators) that are applied on received events, seeking for cor-
relations among them, generating complex, or composite, events that summarize the 
combination of constituent elementary events (i.e. events that are not composed by other 
events). Raw events are usually elementary, while derived events can be either elemen-
tary or complex. A data dissemination service transports the events from data sources 
to the CEP system, and the derived events generated by the CEP system to all interest-
ed event consumers [16]. 

Most CEP systems have the concept of Event Processing Agents (EPAs), which are 
software modules that implement part of the entire event processing logic between 
event producers and event consumers, encapsulating some operators and CEP rules. 
The type of an EPA is defined by the behavior of the CEP rules it implements, such as 
filtering, transformation (e.g. translation, aggregation, splitting, composition) or specif-
ic event pattern detection. An Event Processing Network (EPN) is a network of inter-
connected EPAs that implement the global processing logic for pattern detection 
through event processing [17]. In an EPN the EPAs are conceptually connected to each 
other (i.e. output events from one EPA are forwarded and further processed by other 
EPAs) without regard to the particular kind of underlying communication mechanism 
for event dissemination. 

CEP systems, are an evolution of publish/subscribe systems [18]. Here, events are 
pieces of information at different levels of abstraction, with inherent semantics and 
coming from different sources. Comparing CEP with content-based publish/subscribe, 
the former provides the capacity of specifying relationships not only over event attrib-
utes, but also relationships between different types of events (and their attributes) [16]. 
In addition, it allows taking into account the history of already received events, and 
most importantly, allowing subscribers to express interest in composite events. The ex-
pressiveness of CEP also exceeds the capabilities of simple Data Stream Management 
Systems (DSMS), since it provides the ability to detect complex patterns of conjunc-
tions and disjunctions, sequencing, ordering, and other types of relationships among 
events. 

The event composition capability of CEP is very useful for enhancing the abstraction 
level of the detection of mobility patterns, describing rules that generate events with 
different levels of abstraction, which can be hierarchically organized to represent com-
plex patterns composed of simpler ones. 
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3.4  Distributed Complex Event Processing (DCEP) 
One important aspect with significant impact on the scalability of the processing capac-
ity of an EPN is the deployment model, which may be centralized or distributed [16]. 
In a DCEP system, as shown in Figure 1, the event streams are processed by EPAs de-
ployed at different nodes interconnected by a communication infrastructure. Distribut-
ed event processing architectures can either be deployed in a computer cluster, where 
nodes are tightly coupled by a fast and reliable network and belong to a same adminis-
trative domain, or in an overlay network of nodes dispersed in a Wide Area Network 
(WAN). Clustered systems benefit from parallel event processing, but demand high 
network bandwidth usage between the cluster nodes and the remote producers and 
consumers of events. Networked architectures, on the other hand, focus on minimizing 
network bandwidth usage, by deploying EPAs closer to event producers and consum-
ers. In this work, we assume a clustered approach, since we take advantage of a mid-
dleware infrastructure specially suited to provide scalability on handling a large num-
ber of mobile nodes sending data streams to a single computer cluster, but with differ-
ent points of attachment (see Section 4.1 ). The placement decision for the EPAs of a 
particular application can balance different criteria, such as geographical location of 
event sources and sinks, network throughput and reliability, functionality, data seg-
mentation, load-balancing, etc [16]. 

Different academic and commercial distributed event-processing systems are available. 
The majority of them use a clustered deployment, e.g. [19]–[21], while a few implement 
a networked solution [22], [23]. 

 
Figure 1 - Typical characterization of a DCEP system, with EPAs deployed on different processing nodes 

of a cluster or overlay network. 

