

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 17/13

On-line Detection of Collective Mobility Patterns
through Distributed Complex Event Processing

Gustavo Luiz Bastos Baptista

Marcos Roriz
Rafael Vasconcelos

Bruno Olivieri
Igor Vasconcelos

Markus Endler

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 17/13 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Dec., 2013

On-line Detection of Collective Mobility Patterns
through Distributed Complex Event Processing

Gustavo Luiz Bastos Baptista, Marcos Roriz, Rafael Vasconcelos, Bruno
Olivieri, Igor Vasconcelos, Markus Endler

{gbaptista, mroriz, rvasconcelos, bolivieri, ivasconcelos, endler}@inf.puc-rio.br

Abstract. Applications such as fleet management, mobile task force coordination, logis-
tics or traffic control can largely benefit from the on-line detection of collective mobility
patterns of vehicles, goods or persons. However, collective mobility pattern analysis is
exponential by nature, requires the high-throughput processing of large volumes of
mobile sensor data, and thus generates huge communication and processing load to a
monitoring system. Considering the benefits of the event-based asynchronous pro-
cessing model for on-line monitoring applications, in this paper we argue that several
collective mobility patterns can be elegantly described as a composition of reusable
Complex Event Processing (CEP) rules, and specifically focus on the detection of the
cluster mobility pattern. We also present a DDS-based mobile middleware that sup-
ports a distributed deployment of these CEP rules for such collective mobility pattern
detection. As means of evaluating our approach we show that using our middleware it
is possible to detect this mobility pattern for thousands of mobile nodes, with a latency
that is adequate for most monitoring applications.

Keywords: Monitoring applications; collective mobility patterns; on-line detection;
Complex Event Processing; Event Processing Network; EPL rule composition

Resumo. Aplicações como gerenciamento de frotas, coordenação de forças-tarefa mó-
veis, logística ou controle de tráfego podem ser amplamente beneficiadas pela detecção
on-line de padrões de mobilidade coletivos de veículos, bens ou pessoas. Entretanto, a
análise de padrões de mobilidade coletivos é exponencial por natureza, requer proces-
samento com alta vazão de grandes volumes de dados de sensores móveis, e portanto
gera enormes cargas de comunicação e processamento para um sistema de monitora-
mento. Considerando os benefícios do modelo de processamento assíncrono baseado
em eventos para aplicações de monitoramento on-line, neste trabalho defendemos que
diversos padrões de mobilidade coletivos podem ser elegantemente descritos como
uma composição de regras de Complex Event Processing (CEP), e focamos especifica-
mente na detecção do padrão de mobilidade de agrupamento (cluster). Nós apresen-
tamos também um middleware para dispositivos móveis baseado na tecnologia DDS
que suporta a implantação distribuída destas regras CEP para tal detecção de padrões
móveis. Como uma forma de avaliar nossa abordagem, mostramos que utilizando nos-
so middleware é possível detectar este padrão de mobilidade para milhares de nós
móveis, com uma latência adequada para aplicações de monitoramento on-line.

Palavras-chave: Aplicações de monitoramento; padrões de mobilidade coletiva; detec-
ção on-line; Complex Event Processing; Event Processing Network; composição de re-
gras EPL

 ii

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1	
2 Related Work 3	
3 Basic Concepts and Assumptions 4	

3.1 Collective Mobility Patterns and the Cluster Pattern 4	
3.2 System Model and Assumptions 4	
3.3 Complex Event Processing 5	
3.4 Distributed Complex Event Processing (DCEP) 6	
3.5 DCEP Systems’ Processing and Communication Layers 6	
3.6 Data Distribution Service for Real-Time Systems (DDS) 7	

4 System Architecture 9	
4.1 Scalable Data Distribution Layer 9	
4.2 Distributed Complex Event Processing Layer (DCEPL) 10	

5 Detection of the Cluster Pattern – A Case Study 12	
5.1 MNsTooClose 12	
5.2 MNCloseNeighbors 13	
5.3 ClusterList 13	

6 Performance Evaluation 14	
6.1 Configuration and simulation parameters 14	
6.2 Experimental setup 15	
6.3 Performance Results 15	

7 Conclusion 17	
8 References 18	

 1

1 Introduction
In several distributed applications, such as fleet or mobile task force management, traf-
fic control or surveillance in mass events, it may be important to perform on-line moni-
toring of mobile node movement and to be able to detect when a given set of nodes are
collectively moving according to a certain pattern, such as flock-in (clustering), flock-
out, parallel tracks (i.e. in same direction and with same speed) or convoy. This re-
quirement of coordinated movement detection is motivated by reasons such as ensur-
ing safety of the nodes (which may be vehicles, people or unmanned aerial vehicles -
UAVs), ensuring availability of enough resources, optimizing global operation of the
nodes, or mutual navigation support among the nodes. Unlike the offline analysis of
the mobile node’s trajectories [1]–[3], which may be necessary for identifying bottle-
necks or just understanding the movement behavior of vehicles or crowds over a long-
er time span, on-line detection provides means of Situational Awareness [4], [5] re-
quired for rapid decision making about immediate reactions - by the managing staff –
to promptly solve or mitigate the related problem. There are several examples of collec-
tive mobility patterns that are relevant for applications such as public transportation,
logistics, traffic management, air traffic control, security and others. All these applica-
tions rely on the continuous and periodic transmission of mobile sensor data from all
mobile nodes, which may be as simple as the geographic coordinates plus a timestamp,
or may include also other data such as the velocity vector, the operational status of the
node, or data about the node’s current activity.

In road traffic control, for example, it is important to early detect some traffic bottle-
neck due to a total or partial obstruction of a street/road. In this case, the associated
collective mobility pattern is characterized by two regions: one with a high density of
vehicles moving at unusual low speed, and another region with fewer vehicles, but
moving at higher speed, or accelerating. A related mobility pattern is the recurrent un-
expected maneuver by nodes at a given geographic position. In this case, several but
not necessarily all vehicles exhibit a driving/movement behavior not expected from
normal traffic at this place, such as sudden, intense de-acceleration of short duration
(braking) or change of lanes. It can indicate a temporary obstruction of part of the road,
such as an animal on the road, a hole in the asphalt, or an object/box that fell from a
vehicle. Other examples can be found in public transportation management, where
regularity, punctuality and smooth operation are paramount. Hence, in this field it
may be important to detect, as early as possible, if there is some undesired aggregation
of demanding nodes (e.g. passengers at a tram/bus stop) or of the providing nodes
(e.g. the trams or busses) at some places in the city. In the former case, clusters of pas-
sengers at specific stops may indicate that some tram/bus line is not satisfying the cur-
rent demand of passengers, so that the number of circulating busses should be in-
creased. In the second case, it may be an indicator that the busses are not traveling ac-
cording to the pre-established schedule, or that some serious obstruction happened in
in their itinerary. Also in logistics, collective mobility patterns - of goods and materials
- play an important role. As logistics is concerned with the detailed planning and or-
ganization of a large complex operation, involving the scheduled flow of items (raw
materials, intermediate items, and finished goods) through an organization or supply
chain, aggregation and irregular flow of vehicles or objects (e.g. tracked and with RFID
tags) should be detected as soon as possible.

