
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012 393

RDDS: A Real-Time Data Distribution Service for
Cyber-Physical Systems

Woochul Kang, Krasimira Kapitanova, Student Member, IEEE, and Sang Hyuk Son, Senior Member, IEEE

Abstract—One of the primary requirements in many
cyber-physical systems (CPS) is that the sensor data derived
from the physical world should be disseminated in a timely and
reliable manner to all interested collaborative entities. However,
providing reliable and timely data dissemination services is es-
pecially challenging for CPS since they often operate in highly
unpredictable environments. Existing network middleware has
limitations in providing such services. In this paper, we present
a novel publish/subscribe-based middleware architecture called
Real-time Data Distribution Service (RDDS). In particular, we
focus on two mechanisms of RDDS that enable timely and reliable
sensor data dissemination under highly unpredictable CPS envi-
ronments. First, we discuss the semantics-aware communication
mechanism of RDDS that not only reduces the computation and
communication overhead, but also enables the subscribers to
access data in a timely and reliable manner when the network is
slow or unstable. Further, we extend the semantics-aware commu-
nication mechanism to achieve robustness against unpredictable
workloads by integrating a control-theoretic feedback controller
at the publishers and a queueing-theoretic predictor at the sub-
scribers. This integrated control loop provides Quality-of-Service
(QoS) guarantees by dynamically adjusting the accuracy of the
sensor models. We demonstrate the viability of the proposed
approach by implementing a prototype of RDDS. The evalua-
tion results show that, compared to baseline approaches, RDDS
achieves highly efficient and reliable sensor data dissemination as
well as robustness against unpredictable workloads.

Index Terms—Cyber-physical systems (CPS), data distribution,
feedback control, publish/subscribe, real-time systems.

I. INTRODUCTION

M ANY cyber-physical systems (CPS) [1] are sensor-rich
distributed real-time embedded systems that closely in-

teract with the physical world. In such systems, a large number
of entities cooperate with each other to achieve their common
goals. They collect data from the physical world using sensors
and feed the sensor data into computing resources, which in
turn make real-time decisions in cooperation by sharing data

Manuscript received July 18, 2011; revised October 27, 2011; accepted De-
cember 25, 2011. Paper no. TII-11-324. Date of publication January 11, 2012;
date of current version April 11, 2012. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be ob-
tained from the IEEE by sending a request to pubs-permissions@ieee.org. Paper
no. TII-11-324.

W. Kang is with Electronics and Telecommunications Research Institute,
Daejon, 305-700, Korea (e-mail: wchkang@etri.re.kr).

K. Kapitanova and S. H. Son are with the Department of Computer
Science, University of Virginia, Charlottesville, VA 22903 USA (e-mail:
krasi@cs.virginia.edu; son@cs.virginia.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2012.2183878

and information among participating entities. For instance, con-
sider a team of firefighters involved in a search-and-rescue task
during a building fire. PDAs carried by the firefighters collect
data from nearby sensors to monitor the dynamic status of the
building. Each individual firefighter’s PDA has only limited in-
formation from nearby sensors. Therefore, in order to create a
more global picture of the situation, all PDAs have to collabo-
rate by sharing their locally collected real-time data [2], [3]. The
building-wide situation assessment requires the fusion of data
from all (or most) firefighters. Other examples of such CPS, re-
quiring collaboration among a large number of participating en-
tities, include future combat systems [4], vehicular networks [5],
unmanned vehicle groups, and traffic control. For these applica-
tions, the timely, scalable, and reliable dissemination of sensor
data to other collaborating entities is essential.

The primary difficulty of such systems, however, lies in the
highly dynamic nature of the systems, both in computing re-
sources and the physical processes. For instance, the availability
of participating entities can change dramatically during runtime
because of various reasons including temporary failures, noises
in communication, mobility, etc. Further, the network layers
exploited by such systems are usually unstable. For example,
most of the aforementioned applications cannot afford to have
fixed reliable networks. Current network middleware, however,
cannot handle the highly dynamic nature of CPS.