3.5  DCEP Systems’ Processing and Communication Layers 
As show in Figure 2, a DCEP system is typically organized into different layers. The 
Event Processing Layer is responsible for managing all event-processing entities and 
mechanisms, such as the CEP engines, deployment of EPAs (a single Processing Node 
can have many EPAs locally deployed), CEP rules, etc, while a Communication Layer 
implements a service that transports events from data producers to the CEP system, 
internally between EPAs, and from the CEP system to the event consumers. Figure 2 
shows nodes of a network running instances of a DCEP system, with the Event Pro-
cessing Layer with some deployed EPAs and a Communication Layer used by the sys-
tem to propagate events. 
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Figure 2 - A DCEP system organized into a Processing Layer and a Communication Layer. 

3.6  Data Distribution Service for Real-Time Systems (DDS) 
The vast majority of existing DCEP system use a push-based (i.e. asynchronous) com-
munication for its event dissemination layer. The most recent and state-of-the-art evo-
lution of distributed pub/sub is the Data Distribution Service for Real-Time Systems 
(DDS) [8], which brings along many advantages in performance, scalability, availabil-
ity and quality of service mechanisms. The DDS standard defines a fully distributed 
peer-to-peer (i.e.  broker-less) real-time data-centric publish/subscribe (DCPS) com-
munication model. It provides high performance communication - comparisons such 
as [24] show the performance superiority of DDS over other pub/sub platforms (e.g. 
CORBA Notification Service, JMS and SOAP) - scalability and availability, and sup-
ports the specification of Quality of Service (QoS) contracts between data producers 
and consumers, and also mechanisms for dealing with real-time aspects (e.g. priority 
channels and specific QoS policies). It allows interoperability across different DDS im-
plementations, programming languages and platforms, as well as automatic discovery 
of DDS publishers/subscribers. 

 
Figure 3 - DDS specification architecture. 

Figure 3 shows the DDS specification architecture. In this model, a Minimum Profile 
provides the concept of DDS Topics, which are logical entities defined to compose a 
distributed relational data model, also known as Global Shared Data Space. The DCPS 
Model also provides a Durability Service for data persistence, an Ownership Service 
for defining ownership of different sources of data, and Content Subscription, which 
allows content-based subscriptions for data. 

DDS Topics are first class entities for information transfer, which application peers can 
publish or subscribe to, and can be regarded as distributed relational database tables. 
Topics are defined by the application programmer, which writes an IDL file describing 
the names, data types, and the keys that identify the instances (that can be seen as da-
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tabase rows) of each Topic, which are called samples. A compiler takes the IDL as in-
put, and generates code for communication stubs in a desired programming language. 
By using the generated stubs, applications can join a DDS Domain, and publish and 
subscribe to data in this Domain. The DDS Domain, which contains all shared data, is 
fully distributed over the peer-to-peer network formed by participating network 
nodes, without any intermediate broker or centralized management entity. DDS appli-
cations produce and consume data to this Global Shared Data Space without any direct 
knowledge of the parties involved in the production and consumption of data (i.e. 
naming and location transparency). 

The DDS specification also provides a large set of QoS features and enforcement mech-
anisms. Every producer and consumer of data defines its QoS requirements or capabili-
ties through QoS contracts that are matched by a protocol, called Requested-versus-
Offered (RxO) protocol, which checks QoS matching before any establishment of com-
munication. These QoS parameters address many aspects, such as communication reli-
ability, latency or transport priority, data persistence, and behavior of node discovery 
mechanisms, among many others. 

 
Figure 4 - Illustrative example of a DDS Domain with a DDS Topic and its instances, Data Reader, Data 

Writer, and QoS matching. 

Figure 4 shows an illustrative example of the main entities involved in a DDS commu-
nication: a DDS Domain containing a Topic with the name VehicleLocation, which has 
an associated data type description. A DataReader specifies required QoS policies to be 
met by any publisher of the Topic to be read. A DataWriter specifies the QoS policies 
offered to any subscriber of data from the Topic. When the DataWriter inserts or up-
dates a Topic instance (i.e. a row in the “table” of the Topic), all DataReaders registered 
to that Topic and with matching QoS policies will participate in the data transmission 
and will receive the published data. Different existing DDS implementations are avail-
able. This work uses the RTI Connext DDS [9] implementation. 