As can be seen from all previous examples, unexpected flock-in (clustering) or out-of-
schedule visits of nodes at places are recurrent collective mobility patterns in several

 2

application domains, and early detection of these patterns is fundamental to mitigate
transportation problems or minimize their impacts.

Online detection of collective movement patterns however, poses several challenges to
a monitoring application. First, a high throughput of the sensor data streams (includ-
ing position and other data) produced by a large set of mobile nodes has to be handled
and processed (i.e., analyzed) in a timely manner. Secondly, efficient algorithms and a
parallel approach have to be employed to cope with the intrinsic exponential complexi-
ty of the mutual comparisons of the position, speed or other data of pairs of mobile
nodes. Thirdly, it has to be taken into account that the set of monitored mobile nodes
sometimes is open and variant, i.e. new elements may join, while others may leave the
set (e.g. new vehicles entering and leaving a city perimeter), so that the pattern bound-
aries may be unclear or difficult to detect. Moreover, mobile sensor data usually comes
with a measurement error, which implies that collective movement patterns cannot be
defined in terms of exact relative differences between the sensor data, but instead must
be defined in terms of interval relations. For example, if L is the threshold that defines
if two nodes are close to each other, and ε is the position error, then a cluster pattern
should be detected as long as the mutual measured distances among a set of nodes is
less-equal than L+2ε. And finally, the pattern detection and notifications should be re-
liable, precise and fast, otherwise they may become useless for an adequate and timely
response by a coordinating central or by the mobile nodes themselves.

The first two challenges demand the use of a data stream processing [6] approach,
where the detection logic is defined in terms of continuous queries or detection rules.
Among the several available stream processing approaches and technologies, Complex
Event Processing (CEP) [7] is the most promising one due to its support for describing
mobility patterns in terms of complex events and rules, which in turn are defined terms
of simpler events and rules. Hence CEP allows one to build a hierarchy of composite
events and rules that can be reused, combined, and executed in a distributed manner in
a network of Event Processing Agents (EPAs). However, in order to support a distrib-
uted CEP solution that is scalable, it must be based on a high-performance distributed
communication middleware, enabling EPAs to transfer events among each other at
high throughput and low latency.

In this paper we describe a middleware for mobile communications and complex event
processing based on the Data-Distribution Service for Real-Time Systems (OMG DDS)
[8] specification that supports on-line detection of mobility patterns in a mobile cloud
architecture. Its main advantages include the ability to scale in the number of mobile
connections, support a scalable and parallel execution of the CEP rules on a dynamic
set of Processing Nodes in the cloud, and divide the entire sensor data stream into re-
gional sub-flows. The middleware uses the RTI Connext DDS [9] on the core of its
communication backbone.

Moreover, we focus on the cluster (flock-in) mobility pattern and show how this collec-
tive pattern can be described as a composition of complex events and rules, where
some CEP rules can, in principle, be (re)-used as building blocks for other collective
mobility patterns. We also present some preliminary performance results of our mid-
dleware at it is used for detecting the Cluster pattern for hundreds to thousands of
simulated mobile nodes.

In the next section we discuss related work focused on online mobility pattern moni-
toring and in Section 3 we explain basic concepts and technologies underlying our ap-
proach. In Section 4 we then summarize the main layers and components of our mid-
dleware system and in Section 5 describe how the Cluster mobility pattern can be de-
scribed by a composition of CEP rules. In Section 6 we then explain the experimental

 3

set-up and the performance results (the latency and precision of detection) obtained
when monitoring large sets of mobile nodes, and in Section 7 we finalize with conclud-
ing remarks.

2 Related Work
Collective mobility patterns have been subject of research in engineering, natural and
social sciences, usually in the study of animal, vehicle traffic and human collective be-
havior. However, most of them either focus at offline analysis of aggregations or trajec-
tories [10] or at the control and feedback mechanisms employed by the mobile ele-
ments to coordinate their movements in real-time. In this work, we assume that collec-
tive movement patterns emerge spontaneously, and are interested in detecting the pat-
terns in real-time, i.e. right after they emerge, and monitoring its evolution over time.
We refer to this type of detection as on-line detection of mobility patterns.

In [11] the detection of mobility patterns is also performed, and as in our work, the
flock-in (Cluster) pattern is studied. However, the presented algorithm is only applica-
ble off-line, since it requires knowledge of future movement data.

Dense [12] is a middleware platform for cluster detection based on a peer to peer over-
lay network. However, in contrast to our work, their focus is on reducing the frequency
of location updates sent by mobile nodes, by using a series of sampling algorithms.

Mobiiscape [13] is a middleware platform for online detection of mobility patterns in a
city-wide scenario. The middleware uses a language called Moving Object Monitoring
Query Language (MQL) to define mobility patterns, and also use Complex Event Pro-
cessing (CEP) for the pattern detection. The difference from out approach is that it fo-
cuses on pre-defined geographic regions, and it defines four primitives - enter, leave,
stay and pass - to represent basic events that each MN produces while moving around.
Moreover, Mobiiscape is geared towards the detection of individual, rather than collec-
tive, mobility patterns.

The work of [14] proposes an extension of a complex event processing engine with
fuzzy spatial relations between events to enable the definition of qualitative spatio-
temporal patterns. In particular, they address the fuzzy distance relation between two
events in order to consider vagueness and uncertainty, which is not the focus of our
work.

There are also commercial products that implement spatial extensions to CEP engines
to enable the processing of spatiotemporal events: SpatialRules, from ObjectFX is a
CEP engine for geospatial data that is compliant with OGC geospatial specifications
[15] and where event processing rules have built-in geospatial and temporal operators.
GCEP from SURNA INC. is an extension of Esper that allows the use of OGC Geospa-
tial Functions for filtering and supports 12 topological functions. Finally, the RuleCore
CEP Server1 is a complex event processing engine used for real-time detection of com-
plex event patterns that enables defining rules using location information (data collect-
ed from GPS sensors). The engine allows creation of data streams of events coming
from specific geographic zones. However, the detection capability of RuleCore is main-
ly focused on spatiotemporal patterns of individual nodes (e.g. delays and excepts in
supply chains, or vehicle/driver not complying with working hours regulation), rather
than collective mobility patterns.