In this paper, we present a novel publish/subscribe middle-
ware architecture, called Real-time Data Distribution Service
(RDDS). In particular, since we are more interested in providing
timely and reliable data dissemination service under environ-
ments where workloads are bursty and communication is un-
stable, we focus on two aspects of RDDS to achieve such timely
and reliable dissemination service. Our approach to handling
bursty workload and unstable communication can be applied to
network middleware in general. However, the effect is partic-
ularly pronounced in topic-based publish/subscribe (TPS) sys-
tems since TPS has been extensively used for decentralized ap-
plications that run over large-scale and mobile networks [6].

One of the core mechanisms of RDDS is semantics-aware
communication using lightweight predictive sensor models.
Since most physical processes in the real world have continuity,
e.g., the change of ambient temperature, RDDS models data
streams using computationally lightweight physical models.
Both a publisher and its corresponding subscribers maintain
the same model for each sensor data stream. A new sensor
observation is transmitted from the publisher to the subscribers,
and the respective sensor models at both sides are synchronized
only when the prediction accuracy of the models becomes
lower than the required bound. This model-based approach
also provides the timeliness and reliability of sensor data since

1551-3203/$31.00 © 2012 IEEE



394 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012

the subscribers can locally predict the current as well as future
states of physical processes using the corresponding models
without actual communication with the publisher. This ability
can provide significant benefits for systems where real-time
feedback is necessary but the network is slow or unstable.

Further, we extend the semantics-aware communication
mechanism to the problem of guaranteeing Quality-of-Service
(QoS) in TPS by integrating proactive and reactive adaptation
of the quality of sensor data. The reactive feedback mechanism
at the publishers and the proactive feed-forward mechanisms
at the subscribers are integrated in order to enhance the quality
of real-time data distribution. At the publishers, a desired
utilization bound is achieved by adapting the model accuracy
using feedback controllers. On the other hand, to properly
set the data rates from the publishers, the incoming workload
is predicted in a proactive manner at the subscribers. With
this integrated control loops, we can provide the robustness
against unpredictable workloads both at the publisher and its
subscribers.

To show the viability of the proposed approach, we have
implemented RDDS by extending OMG (Object Management
Group)’s Data Distribution Service (DDS) [7] to include
the mechanisms that handle unstable environments. Using
this prototype, we evaluate RDSS on a testbed with realistic
workloads. Our evaluation results demonstrate that RDDS
takes advantage of the semantics of the sensor data to provide
efficient and highly robust data dissemination. To the authors’
knowledge, this paper presents the first attempt to provide QoS
guarantees in TPS by exploiting the semantics of sensor data
and the integrated double control loops. The remainder of this
paper is organized as follows. Section II gives an overview of
RDDS. Section III presents the details of the semantics-aware
communication. Section IV describes our experimental results.
The related work is discussed in Section V. Finally, we present
conclusions and future work in Section VI.

II. OVERVIEW OF RDDS

In this section, we briefly overview some of the mechanisms
behind RDSS, such as the service model, the QoS negotiation
patterns between publishers and subscribers, and how data
topics are defined.

A. Service Model of RDDS

RDDS envisions a large-scale CPS, in which multiple pub-
lishers, , collect real-time data from phys-
ical as well as logical sensors, , and publish
them to multiple subscribers, . A stream
of sensor data from a sensor is labeled as . Each
publisher collects data from a set of underlying sensors and
publishes the corresponding streams of sensor data to a subset
of . A subscriber consumes the streams from the publishers
and may run real-time tasks to analyze the situation and provide
timely feedback to control the physical processes. The distinc-
tion between publishers and subscribers is logical and one de-
vice, in practice, can play both roles. Fig. 1 shows an example
that contains five entities, i.e., firefighters. Each firefighter is
both a publisher and a subscriber to the sensor streams. Through
topic , each entity publishes data streams from local sen-
sors and also subscribes to data streams from remote sensors of

Fig. 1. Information space with RDDS.

other participating entities. Subscribing to gives a global
view of the situation captured by the sensors in the system.