Considering the advantages in system’s performance, scalability and availability, as 
also observed by other work such as [25], DDS is a data dissemination technology with 
a great potential to benefit DCEP systems. However, to the best of our knowledge, so 
far no existing known DCEP implementation uses DDS for data dissemination. Fur-
thermore, this work presents an infrastructure that extends the DDS infrastructure to 
support the connection of mobile nodes, using a simple protocol that bridges their con-
nection from the Internet with the core DDS domain. Section 4 explains the system ar-
chitecture, presenting how the DCEP system uses the DDS specification and how mo-
bile devices connection with this system is performed with scalability. 
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4  System Architecture 
Our infrastructure for mobile communications and distributed complex event pro-
cessing is composed of two main layers: at the bottom, a communication layer provides 
reliable and scalable communication to and from mobile nodes, as well as the load-
aware distribution of sensor data streams to Processing Nodes (PN) at the fixed net-
work. At the upper layer, and using this base communication layer, an event pro-
cessing layer provides means of deploying event processing networks, i.e. EPAs exe-
cuting CEP rules, on a set of distributed PNs. The two middleware layers are presented 
in more detail in the following. 

4.1  Scalable Data Distribution Layer 
At the bottom layer, the Scalable Data Distribution Layer (SDDL) [26] is a communica-
tion middleware that connects stationary nodes in a wired core network (DDS domain) 
to mobile nodes with an wireless internet connection (see Figure 5). Some of the sta-
tionary nodes are data processing nodes, others are gateways for communication with 
the mobile nodes, and yet others are monitoring and control stations operated by hu-
mans. The latter ones can display the mobile nodes’ current position (or other relevant 
sensor data of each node),  and allow the operator to receive event notifications about 
situations related to one or several mobile nodes. SDDL employs two communication 
protocols: DDS’s (Data Distribution Service) Real Time Publish/Subscribe (RTPS) for 
the wired communication within the SDDL core, and the Mobile Reliable UDP (MR-
UDP) [27] for the inbound and outbound communication between the core network 
and the mobile nodes. DDS is described in detail in Section 3.6 . The Mobile Reliable 
UDP (MR-UDP) protocol is the basis for the Gateway-mobile node interaction. It im-
plements TCP-like functionality on top of UDP and has been customized to handle in-
termittent connectivity, Firewall/NAT traversal and robustness to changes of IP ad-
dresses and network interfaces. Each message, in either direction, requires an acknowl-
edgement that, if not received, causes each transmission to be retried several times be-
fore a connection is considered broken. 

 
Figure 5 - SDDL middleware overview. 

In addition, as part of the SDDL core, three types of nodes play an important role in 
regard to event processing of mobile sensor data streams: 

The Gateway (GW) defines a unique point of attachment (PoA) for connection of the 
mobile nodes to the services of the SDDL core. The Gateway is responsible for manag-
ing a separate MR-UDP connection with each MN, transforming any application-
specific message or sensor data from the MN into a DDS message, and in the opposite 
direction, converting DDS messages to MR-UDP messages and delivering them relia-
bly to the corresponding MN(s). Being the handler of connections to the mobile nodes 
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(MNs), the Gateway is also responsible for notifying other SDDL core services when a 
new MN connects to the system or when some MNs disconnect from it. This infor-
mation is used by other SDDL services, such as caching of messages addressed to tem-
porary offline mobile nodes, for later delivery. 

The PoA-Manager is responsible for two tasks: to periodically distribute a list of Points 
of Attachment (PoA-List) to the MNs and to eventually request that some MNs switch 
to a new Gateway/PoA. The PoA-List is always a subset of all available Gateways in 
SDDL, where the first element points to the preferred Gateway/PoA, then to the se-
cond choice, and so forth. By having an updated PoA-List, an MN may always switch 
its Gateway if it detects a weak connection or a disconnection with the current Gate-
way. Moreover, by distributing different PoA-Lists to different groups of mobile nodes, 
the PoA-Manager is able to balance the load among the Gateways as well as announce 
to the mobile nodes when a new Gateway is added to or an existing Gateway is re-
moved (or failed) from the SDDL core. 