1 wwww.rulecore.com

 4

3 Basic Concepts and Assumptions
In this section we will present and discuss the main concepts and technologies under-
lying our work.

3.1 Collective Mobility Patterns and the Cluster Pattern
In this paper we will concentrate on detecting a specific collective mobility pattern, the
Cluster pattern, since it has many applications. The cluster pattern is dynamic, transito-
ry and non-precise by nature, and is essentially determined by an unusual density of
mobile nodes at some geographic point or region, which in turn may be previously de-
fined, or not. In the first case, the goal is to check for a cluster formation at certain
points/regions of interests, such as gateways, street sections, city neighborhoods, etc.
In this work, however, we will focus on identifying clusters anywhere, by comparing
the locations of mobile nodes relative to one another, since this is clearly a more com-
plex problem.

The definitions of properties that are relevant to be considered in the detection of clus-
ters, such as the density to be considered as unusual, among other factors, are depend-
ent to application requirements. For example, an application may be interested either
in detecting: only the occurrence and location of clusters (independent of their size and
number of nodes); the approximate perimeter (or size) of a cluster; the current number
of nodes in each detected cluster; or the identities of the nodes that are members of the
detected clusters. In regard to the evolution of the cluster patterns, applications may be
interested to trace how the density, perimeter or location of the clusters are changing
over time.

For the sake of simplicity, but still quite useful for many applications, in this work we
concentrate in detecting the occurrence of clusters and theirs locations. Hence, we de-
fine a detectable cluster pattern as follows:

Definition: Given a threshold distance D, a minimum number of clustered nodes CN
and a time t, we say that a cluster of MNs was formed at time t iff during some interval
[t, t+T], with T > ∆, there exists a set S of mobile nodes, where |S| > CN, such that Eu-
cledianDist(posi + ε , posj + ε) ≤ D, and i, j ∈ S.

Note that D and CN are parameters provided the application and CN/D is the unusual
density that characterizes a cluster. Moreover, ∆ is the minimum cluster existence time.

3.2 System Model and Assumptions
The system is composed of mobile nodes (MN) with wireless connection, and station-
ary nodes. The stationary nodes have Internet connectivity and are reliable (do not
fail).

We assume that each MN is able to sense its current position, pos, with a maximum er-
ror E, can probe some other relevant sensors, and is also capable of computing its ap-
proximate speed vector v. Using its wireless connection it transfers a message (carrying
all collected mobile sensor data with a timestamp) to some stationary machine once
every ρ time units. Delivery of messages through the wireless medium is reliable, and
in normal circumstances, the transmission delay is at most δ. If the MN’s wireless
communication link is experiencing connectivity problems, than the MN is notified of a
disconnection after k * δ time units, where k * δ < ρ. The sensor probing time by the
MN is negligible.

 5

Among the stationary nodes, Processing Nodes (PN) are in charge of executing the
mobility pattern detection logic of the monitoring system, while Gateways (GW) are
entirely dedicated to handling all connectivity issues with a subset of all MNs.

3.3 Complex Event Processing
Complex Event Processing (CEP) [7] is an event-based technology that provides an
asynchronous processing model for the online detection of situations of interest. A CEP
system receives streams of raw events generated by different sources (e.g. sensors), con-
tinuously processes these event streams and generates derived events, which are sent to
event consumers (e.g. online monitoring applications) interested in receiving notifica-
tions about the occurrence of detected situations.

These situations are described by CEP rules, which are set-up in one or more CEP en-
gines to continuously process event streams. CEP rules are Event-Condition-Action
(ECA) rules that use operators (e.g. logical, quantifying, counting, temporal, causal,
spatial and sequencing operators) that are applied on received events, seeking for cor-
relations among them, generating complex, or composite, events that summarize the
combination of constituent elementary events (i.e. events that are not composed by other
events). Raw events are usually elementary, while derived events can be either elemen-
tary or complex. A data dissemination service transports the events from data sources
to the CEP system, and the derived events generated by the CEP system to all interest-
ed event consumers [16].

Most CEP systems have the concept of Event Processing Agents (EPAs), which are
software modules that implement part of the entire event processing logic between
event producers and event consumers, encapsulating some operators and CEP rules.
The type of an EPA is defined by the behavior of the CEP rules it implements, such as
filtering, transformation (e.g. translation, aggregation, splitting, composition) or specif-
ic event pattern detection. An Event Processing Network (EPN) is a network of inter-
connected EPAs that implement the global processing logic for pattern detection
through event processing [17]. In an EPN the EPAs are conceptually connected to each
other (i.e. output events from one EPA are forwarded and further processed by other
EPAs) without regard to the particular kind of underlying communication mechanism
for event dissemination.

CEP systems, are an evolution of publish/subscribe systems [18]. Here, events are
pieces of information at different levels of abstraction, with inherent semantics and
coming from different sources. Comparing CEP with content-based publish/subscribe,
the former provides the capacity of specifying relationships not only over event attrib-
utes, but also relationships between different types of events (and their attributes) [16].
In addition, it allows taking into account the history of already received events, and
most importantly, allowing subscribers to express interest in composite events. The ex-
pressiveness of CEP also exceeds the capabilities of simple Data Stream Management
Systems (DSMS), since it provides the ability to detect complex patterns of conjunc-
tions and disjunctions, sequencing, ordering, and other types of relationships among
events.

The event composition capability of CEP is very useful for enhancing the abstraction
level of the detection of mobility patterns, describing rules that generate events with
different levels of abstraction, which can be hierarchically organized to represent com-
plex patterns composed of simpler ones.

 6

3.4 Distributed Complex Event Processing (DCEP)
One important aspect with significant impact on the scalability of the processing capac-
ity of an EPN is the deployment model, which may be centralized or distributed [16].
In a DCEP system, as shown in Figure 1, the event streams are processed by EPAs de-
ployed at different nodes interconnected by a communication infrastructure. Distribut-
ed event processing architectures can either be deployed in a computer cluster, where
nodes are tightly coupled by a fast and reliable network and belong to a same adminis-
trative domain, or in an overlay network of nodes dispersed in a Wide Area Network
(WAN). Clustered systems benefit from parallel event processing, but demand high
network bandwidth usage between the cluster nodes and the remote producers and
consumers of events. Networked architectures, on the other hand, focus on minimizing
network bandwidth usage, by deploying EPAs closer to event producers and consum-
ers. In this work, we assume a clustered approach, since we take advantage of a mid-
dleware infrastructure specially suited to provide scalability on handling a large num-
ber of mobile nodes sending data streams to a single computer cluster, but with differ-
ent points of attachment (see Section 4.1). The placement decision for the EPAs of a
particular application can balance different criteria, such as geographical location of
event sources and sinks, network throughput and reliability, functionality, data seg-
mentation, load-balancing, etc [16].