While the delivery of sensor data from publishers to sub-
scribers occurs directly between the two parties, the discovery
of entities (publishers, subscribers, and data topics) and
Quality-of-Service (QoS)/Quality-of-Data (QoD) negotiation
occurs in a centralized manner using a broker. RDDS uses
a centralized discovery mechanism because of its simplicity
and performance. A distributed discovery mechanism could be
more robust but causes much higher communication overheads
due to the broadcasting or multicasting of discovery messages.
To avoid being the single-point of failure, a broker of RDDS
can be replicated.1 The existence of sensor streams is advertised
by publishers to subscribers via a broker or a group of brokers.
Subscribers interested in consuming data from a group of sen-
sors , where is a subset of , join the subscription group
by subscribing to the corresponding topic . By subscribing to

, a subscriber can receive data streams from the sensors in .
Publishers need not know who consumes or processes the data
streams, and subscribers need not know who produces them.

In RDDS, QoD is defined in terms of the precision bound of
sensor data. The maximum tolerable precision bound of sensor
data can be specified by the users. There exists a tradeoff be-
tween QoD and the freshness of data; to maintain higher fresh-
ness of the sensor data, a smaller precision bound is required at
the cost of increased workloads. Hence, it is necessary to pre-
vent the overload and subsequent message delays at each node
while satisfying the given QoD goals.2 To this end, the primary
QoS metric in this paper is the CPU utilization bound at each
node. Both parties, publishers and subscribers, can set the level
of QoS and QoD, which they provide/require. Publishers and
subscribers can negotiate a level of QoS and QoD that satisfies
both parties, and that they agree to adhere to. A broker regis-
ters available entities and coordinates with both publishers and
subscribers to reach an agreement on the QoS/QoD levels. The
QoS/QoD negotiation follows a request/offer model in which
the requested QoS/QoD has to be the same or weaker than the
one being offered. A broker also maintains meta information,
such as the liveness of participating entities, by periodically
checking the heartbeat signals from the entities.

Fig. 2 shows an example of handshaking procedure among
the entities of RDDS. It should be noted that the registration

1We plan to extend RDDS to support a distributed discovery mechanism in
the future.

2The formal definitions of QoS and QoD are introduced in Section III-C.



KANG et al.: RDDS: A REAL-TIME DATA DISTRIBUTION SERVICE FOR CYBER-PHYSICAL SYSTEMS 395

Fig. 2. An example of handshaking procedure.

of entities of RDDS, e.g., publishers, subscribers, and topics,
involves a broker, but actual delivery of sensor data occurs be-
tween the publisher and its subscribers.

B. Continuous Versus Discrete Data Topics

Data in RDDS is identified by topic, which allows publishers
and subscribers to refer to data unambiguously. A topic asso-
ciates a unique name and data type with the data itself. The
specified data type is commonly understandable to both pub-
lishers and subscribers. Program 1 shows an example that de-
fines two topic types, TempSensorType and MotionSensorType.
Each topic has a key field, which is used to identify a specific
sensor stream among instances of the topic. For example, in Pro-
gram 1, the data stream from a specific temperature sensor ,
where , can be identified by , which is a
key for the TempSensorType topic.

Program 1: An example of topic type definition.

Topics BuildingSensors{
#pragma DATA_KEY “TempSensorType:: sensorid”
#pragma DATA_CONTINUOUS “TempSensorType”

struct TempSensorType{
string sensorid;
double temperature;

};
#pragma DATA_KEY “MotionSensorType:: sensorid”
#pragma DATA_DISCRETE “MotionSensorType”
struct MotionSensorType{

string sensorid;
Boolean is Present;

};
};

Each topic type belongs to either DATA_CONTINUOUS
or DATA_DISCRETE categories. A topic that belongs to the
DATA_CONTINUOUS category has streams of data from sen-
sors that monitor continuously changing physical phenomena.
For example, ambient temperatures have continuity in both long
and short time scale. On the other hand, DATA_DISCRETE,
which is the default for data types, represents data streams from
sensors that have discrete values. For example, the presence
of objects in a room, which is measured by motion sensors,

Fig. 3. RDDS architecture.

has discrete values and is difficult to formulate in physical
models. Hereafter, sensors having continuous and discrete
properties are referred to as continuous sensors and discrete
sensors, respectively. In this paper, we focus on the efficient
dissemination of continuous sensor data.