The Load Balancer (LB) is a node, which continuously monitors the current load of the 
Processing Nodes in the SDDL core, and assigns Data Processing Slices, i.e. portions of 
the global mobile data sensor stream, to each of the PNs. This data volume slicing can 
be done in regard to any attribute of the message produced by the MNs, such as the 
UUID of the sender or its geographic coordinates. By this, it is possible to divide the 
total data processing load among any number of PNs. Every data item of the data 
stream must have assigned a single Data Slice in order to be processed by some PN. In 
SDDL this mapping of data items to slices is performed at the Gateways, while the 
Load Balancer transparently sets the subscription filters for each PN so that it only re-
ceives the data items that pertain to the corresponding Data Slices assigned to it [28]. 

The Universal DDS Interface (UDI) [26] is a library that fully abstracts the DDS imple-
mentation, promoting reusability and facilitating the development of the architecture 
components. Its main goal is to encapsulate the specificities of DDS implementation, 
and to provide common abstractions for use of different DDS products. As well as 
simplifying the set-up and configuration of DDS entities. The UDI supports the crea-
tion of DDS Topics (and Content Filtered Topics), Domain Participants, Publishers, 
Subscribers, Data Readers and Data Writers. In this work, we used the Real-Time In-
novation’s Connext DDS [9] implementation. 

4.2  Distributed Complex Event Processing Layer (DCEPL) 
The Distributed Complex Event Processing Layer (DCEPL) is the middleware compo-
nent that supports the deployment and execution of distributed complex event pro-
cessing networks for the detection of situations of interest, and in particular, for the de-
tection of collective mobility patterns. Figure 6 depicts the main elements of the archi-
tecture, following the typical organization of a DCEP system with event sources (the 
mobile nodes), a set of processing nodes and event consumers. 

 
Figure 6 - DCEPL overview. 
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The DCEPL Manager implements the event processing mechanisms, which supports 
the definition and deployment of EPAs at different processing nodes, so as to compose 
distributed EPNs. 

Each DCEPL Manager instance contains a local CEP engine, which may have several 
deployed EPAs. The deployed EPAs process events received from mobile nodes and 
from other EPAs and generate derived events that are consumed by other EPAs (e.g. 
running locally or at other nodes) and by event consumers (i.e. subscribed monitoring 
applications or services).  

Its important to make clear that all communication follows the publish/subscribe par-
adigm, i.e. all event producers and consumers, such as mobile nodes, EPAs and appli-
cations only publish or subscribe to data anonymously, with time, space and reference 
decoupling. 

The DCEPL system uses the SDDL middleware, explained in Section 4.1 , as its com-
munication layer. SDDL provides reliable and scalable communication to and from 
mobile nodes, which are outside the SDDL Core. Mobile nodes connect to Gateways, 
producing the raw events that are fed into the system, and also receiving any derived 
event generated from within the SDDL Core.  

In order to take advantage of SDDL’s load balancing mechanisms for mobile sensor 
data processing, instances of the DCEPL system are deployed on SDDL Processing 
Nodes. Each DCEPL Manager instance uses SDDL for its local EPAs to receive elemen-
tary events from MNs, and to exchange elementary and composite events among each 
other within the SDDL Core. Each EPA contains a SDDL/UDI Subscriber for subscrib-
ing to events and a SDDL/UDI Publisher for publishing derived events resulting from 
their CEP processing. For example, an EPA can subscribe to slices of sensor data pro-
duced by mobile nodes or subscribe to derived events produced by other EPAs. 