Different academic and commercial distributed event-processing systems are available.
The majority of them use a clustered deployment, e.g. [19]–[21], while a few implement
a networked solution [22], [23].

Figure 1 - Typical characterization of a DCEP system, with EPAs deployed on different processing nodes

of a cluster or overlay network.

3.5 DCEP Systems’ Processing and Communication Layers
As show in Figure 2, a DCEP system is typically organized into different layers. The
Event Processing Layer is responsible for managing all event-processing entities and
mechanisms, such as the CEP engines, deployment of EPAs (a single Processing Node
can have many EPAs locally deployed), CEP rules, etc, while a Communication Layer
implements a service that transports events from data producers to the CEP system,
internally between EPAs, and from the CEP system to the event consumers. Figure 2
shows nodes of a network running instances of a DCEP system, with the Event Pro-
cessing Layer with some deployed EPAs and a Communication Layer used by the sys-
tem to propagate events.

 7

Figure 2 - A DCEP system organized into a Processing Layer and a Communication Layer.

3.6 Data Distribution Service for Real-Time Systems (DDS)
The vast majority of existing DCEP system use a push-based (i.e. asynchronous) com-
munication for its event dissemination layer. The most recent and state-of-the-art evo-
lution of distributed pub/sub is the Data Distribution Service for Real-Time Systems
(DDS) [8], which brings along many advantages in performance, scalability, availabil-
ity and quality of service mechanisms. The DDS standard defines a fully distributed
peer-to-peer (i.e. broker-less) real-time data-centric publish/subscribe (DCPS) com-
munication model. It provides high performance communication - comparisons such
as [24] show the performance superiority of DDS over other pub/sub platforms (e.g.
CORBA Notification Service, JMS and SOAP) - scalability and availability, and sup-
ports the specification of Quality of Service (QoS) contracts between data producers
and consumers, and also mechanisms for dealing with real-time aspects (e.g. priority
channels and specific QoS policies). It allows interoperability across different DDS im-
plementations, programming languages and platforms, as well as automatic discovery
of DDS publishers/subscribers.

Figure 3 - DDS specification architecture.

Figure 3 shows the DDS specification architecture. In this model, a Minimum Profile
provides the concept of DDS Topics, which are logical entities defined to compose a
distributed relational data model, also known as Global Shared Data Space. The DCPS
Model also provides a Durability Service for data persistence, an Ownership Service
for defining ownership of different sources of data, and Content Subscription, which
allows content-based subscriptions for data.

DDS Topics are first class entities for information transfer, which application peers can
publish or subscribe to, and can be regarded as distributed relational database tables.
Topics are defined by the application programmer, which writes an IDL file describing
the names, data types, and the keys that identify the instances (that can be seen as da-

 8

tabase rows) of each Topic, which are called samples. A compiler takes the IDL as in-
put, and generates code for communication stubs in a desired programming language.
By using the generated stubs, applications can join a DDS Domain, and publish and
subscribe to data in this Domain. The DDS Domain, which contains all shared data, is
fully distributed over the peer-to-peer network formed by participating network
nodes, without any intermediate broker or centralized management entity. DDS appli-
cations produce and consume data to this Global Shared Data Space without any direct
knowledge of the parties involved in the production and consumption of data (i.e.
naming and location transparency).

The DDS specification also provides a large set of QoS features and enforcement mech-
anisms. Every producer and consumer of data defines its QoS requirements or capabili-
ties through QoS contracts that are matched by a protocol, called Requested-versus-
Offered (RxO) protocol, which checks QoS matching before any establishment of com-
munication. These QoS parameters address many aspects, such as communication reli-
ability, latency or transport priority, data persistence, and behavior of node discovery
mechanisms, among many others.

Figure 4 - Illustrative example of a DDS Domain with a DDS Topic and its instances, Data Reader, Data

Writer, and QoS matching.

Figure 4 shows an illustrative example of the main entities involved in a DDS commu-
nication: a DDS Domain containing a Topic with the name VehicleLocation, which has
an associated data type description. A DataReader specifies required QoS policies to be
met by any publisher of the Topic to be read. A DataWriter specifies the QoS policies
offered to any subscriber of data from the Topic. When the DataWriter inserts or up-
dates a Topic instance (i.e. a row in the “table” of the Topic), all DataReaders registered
to that Topic and with matching QoS policies will participate in the data transmission
and will receive the published data. Different existing DDS implementations are avail-
able. This work uses the RTI Connext DDS [9] implementation.

Considering the advantages in system’s performance, scalability and availability, as
also observed by other work such as [25], DDS is a data dissemination technology with
a great potential to benefit DCEP systems. However, to the best of our knowledge, so
far no existing known DCEP implementation uses DDS for data dissemination. Fur-
thermore, this work presents an infrastructure that extends the DDS infrastructure to
support the connection of mobile nodes, using a simple protocol that bridges their con-
nection from the Internet with the core DDS domain. Section 4 explains the system ar-
chitecture, presenting how the DCEP system uses the DDS specification and how mo-
bile devices connection with this system is performed with scalability.

 9

4 System Architecture
Our infrastructure for mobile communications and distributed complex event pro-
cessing is composed of two main layers: at the bottom, a communication layer provides
reliable and scalable communication to and from mobile nodes, as well as the load-
aware distribution of sensor data streams to Processing Nodes (PN) at the fixed net-
work. At the upper layer, and using this base communication layer, an event pro-
cessing layer provides means of deploying event processing networks, i.e. EPAs exe-
cuting CEP rules, on a set of distributed PNs. The two middleware layers are presented
in more detail in the following.