III. REAL-TIME DATA DISTRIBUTION SERVICE (RDDS)

This section discusses the architecture of RDDS, the seman-
tics-aware sensor data dissemination, and the adaptive control
of sensor data precision to guarantee the desired QoS.

A. System Architecture

Fig. 3 shows the architecture of RDDS. RDDS has an asym-
metric structure for publishers and subscribers. For publishers,
RDDS consists of a QoS/QoD negotiator, a precision controller,
models for sensors, a load monitor, and pluggable transports.
Each data stream from continuous sensors has corresponding
models both at the publisher and the subscribers. Updates from
continuous sensors go through their corresponding models
while data from discrete sensors bypass the models. The
models for continuous sensors are used to determine if the in-
coming sensor data should be delivered to the subscribers. New
updates are disseminated to subscribers only if the observed
sensor values deviate from the value predicted by the model by
more than a specified precision bound . The precision bound

is set dynamically to meet the desired QoS – the CPU load
. The load monitor periodically reports the current CPU

load to the precision controller, which in turn computes the
CPU utilization error, i.e., the difference between the desired
CPU load and the measured CPU load at every sampling
instant. Based on the error, the precision controller determines
if and how the precision bounds should be updated for the
next sampling period.

For subscribers, RDDS consists of a QoS negotiator, a buffer,
sensor models, a buffer occupancy predictor, and a load con-
troller. First, the incoming sensor streams from the publishers
are buffered. For continuous sensors, each sensor stream has a
corresponding model, which is the same model as the one at the
publisher. The models are updated only if new sensor observa-
tions arrive from a publisher. This is when the synchronization
between the models at the publisher and the subscribers occurs.
When there are no incoming updates from the publisher, the
models at the subscribers periodically predict the current state



396 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012

of their corresponding sensors and populate the buffer with the
predicted data. This is how the subscribers maintain up-to-date
sensor values even without communication with the publishers.
To set the proper incoming data rates from the publishers, the
buffer occupancy predictor estimates the expected buffer size.
The load controller periodically sends a load control signal to
the broker. The broker aggregates the load control signals from
the subscribers, and takes the minimum, which has been gener-
ated by the most overloaded subscriber. The publisher uses this
minimum value to adjust its target CPU load. Essentially, the
feedback control loop at the publisher and the feed-forward loop
at the subscribers form a double-loop to enhance the quality of
data dissemination.

B. Semantics-Aware Communication in RDDS

Unlike caching-based approaches [8], in which communica-
tion and computation loads are reduced by exploiting recently
cached values, RDDS exploits the fact that most physical pro-
cesses have continuity in the real world. By taking advantage of
the semantics of the sensor data, our approach not only reduces
the computation/communication loads, but also provides reli-
able and timely data dissemination. As mentioned in Section II,
the tag for a continuous sensor topic is DATA _CONTINUOUS.
This tag is used as a hint that the continuous sensors need to
be described using physical models in unstable and dynamic
environments.

Both a publisher and its subscriber(s) have the same model
of a sensor , which is the common interest of both parties.

Algorithms 1 and 2 show the basic framework for model syn-
chronization at a publisher and subscribers, respectively. Algo-
rithm 1 shows what occurs at a publisher when a new observa-
tion arrives. Wen a publisher receives a sensor observation

from sensor , it looks up the model and makes a pre-
diction using this model. If the gap between the predicted value

from the model and the sensor observation is less than the
precision bound , the new sensor observation is discarded (or
saved locally for logging.) This implies that the current models
(both at the publisher and its subscribers) are sufficiently pre-
cise to predict the sensor observation within the given precision
bound. However, if the gap is greater than the precision bound
(line 2), the model is no longer able to capture the current be-
havior of the sensor output. In this case, at the primary node
is updated and is multicast to all subscribers (line 3).

Algorithm 1: Updating a sensor model at a publisher.