As already mentioned, each DCEPL instance running on a processing node allows the 
instantiation of any desired number of EPAs. An EPA has a set of rules, where each 
rule is composed of sequential Event Processing Language (EPL) statements describing 
the CEP rule processing logic. EPL was chosen since it is very similar to SQL, and is 
currently one of the most popular event processing languages. 

In order to facilitate application development and support flexible deployment, all en-
tities to be instantiated by each DCEPL instance are described in a Configuration Reposi-
tory accessible by each processing node. By defining entities in this metadata reposito-
ry, the application developers and system administrators can deploy EPNs into the sys-
tem in a straightforward way, without requiring knowledge of any programming lan-
guage other than EPL. The configuration repository also functions  as a library of reus-
able rules, which can be loaded by any processing node.  

Among the entities defined in the configuration repository are: a description of the 
event types referenced in EPL rules (and exchanged by among EPAs), EPL statements 
describing the EPAs’ logic, external functions implemented in Java and called by these 
statements, execution parameters, such as arguments to rules, and deployment param-
eters, such as the mapping of EPAs onto processing nodes and references to relational 
databases. The databases can be used as knowledge bases for rules, or else, for storing 
events generated by the system, for example for auditing and generation of reports. 
The modularity of the DCEPL design allows it to be adapted to use different CEP en-
gine implementations that uses the Event Processing Language (EPL) as the means for 
defining CEP rules. In the current version of DCEPL we used the Esper [20] engine. 
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5  Detection of the Cluster Pattern – A Case Study 
The cluster pattern is detected when a sufficiently large set of MNs gather and become 
close to each other. Hence, the main approach for detecting the cluster pattern is as fol-
lows:  

The most basic information for the detection of mobility patterns, i.e. the raw events 
needed for the detection of these patterns, is the position  information periodically sent 
by each mobile node (MN). We call each of these raw events a MNLocationReport, 
which contains the mobile node’s current position, i.e. its geographical coordinates and 
measurement accuracy. 

MNLocationReport events are captured into an EPN that processes them in order to de-
tect other events with higher levels of abstraction. Figure 9 gives an overview of the 
EPN, with the constituent EPAs and the events detected by each one, leading to the 
detection of the Cluster pattern. The following subsections explain in more detail the 
correlation logic in each of the EPAs.. 

 
Figure 7 - EPN with the chain of EPAs to detect cluster events. 

Since the cluster pattern looks for mobile nodes that are close to each other, the SDDL 
architecture uses location filters, defined in terms of latitude and longitude intervals, to 
separate the MNLocationReports into sub-regions before inserting them into the pro-
cessing network (as illustrated by Figure 8). This split is done by the Gateways using 
the data-slice mechanism of the load-balancing DPSLB solution [28] (see Section 4.1 ). It 
suffices to check the distance between all pairs of MNs within the same sub-region of 
the total area of interest, since nodes that are distant from one another will never be 
aggregated into a cluster. By using this approach, a significant reduction of the pro-
cessing complexity in the EPN is achieved, since agents subscribed to each slice only 
handle location updates of a given sub-region. 

 
Figure 8 - Overview of the event processing network. 

5.1  MNsTooClose 
The first step to detect a cluster is to detect pairs of MNs that are within a distance D of 
each other. The MNsTooClose EPA at each different slice processes the mobile nodes 
location updates (i.e. MNLocationReport events) correspondent to that slice, combining 
all pairs of location updates that are within distance D + 2ε from each other, where ε is 
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the measurement accuracy. Each pair of location update is aggregated into a complex 
event denoted MNsTooClose. 

To do that, each EPA operates in a time-batch scheme, where it retrieves all location 
updates in a given time period (e.g. all MNLocationReport events from timestamp T to 
timestamp T - 30 seconds). The agent correlates this set of location update events with 
the set itself, producing a Cartesian product of all possible pairs of location updates. 
This result is then filtered by the distance function, that checks if each pair is close to 
each other , as shown in Code 1. If the coordinates are within a minimum Eucledian 
distance (considering de accuracy of both coordinates), then the EPA produces an 
MNsTooClose event containing the pair of location updates. 