4.1 Scalable Data Distribution Layer
At the bottom layer, the Scalable Data Distribution Layer (SDDL) [26] is a communica-
tion middleware that connects stationary nodes in a wired core network (DDS domain)
to mobile nodes with an wireless internet connection (see Figure 5). Some of the sta-
tionary nodes are data processing nodes, others are gateways for communication with
the mobile nodes, and yet others are monitoring and control stations operated by hu-
mans. The latter ones can display the mobile nodes’ current position (or other relevant
sensor data of each node), and allow the operator to receive event notifications about
situations related to one or several mobile nodes. SDDL employs two communication
protocols: DDS’s (Data Distribution Service) Real Time Publish/Subscribe (RTPS) for
the wired communication within the SDDL core, and the Mobile Reliable UDP (MR-
UDP) [27] for the inbound and outbound communication between the core network
and the mobile nodes. DDS is described in detail in Section 3.6 . The Mobile Reliable
UDP (MR-UDP) protocol is the basis for the Gateway-mobile node interaction. It im-
plements TCP-like functionality on top of UDP and has been customized to handle in-
termittent connectivity, Firewall/NAT traversal and robustness to changes of IP ad-
dresses and network interfaces. Each message, in either direction, requires an acknowl-
edgement that, if not received, causes each transmission to be retried several times be-
fore a connection is considered broken.

Figure 5 - SDDL middleware overview.

In addition, as part of the SDDL core, three types of nodes play an important role in
regard to event processing of mobile sensor data streams:

The Gateway (GW) defines a unique point of attachment (PoA) for connection of the
mobile nodes to the services of the SDDL core. The Gateway is responsible for manag-
ing a separate MR-UDP connection with each MN, transforming any application-
specific message or sensor data from the MN into a DDS message, and in the opposite
direction, converting DDS messages to MR-UDP messages and delivering them relia-
bly to the corresponding MN(s). Being the handler of connections to the mobile nodes

 10

(MNs), the Gateway is also responsible for notifying other SDDL core services when a
new MN connects to the system or when some MNs disconnect from it. This infor-
mation is used by other SDDL services, such as caching of messages addressed to tem-
porary offline mobile nodes, for later delivery.

The PoA-Manager is responsible for two tasks: to periodically distribute a list of Points
of Attachment (PoA-List) to the MNs and to eventually request that some MNs switch
to a new Gateway/PoA. The PoA-List is always a subset of all available Gateways in
SDDL, where the first element points to the preferred Gateway/PoA, then to the se-
cond choice, and so forth. By having an updated PoA-List, an MN may always switch
its Gateway if it detects a weak connection or a disconnection with the current Gate-
way. Moreover, by distributing different PoA-Lists to different groups of mobile nodes,
the PoA-Manager is able to balance the load among the Gateways as well as announce
to the mobile nodes when a new Gateway is added to or an existing Gateway is re-
moved (or failed) from the SDDL core.

The Load Balancer (LB) is a node, which continuously monitors the current load of the
Processing Nodes in the SDDL core, and assigns Data Processing Slices, i.e. portions of
the global mobile data sensor stream, to each of the PNs. This data volume slicing can
be done in regard to any attribute of the message produced by the MNs, such as the
UUID of the sender or its geographic coordinates. By this, it is possible to divide the
total data processing load among any number of PNs. Every data item of the data
stream must have assigned a single Data Slice in order to be processed by some PN. In
SDDL this mapping of data items to slices is performed at the Gateways, while the
Load Balancer transparently sets the subscription filters for each PN so that it only re-
ceives the data items that pertain to the corresponding Data Slices assigned to it [28].

The Universal DDS Interface (UDI) [26] is a library that fully abstracts the DDS imple-
mentation, promoting reusability and facilitating the development of the architecture
components. Its main goal is to encapsulate the specificities of DDS implementation,
and to provide common abstractions for use of different DDS products. As well as
simplifying the set-up and configuration of DDS entities. The UDI supports the crea-
tion of DDS Topics (and Content Filtered Topics), Domain Participants, Publishers,
Subscribers, Data Readers and Data Writers. In this work, we used the Real-Time In-
novation’s Connext DDS [9] implementation.

4.2 Distributed Complex Event Processing Layer (DCEPL)
The Distributed Complex Event Processing Layer (DCEPL) is the middleware compo-
nent that supports the deployment and execution of distributed complex event pro-
cessing networks for the detection of situations of interest, and in particular, for the de-
tection of collective mobility patterns. Figure 6 depicts the main elements of the archi-
tecture, following the typical organization of a DCEP system with event sources (the
mobile nodes), a set of processing nodes and event consumers.

Figure 6 - DCEPL overview.

 11

The DCEPL Manager implements the event processing mechanisms, which supports
the definition and deployment of EPAs at different processing nodes, so as to compose
distributed EPNs.

Each DCEPL Manager instance contains a local CEP engine, which may have several
deployed EPAs. The deployed EPAs process events received from mobile nodes and
from other EPAs and generate derived events that are consumed by other EPAs (e.g.
running locally or at other nodes) and by event consumers (i.e. subscribed monitoring
applications or services).

Its important to make clear that all communication follows the publish/subscribe par-
adigm, i.e. all event producers and consumers, such as mobile nodes, EPAs and appli-
cations only publish or subscribe to data anonymously, with time, space and reference
decoupling.

The DCEPL system uses the SDDL middleware, explained in Section 4.1 , as its com-
munication layer. SDDL provides reliable and scalable communication to and from
mobile nodes, which are outside the SDDL Core. Mobile nodes connect to Gateways,
producing the raw events that are fed into the system, and also receiving any derived
event generated from within the SDDL Core.

In order to take advantage of SDDL’s load balancing mechanisms for mobile sensor
data processing, instances of the DCEPL system are deployed on SDDL Processing
Nodes. Each DCEPL Manager instance uses SDDL for its local EPAs to receive elemen-
tary events from MNs, and to exchange elementary and composite events among each
other within the SDDL Core. Each EPA contains a SDDL/UDI Subscriber for subscrib-
ing to events and a SDDL/UDI Publisher for publishing derived events resulting from
their CEP processing. For example, an EPA can subscribe to slices of sensor data pro-
duced by mobile nodes or subscribe to derived events produced by other EPAs.

As already mentioned, each DCEPL instance running on a processing node allows the
instantiation of any desired number of EPAs. An EPA has a set of rules, where each
rule is composed of sequential Event Processing Language (EPL) statements describing
the CEP rule processing logic. EPL was chosen since it is very similar to SQL, and is
currently one of the most popular event processing languages.

In order to facilitate application development and support flexible deployment, all en-
tities to be instantiated by each DCEPL instance are described in a Configuration Reposi-
tory accessible by each processing node. By defining entities in this metadata reposito-
ry, the application developers and system administrators can deploy EPNs into the sys-
tem in a straightforward way, without requiring knowledge of any programming lan-
guage other than EPL. The configuration repository also functions as a library of reus-
able rules, which can be loaded by any processing node.

Among the entities defined in the configuration repository are: a description of the
event types referenced in EPL rules (and exchanged by among EPAs), EPL statements
describing the EPAs’ logic, external functions implemented in Java and called by these
statements, execution parameters, such as arguments to rules, and deployment param-
eters, such as the mapping of EPAs onto processing nodes and references to relational
databases. The databases can be used as knowledge bases for rules, or else, for storing
events generated by the system, for example for auditing and generation of reports.
The modularity of the DCEPL design allows it to be adapted to use different CEP en-
gine implementations that uses the Event Processing Language (EPL) as the means for
defining CEP rules. In the current version of DCEPL we used the Esper [20] engine.

 12

5 Detection of the Cluster Pattern – A Case Study
The cluster pattern is detected when a sufficiently large set of MNs gather and become
close to each other. Hence, the main approach for detecting the cluster pattern is as fol-
lows:

The most basic information for the detection of mobility patterns, i.e. the raw events
needed for the detection of these patterns, is the position information periodically sent
by each mobile node (MN). We call each of these raw events a MNLocationReport,
which contains the mobile node’s current position, i.e. its geographical coordinates and
measurement accuracy.

MNLocationReport events are captured into an EPN that processes them in order to de-
tect other events with higher levels of abstraction. Figure 9 gives an overview of the
EPN, with the constituent EPAs and the events detected by each one, leading to the
detection of the Cluster pattern. The following subsections explain in more detail the
correlation logic in each of the EPAs..

Figure 7 - EPN with the chain of EPAs to detect cluster events.

Since the cluster pattern looks for mobile nodes that are close to each other, the SDDL
architecture uses location filters, defined in terms of latitude and longitude intervals, to
separate the MNLocationReports into sub-regions before inserting them into the pro-
cessing network (as illustrated by Figure 8). This split is done by the Gateways using
the data-slice mechanism of the load-balancing DPSLB solution [28] (see Section 4.1). It
suffices to check the distance between all pairs of MNs within the same sub-region of
the total area of interest, since nodes that are distant from one another will never be
aggregated into a cluster. By using this approach, a significant reduction of the pro-
cessing complexity in the EPN is achieved, since agents subscribed to each slice only
handle location updates of a given sub-region.

Figure 8 - Overview of the event processing network.

5.1 MNsTooClose
The first step to detect a cluster is to detect pairs of MNs that are within a distance D of
each other. The MNsTooClose EPA at each different slice processes the mobile nodes
location updates (i.e. MNLocationReport events) correspondent to that slice, combining
all pairs of location updates that are within distance D + 2ε from each other, where ε is

 13

the measurement accuracy. Each pair of location update is aggregated into a complex
event denoted MNsTooClose.

To do that, each EPA operates in a time-batch scheme, where it retrieves all location
updates in a given time period (e.g. all MNLocationReport events from timestamp T to
timestamp T - 30 seconds). The agent correlates this set of location update events with
the set itself, producing a Cartesian product of all possible pairs of location updates.
This result is then filtered by the distance function, that checks if each pair is close to
each other , as shown in Code 1. If the coordinates are within a minimum Eucledian
distance (considering de accuracy of both coordinates), then the EPA produces an
MNsTooClose event containing the pair of location updates.

INSERT	 INTO	 MNsTooClose	

SELECT	 A,	 B	
FROM	 	 	 MNLocationReport.win:time_batch(30	 sec)	 as	 A,	
	 	 	 	 	 	 	 MNLocationReport.win:time_batch(30	 sec)	 as	 B	
WHERE	 	 A.id	 <>	 B.id	 AND	
	 	 	 	 	 	 	 distance(A.latitude,	 A.longitude,	 B.latitude,	 B.longitude)	 <	 D	 +	 2ε	

Code 1 – Rule to identify MNs that are near one another.

5.2 MNCloseNeighbors
The MNsTooClose events pinpoint two mobile nodes that are close to each other.
However, the cluster pattern depends on detecting a minimum number of such close
nodes CN, here denoted neighbors. Thus, a fundamental requirement is to know the
number of MNsTooClose events each node has. Therefore, all MNsTooClose events for
each node are collapsed into a single event that expresses a nodes’ location update and
its number of close neighbors, called MNCloseNeighbors, as shown in Code 2. Since we
are interested on clusters, a sub-query is executed to filter nodes that have at least a
minimum number of neighbors.

INSERT	 INTO	 MNCloseNeighbors	
SELECT	 	 	 	 	 	 Close.A,	 count(*)	 	
FROM	 	 	 	 	 	 	 MNsTooClose.std:unique(A.id,B.id).win:time(30	 sec)	 as	 Close	
GROUP	 BY	 	 	 	 Close.A	
HAVING	 	 	 	 	 	 	 count(*)	 >	 CN	

Code 2 – Filtering rule to extract nodes that have at least CN neighbors.

5.3 ClusterList
A ClusterList event is a list of all clusters detected at a given moment, i.e. a list of loca-
tions where a sufficiently large set of MNs are gathered close to each other. In order to
generate such list, the ClusterList EPA receives MNCloseNeighbors events, which pro-
vide information about mobile nodes with a significant number of close neighbors.
When a new MNCloseNeighbors event arrives at the ClusterList EPA, the location update
arrived inside this event is considered as a candidate for a cluster location, called clus-
ter-head. With this candidate, the rule searches in the existing cluster list for cluster-
heads in the vicinity of the candidate’s location. If no match is found, a new cluster is
created and the candidate is inserted as its cluster-head. If a match is found, and since
several MNs close to one another may share a large number of neighbors, it is neces-
sary to collapse these candidates into a unique cluster. The cluster head with the largest
number of neighbors becomes the cluster-head of the new collapsed cluster. Also, it is
important to identify the cluster-head candidates that are positioned far from each oth-
er, since they are genuine members of different and disjoint clusters. Candidates that
are far from each other (i.e. not within D + 2ε), are added to the cluster list and consid-
ered as cluster-heads of independent clusters.

 14

ON	 	 	 	 MNCloseNeighbors	 AS	 candidate	
MERGE	 MNClusterList	 	 	 	 AS	 cl	
WHERE	 distance(candidate.latitude,	 candidate.longitude,	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 cl.latitude,	 cl.longitude)	 <	 D	 +	 2ε	
	 	 	 	 	 	 	 WHEN	 NOT	 MATCHED	
	 	 	 	 	 	 	 	 	 	 	 	 THEN	 INSERT	 INTO	 EventMNClusterList	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 SELECT	 candidate.mnLocationReport,	 candidate.numNeighbors	
	 	 	 	 	 	 	 WHEN	 MATCHED	 AND	 	 	 	 	 	 candidate.numNeighbors	 >	 cl.numNeighbors	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 THEN	 UPDATE	 SET	 	 cl.mnLocationReport	 =	 candidate.mnLocationReport,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 cl.numNeighbors	 	 	 	 	 =	 candidate.numNeighbors	

Code 3 – Rule to extract unique cluster-heads.