INSERT	
  INTO	
  MNsTooClose	
  

SELECT	
  A,	
  B	
  
FROM	
  	
  	
  MNLocationReport.win:time_batch(30	
  sec)	
  as	
  A,	
  
	
  	
  	
  	
  	
  	
  	
  MNLocationReport.win:time_batch(30	
  sec)	
  as	
  B	
  
WHERE	
  	
  A.id	
  <>	
  B.id	
  AND	
  
	
  	
  	
  	
  	
  	
  	
  distance(A.latitude,	
  A.longitude,	
  B.latitude,	
  B.longitude)	
  <	
  D	
  +	
  2ε	
  

Code 1 – Rule to identify MNs that are near one another. 

5.2  MNCloseNeighbors 
The MNsTooClose events pinpoint two mobile nodes that are close to each other. 
However, the cluster pattern depends on detecting a minimum number of such close 
nodes CN, here denoted neighbors. Thus, a fundamental requirement is to know the 
number of MNsTooClose events each node has. Therefore, all MNsTooClose events for 
each node are collapsed into a single event that expresses a nodes’ location update and 
its number of close neighbors, called MNCloseNeighbors, as shown in Code 2. Since we 
are interested on clusters, a sub-query is executed to filter nodes that have at least a 
minimum number of neighbors. 

 

INSERT	
  INTO	
  MNCloseNeighbors	
  
SELECT	
  	
  	
  	
  	
  	
  Close.A,	
  count(*)	
  	
  
FROM	
  	
   	
  	
  	
  	
  	
  MNsTooClose.std:unique(A.id,B.id).win:time(30	
  sec)	
  as	
  Close	
  
GROUP	
  BY	
  	
  	
  	
  Close.A	
  
HAVING	
  	
  	
  	
  	
  	
  	
  count(*)	
  >	
  CN	
  

Code 2 – Filtering rule to extract nodes that have at least CN neighbors. 

5.3  ClusterList 
A ClusterList event is a list of all clusters detected at a given moment, i.e. a list of loca-
tions where a sufficiently large set of MNs are gathered close to each other. In order to 
generate such list, the ClusterList EPA receives MNCloseNeighbors events, which pro-
vide information about mobile nodes with a significant number of close neighbors. 
When a new MNCloseNeighbors event arrives at the ClusterList EPA, the location update 
arrived inside this event is considered as a candidate for a cluster location, called clus-
ter-head. With this candidate, the rule searches in the existing cluster list for cluster-
heads in the vicinity of the candidate’s location. If no match is found, a new cluster is 
created and the candidate is inserted as its cluster-head. If a match is found, and since 
several MNs close to one another may share a large number of neighbors, it is neces-
sary to collapse these candidates into a unique cluster. The cluster head with the largest 
number of neighbors becomes the cluster-head of the new collapsed cluster. Also, it is 
important to identify the cluster-head candidates that are positioned far from each oth-
er, since they are genuine members of different and disjoint clusters. Candidates that 
are far from each other (i.e. not within D + 2ε), are added to the cluster list and consid-
ered as cluster-heads of independent clusters. 
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ON	
  	
  	
  	
  MNCloseNeighbors	
  AS	
  candidate	
  
MERGE	
  MNClusterList	
  	
  	
  	
  AS	
  cl	
  
WHERE	
  distance(candidate.latitude,	
  candidate.longitude,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cl.latitude,	
  cl.longitude)	
  <	
  D	
  +	
  2ε	
  
	
  	
  	
  	
  	
  	
  	
  WHEN	
  NOT	
  MATCHED	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  THEN	
  INSERT	
  INTO	
  EventMNClusterList	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SELECT	
           candidate.mnLocationReport,	
  candidate.numNeighbors	
  
	
  	
  	
  	
  	
  	
  	
  WHEN	
  MATCHED	
  AND	
  	
  	
  	
  	
  	
  candidate.numNeighbors	
  >	
  cl.numNeighbors	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  THEN	
  UPDATE	
  SET	
  	
  cl.mnLocationReport	
  =	
  candidate.mnLocationReport,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cl.numNeighbors	
  	
  	
  	
  	
  =	
  candidate.numNeighbors	
  

Code 3 – Rule to extract unique cluster-heads. 