6 Performance Evaluation
In order to evaluate our approach, we ran several experiments using many simulated
MNs, that together produce a continuous stream of GPS sensor data to be processed by
the EPN deployed in our middleware, with the goal of detecting the Cluster mobility
pattern. In order to simulate the cluster mobility pattern of nodes, we defined Attractor
Points at random coordinates in a map region. Square areas, called AttractorPointSquare
(APS), of 400m2 where defined around these points. Then MNs where forced to be lo-
cated, and moving randomly, within or close to these APSs for a certain interval of
time (APS Permanence Time). This APS Permanence Time is chosen randomly between a
minimum and a maximum number of location update periods ρ. After its APS Perma-
nence Time is over, a simulated MN is released from this APS to a random place in the
map region, where it resumes its random walking movement. As for the density that
characterizes a cluster, it is assumed that the monitoring application is interested in
detecting clusters that have at least 20 simulated MNs gathered in such an APS, i.e.,
one MN per 2,000 square meters. Although this collective instantaneous flock-in
movement behavior is rather artificial, it allows us to measure the latency of the detec-
tion using our middleware and to evaluate how this latency behaves for various simu-
lation parameters.

6.1 Configuration and simulation parameters
The experiments were executed with following system configuration and simulation
parameters:

Name Description Set of Values

#MNs Total number of simulated MNs 500, 1000, 2500, 5000, 7500

PermT Max Maximum APS Permanence Time Uniform dist. 1 to 10.

#APS Total number of simultaneous clusters 1

#PN Total number of Processing Nodes 1, 2, 3

#DPS Total number of Slices of the DPSLB 1, 2, 3

Table 1. Simulation parameters.

The primary choice of simulating a single cluster was to stress the system architecture
and discover the limits of the designed rules. By dividing the nodes into different clus-
ters we would also divide the work task, since the number of operations and compari-
sons executed by the CEP rules would be divided.

 15

6.2 Experimental setup
The experimental set-up was as follows: A single gateway, up to three PNs and three
MN-simulation applications. All these machines were directly connected to a Gigabit
Ethernet switch.

Name Description

Gateway
Mac OS X

Intel i7 2.3 GHz, 16 GB DDR3 RAM
Oracle Java 1.6

Processing Node
CentOS 5

Intel i5 2.3 GHz, 8 GB DDR3 RAM
Oracle Java 1.6

MN-Simulator
Windows 7

Intel i7 2.3 GHz, 4 GB DDR3 RAM
Oracle Java 1.6

Table 2. Machines configuration.

The MN simulation program uses a thread pool to execute a specified number of mo-
bile nodes, each one sending location updates with a periodicity of 15 seconds. The
nodes connect to the SDDL Gateway using the MR-UDP protocol. Although it is not
feasible to make all simulated mobile nodes use the real cellular network for sending
data, the connection through the Gateway and the use of the MR-UDP protocol seeks
to simulate the real-world scenario where mobile nodes use 2G/3G connections to
send their location updates. A Wi-Fi connection was not used for the tests since it
would make all simulated MNs to compete to access of the same wireless 802.11 net-
work, causing many medium access collisions, contrary to the real-world situation
where each MN would have its own 2G/3G connection.

The simulation was executed in a delimited scope of the south region of the city of Rio
de Janeiro, as illustrated previously by Figure 8. The regions delimited by three rectan-
gle of this map represents directly the slice that each processing node subscribes. A
processing node receive only the location updates of its subscribed slice. The simula-
tion emulates clusters of 500, 1000, 2500, 5000, and 7500 mobiles nodes on this map.
With a single EPA, the entire 7500 nodes move to a single rectangle, while with two
EPAs they move to two regions (3750 each), and with three EPAs they move to three
regions (2500 each).

6.3 Performance Results
The exponential complexity of the problem reflected directly in the experiments re-
sults. As expected, the results had an exponential curve, i.e., a slight increase in the
number of nodes had a huge increase in the detection latency, as shown by the graph
of Figure 9 (in logarithm scale). For example, the simulation of 2500 nodes executed in
average 6.250.000 comparisons, whilst 5000 nodes required in average 25.000.000 com-
parisons. The proposed distributed solution mitigate the detection period. By using a
distribution configuration, in one instance, the detection time was reduced from 30
minutes to 20 seconds. In a higher scale, using only one EPA, for 7500 mobile nodes,
the simulation took more than 1 hour (3600 seconds) and did not end. Using a distrib-
uted EPA configuration the detection period was reduced to an average of 45 seconds.

 16

Figure 9 - Average time required for detecting a given cluster of nodes with one, two and three EPAs.

With 500 and 1000 nodes the results showed that the central solution performed better
than the distributed one, as illustrated by the graphs of Figure 10 (in logarithm scale).
Particularly, because the distribution cost was higher than the number of simulated
nodes. Nevertheless, the distributed processing nodes configuration had a similar de-
tection time than the centralized one.

Figure 10 - Detection latency for 500 and 1000 Mobile Nodes.

For higher number of mobiles nodes, such as 2500, 5000 and 7500, the results clearly
indicate the bottleneck of the single machine solution, as illustrated by the graphs of
Figure 11 (in logarithm scale). The distributed solution was better in both instances,
with gains up to 99% over the centralized solution. For instance, to detect a cluster of
5000 nodes, the central EPA took 1888.507 seconds (around 31 minutes), while the dis-
tributed EPA took 22.360 seconds.

1.00	

10.00	

100.00	

1000.00	

10000.00	

0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	

Av
er
ag
e	
De

te
c5
on

	 T
im

e	
(in

	 m
s)
	 	

Number	 of	 Nodes	

1	 x	 EPA	

2	 x	 EPA	

3	 x	 EPA	

1	

100	
2500	 Mobile	 Nodes	

1	 x	 EPA	 2	 x	 EPA	 3	 x	 EPA	 1	

10000	
5000	 Mobile	 Nodes	

1	 x	 EPA	 2	 x	 EPA	 3	 x	 EPA	

 17

Figure 11 - Detection latency for 2500, 5000 and 7500 Mobile Nodes.

As expected, the results show that with the addition of EPAs the detection time deeply
decreases. However, surprisingly, the reduction rate where better than the predicted
when adding additional EPAs, as shown by Figure 14. Given the distribution com-
plexity, additional EPAs add a higher configuration cost, thus for lower numbers, such
as 500 and 1000 mobiles nodes, the distribution cost of three EPAs exceed the process
required time of these nodes in two EPAs. However, for large numbers, such as 5000
and 7500, an additional distribution EPA clearly mitigate the detection time required.

Figure 12 - Average time required (y for detecting a given cluster of nodes with two and three EPAs.

7 Conclusion
Online detection of collective mobility patterns can be useful for many application are-
as, and so far has not been extensively studied. To the best of our knowledge, our work
is the first attempt to describe a specific collective mobility pattern – the cluster pattern
– in terms of a set of CEP rules, and to implement a mobile communication and dis-
tributed event processing middleware that supports the distributed deployment of
EPAs, with the goal of detecting such patterns in a scalable way, and with low latency.

Although it is early to conjecture which sorts of collective mobility patterns can be de-
scribed and efficiently detected using CEP, we believe that our preliminary results are
encouraging, and may open a new thread of research.

As the next steps, we plan to improve the support for CEP rule programming and dis-
tributed deployment of EPAs in our middleware, experiment with CEP rules in order
to optimize the Cluster pattern detection, and investigate which, and how, other mobil-
ity patterns can be effectively represented as CEP rules.

1.000	

10000.000	
7500	 Mobile	 Nodes	

1	 x	 EPA	 2	 x	 EPA	 3	 x	 EPA	

0.00	

20.00	

40.00	

60.00	

80.00	

100.00	

120.00	

0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	

Av
er
ag
e	
De

te
c5
on

	 T
im

e	
(in

	 m
s)
	 	

Number	 of	 Nodes	

2	 x	 EPA	

3	 x	 EPA	

 18

8 References

[1] H. Jeung, M. L. Yiu, and X. Zhou, “Discovery of convoys in trajectory
databases,” Proc. VLDB …, 2008.

[2] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of flock patterns
in spatio-temporal data,” Proc. 17th ACM SIGSPATIAL Int. Conf. Adv. Geogr.
Inf. Syst. - GIS ’09, no. c, p. 286, 2009.

[3] M. R. Vieira and V. J. Tsotras, “Complex motion pattern queries for trajectories,”
2011 IEEE 27th Int. Conf. Data Eng. Work., pp. 280–283, 2011.

[4] M. R. Endsley, “Toward a theory of situation awareness in dynamic systems,”
Hum. Factors J. Hum. Factors Ergon. Soc., vol. 37, no. 1, pp. 32–64, 1995.

[5] E. Feibush, N. Gagvani, and D. Williams, “Visualization for situational
awareness,” Comput. Graph. Appl. IEEE, vol. 20, no. 5, pp. 38–45, 2000.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M.
Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: A new class of data
management applications,” 2002, pp. 215–226.

[7] D. C. Luckham, The power of events: an introduction to complex event
processing in distributed enterprise systems. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 2001.

[8] OMG, “Data-Distribution Service for Real-Time Systems (DDS).” 2006.

[9] RTI, “RTI Connext DDS.” [Online]. Available: www.rti.com.

[10] P. Laube, M. Kreveld, and S. Imfeld, “Finding REMO — Detecting Relative
Motion Patterns in Geospatial Lifelines,” in Developments in Spatial Data
Handling, Springer Berlin Heidelberg, 2005, pp. 201–215.

[11] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of flock patterns
in spatio-temporal data,” in Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, 2009,
pp. 286–295.

[12] I. Boutsis, V. Kalogeraki, and D. Gunopulos, “Efficient Event Detection by
Exploiting Crowds,” in Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems, 2013, pp. 123–134.

[13] B. Kim, S. Lee, Y. Lee, I. Hwang, Y. Rhee, and J. Song, “Mobiiscape:
Middleware support for scalable mobility pattern monitoring of moving objects
in a large-scale city,” J. Syst. Softw., vol. 84, no. 11, pp. 1852–1870, Nov. 2011.

[14] B. M. F. Barouni, “An Extended Complex Event Processing Engine to
Qualitatively Determine Spatiotemporal Patterns,” in Proceedings of Global
Geospatial Conference, 2012.

 19

[15] S. Panzer, “ObjectFX Wins US Geospatial-Intelligence Foundation’s Industry
Achievement Award,” 2010. .

[16] G. Cugola and A. Margara, “Processing Flows of Information: From Data Stream
to Complex Event Processing,” ACM Comput. Surv., vol. 44, no. 3, pp. 1–62,
Jun. 2012.

[17] O. Etzion and P. Niblett, Event processing in action. Manning Publications Co.,
2010.

[18] P. T. H. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, “The Many
Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131,
2003.

[19] SAP SYBASE, “SAP Sybase Event Stream Processor CEP.” [Online]. Available:
http://www.sybase.com/products/financialservicessolutions/complex-event-
processing.

[20] EsperTech, “Esper.” [Online]. Available: http://esper.codehaus.org/.

[21] TIBCO StreamBase, “TIBCO StreamBase.” [Online]. Available:
http://www.streambase.com.

[22] TIBCO Business Events, “TIBCO Business Events.” [Online]. Available:
http://www.tibco.com/products/event-processing/complex-event-
processing/default.jsp.

[23] E. Fidler, H. A. Jacobsen, G. Li, and S. Mankovski, “The PADRES Distributed
Publish/Subscribe System,” in 8th International Conference on Feature
Interactions in Telecommunications and Software Systems, 2005.

[24] M. Xiong, J. Parsons, and J. Edmondson, “Evaluating the performance of
publish/subscribe platforms for information management in distributed real-time
and embedded systems,” 2011.

[25] R. Baldoni, S. Bonomi, G. Lodi, M. Platania, and L. Querzoni, “Data
Dissemination Supporting Complex Event Pattern Detection ∗,” no. Dd4lcci, pp.
1–25, 2010.

[26] L. David, R. Vasconcelos, L. Alves, R. André, and M. Endler, “A DDS-based
middleware for scalable tracking, communication and collaboration of mobile
nodes,” J. Internet Serv. Appl., vol. 4, no. 1, p. 16, 2013.

[27] L. David, M. Roriz, and M. Endler, “MR-UDP: Yet another Reliable User
Datagram Protocol, now for Mobile Nodes,” Monogr. em Ciência da Comput.
Pontifícia Univ. Católica do Rio Janeiro, 2013.

[28] R. O. Vasconcelos and M. Endler, “Autonomous Load Balancing of Data Stream
Processing and Mobile Communications in Scalable Data Distribution Systems,”
… Intell. Syst., 2013.

 20