6  Performance Evaluation 
In order to evaluate our approach, we ran several experiments using many simulated 
MNs, that together produce a continuous stream of GPS sensor data to be processed by 
the EPN deployed in our middleware, with the goal of detecting the Cluster mobility 
pattern. In order to simulate the cluster mobility pattern of nodes, we defined Attractor 
Points at random coordinates in a map region. Square areas, called AttractorPointSquare 
(APS), of 400m2 where defined around these points. Then MNs where forced to be lo-
cated, and moving randomly, within or close to these APSs for a certain interval of 
time (APS Permanence Time). This APS Permanence Time is chosen randomly between a 
minimum and a maximum number of location update periods ρ. After its APS Perma-
nence Time is over, a simulated MN is released from this APS to a random place in the 
map region, where it resumes its random walking movement. As for the density that 
characterizes a cluster, it is assumed that the monitoring application is interested in 
detecting clusters that have at least 20 simulated MNs gathered in such an APS, i.e., 
one MN per 2,000 square meters. Although this collective instantaneous flock-in 
movement behavior is rather artificial, it allows us to measure the latency of the detec-
tion using our middleware and to evaluate how this latency behaves for various simu-
lation parameters. 

6.1  Configuration and simulation parameters  
The experiments were executed with following system configuration and simulation 
parameters: 

Name Description Set of Values 

#MNs Total number of simulated MNs 500, 1000, 2500, 5000, 7500 

PermT Max Maximum APS Permanence Time Uniform dist. 1 to 10. 

#APS Total number of simultaneous clusters 1 

#PN Total number of Processing Nodes 1, 2, 3 

#DPS Total number of Slices of the DPSLB 1, 2, 3 

Table 1. Simulation parameters. 

The primary choice of simulating a single cluster was to stress the system architecture 
and discover the limits of the designed rules. By dividing the nodes into different clus-
ters we would also divide the work task, since the number of operations and compari-
sons executed by the CEP rules would be divided. 
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6.2  Experimental setup 
The experimental set-up was as follows: A single gateway, up to three PNs and three 
MN-simulation applications. All these machines were directly connected to a Gigabit 
Ethernet switch. 

Name Description 

Gateway 
Mac OS X 

Intel i7 2.3 GHz, 16 GB DDR3 RAM 
Oracle Java 1.6 

Processing Node 
CentOS 5 

Intel i5 2.3 GHz, 8 GB DDR3 RAM 
Oracle Java 1.6 

MN-Simulator 
Windows 7 

Intel i7 2.3 GHz, 4 GB DDR3 RAM 
Oracle Java 1.6 

Table 2. Machines configuration. 

The MN simulation program uses a thread pool to execute a specified number of mo-
bile nodes, each one sending location updates with a periodicity of 15 seconds. The 
nodes connect to the SDDL Gateway using the MR-UDP protocol. Although it is not 
feasible to make all simulated mobile nodes use the real cellular network for sending 
data, the connection through the Gateway and the use of the MR-UDP protocol seeks 
to simulate the real-world scenario where mobile nodes use 2G/3G connections to 
send their location updates. A Wi-Fi connection was not used for the tests since it 
would make all simulated MNs to compete to access of the same wireless 802.11 net-
work, causing many medium access collisions, contrary to the real-world situation 
where each MN would have its own 2G/3G connection. 

The simulation was executed in a delimited scope of the south region of the city of Rio 
de Janeiro, as illustrated previously by Figure 8. The regions delimited by three rectan-
gle of this map represents directly the slice that each processing node subscribes. A 
processing node receive only the location updates of its subscribed slice. The simula-
tion emulates clusters of 500, 1000, 2500, 5000, and 7500 mobiles nodes on this map. 
With a single EPA, the entire 7500 nodes move to a single rectangle, while with two 
EPAs they move to two regions (3750 each), and with three EPAs they move to three 
regions (2500 each). 

6.3  Performance Results 
The exponential complexity of the problem reflected directly in the experiments re-
sults. As expected, the results had an exponential curve, i.e., a slight increase in the 
number of nodes had a huge increase in the detection latency, as shown by the graph 
of Figure 9 (in logarithm scale). For example, the simulation of 2500 nodes executed in 
average 6.250.000 comparisons, whilst 5000 nodes required in average 25.000.000 com-
parisons. The proposed distributed solution mitigate the detection period. By using a 
distribution configuration, in one instance, the detection time was reduced from 30 
minutes to 20 seconds. In a higher scale, using only one EPA, for 7500 mobile nodes, 
the simulation took more than 1 hour (3600 seconds) and did not end. Using a distrib-
uted EPA configuration the detection period was reduced to an average of 45 seconds.  
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Figure 9 - Average time required for detecting a given cluster of nodes with one, two and three EPAs. 

With 500 and 1000 nodes the results showed that the central solution performed better 
than the distributed one, as illustrated by the graphs of Figure 10 (in logarithm scale). 
Particularly, because the distribution cost was higher than the number of simulated 
nodes. Nevertheless, the distributed processing nodes configuration had a similar de-
tection time than the centralized one. 

 
Figure 10 - Detection latency for 500 and 1000 Mobile Nodes. 

For higher number of mobiles nodes, such as 2500, 5000 and 7500, the results clearly 
indicate the bottleneck of the single machine solution, as illustrated by the graphs of 
Figure 11 (in logarithm scale). The distributed solution was better in both instances, 
with gains up to 99% over the centralized solution. For instance, to detect a cluster of 
5000 nodes, the central EPA took 1888.507 seconds (around 31 minutes), while the dis-
tributed EPA took 22.360 seconds.  
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Figure 11 - Detection latency for 2500, 5000 and 7500 Mobile Nodes. 

As expected, the results show that with the addition of EPAs the detection time deeply 
decreases. However, surprisingly, the reduction rate where better than the predicted 
when adding additional EPAs, as shown by Figure 14. Given the distribution com-
plexity, additional EPAs add a higher configuration cost, thus for lower numbers, such 
as 500 and 1000 mobiles nodes, the distribution cost of three EPAs exceed the process 
required time of these nodes in two EPAs. However, for large numbers, such as 5000 
and 7500, an additional distribution EPA clearly mitigate the detection time required. 
  

 
Figure 12 - Average time required (y for detecting a given cluster of nodes with two and three EPAs. 

7  Conclusion 
Online detection of collective mobility patterns can be useful for many application are-
as, and so far has not been extensively studied. To the best of our knowledge, our work 
is the first attempt to describe a specific collective mobility pattern – the cluster pattern 
– in terms of a set of CEP rules, and to implement a mobile communication and dis-
tributed event processing middleware that supports the distributed deployment of 
EPAs, with the goal of detecting such patterns in a scalable way, and with low latency. 

Although it is early to conjecture which sorts of collective mobility patterns can be de-
scribed and efficiently detected using CEP, we believe that our preliminary results are 
encouraging, and may open a new thread of research. 

As the next steps, we plan to improve the support for CEP rule programming and dis-
tributed deployment of EPAs in our middleware, experiment with CEP rules in order 
to optimize the Cluster pattern detection, and investigate which, and how, other mobil-
ity patterns can be effectively represented as CEP rules.  
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