Input: sensor observation from sensor
1. from model of ;
2. if then
3. multicast to subscriber(s);
4. update model for ;
5. else
6. discard ;
7. end

Algorithm 2 is a reaction to the multicast from the publisher.
Upon the reception of a new sensor observation , a subscriber
updates its own model with . A benefit of this approach is
that an application can dynamically obtain the current value of

a sensor from its model by using predictions instead of
actually communicating with the publisher. This makes RDDS
highly resilient to potential loss of data packets in unstable com-
munication networks. Further, since the sensor readings can be
estimated readily without communication delays, timeliness in
data accesses can be achieved. As shown by Algorithms 1 and 2,
communication between a publisher and its subscribers occurs
only when the sensor models are not sufficiently precise.

Algorithm 2: Updating a sensor model at a subscriber.

Input: update from publisher
1. update model of ;
2. store to cache for later immediate data accesses;

It should be noted that the estimations from models at a
publisher and its subscribers can be different when the network
is unstable. For example, when sensor readings are missed
during the communication from the publisher to its subscribers,
the models at both parties could have different states; i.e.,
the models at the publisher could be more up-to-date. The
error caused by such model discrepancy should not be signif-
icant when a lot of sensor readings are being delivered to the
subscribers. However, for applications in which this error is
critical, RDDS provides pluggable transport capability. With
the pluggable transport capability, users can choose the net-
work protocols to be used. For example, depending on whether
the reliable delivery of data is critical, either TCP or UDP
can be used. However, due to its communication overhead
and latency, the TCP protocol might not be very suitable for
real-time applications and therefore offsetting the benefit of
using models. The impact of communication stability and the
choice of communication protocol is discussed in Section IV.

1) State Estimation for Continuous Sensors: Since RDDS
could potentially need to handle a large number of sensor
streams, relying on complex models is computationally pro-
hibitive. To this end, each sensor in RDDS is modeled with a
simple state space model, where the state of each sensor
evolves according to the following equation:

(1)

where is the state transition matrix relating to .
The state of each sensor having continuity can be described with
differential equations. In RDDS, a physical process, such as
temperature, measured by a sensor at time is represented in
a state vector with two state variables, , where
is the current sensor value at time and is the derivative
of with respect to time . The state transition matrix can be

defined as . We may need an additional state variable,

such as , to describe sensor dynamics more accurately.
However, the cost of model maintenance increases proportion-
ally to the number of state variables, which is why we chose to
use only two state variables for the current implementation of
RDDS. We believe that the dynamics of most simple physical
processes, such as temperature, light intensity, and pressure, can
be described using these two state variables.

However, sensor data is often imprecise due to measurement
noises, unstable communication, and model inaccuracies.



KANG et al.: RDDS: A REAL-TIME DATA DISTRIBUTION SERVICE FOR CYBER-PHYSICAL SYSTEMS 397

Therefore, the state transitions do not exactly follow (1). To re-
duce the uncertainty in the system, RDDS exploits the Kalman
filtering technique [9]. Kalman filters enable us to precisely
estimate and predict the current state and future state
from noisy sensor observations. Further, Kalman filters do not
need large historical data for modeling. The parameters of a
Kalman filter can be estimated at runtime and their accuracy is
gradually improved when there are more sensor observations.
For more details on Kalman filters, readers are referred to [9].

2) Maintaining Sensor Data Freshness: As explained in the
previous section, there is no communication from a publisher to
its subscribers unless a model is no longer accurate. However,
at the subscribers, the freshness of the last received sensor data
deteriorates over time. The period, in which the sensor value is
valid, is called absolute validity interval (avi) [10]. To maintain
fresh and precise sensor observations, even when there are no
updates from the publishers, the sensor values need to be up-
dated periodically before avi at the subscribers elapses. Since
each subscriber maintains the sensor models, it can estimate the
current and future sensor states. Periodically, the locally esti-
mated state of each sensor is fed into the buffer. The avi of a
sensor value can be derived from the precision bound, which is

. Since the sensor value changes with speed , the avi is
2 . Intuitively, when a sensor value changes rapidly,
the data object should be updated more frequently to maintain
the validity of the data. According to [10], to maintain data
freshness, the update period should be as short as half of the
avi.

Algorithm 3 shows how a sensor value is updated at a sub-
scriber without communication to its publisher.

Algorithm 3: Periodic updates of a sensor value at a subscriber.

Input: , precision bound for sensor

Input: , the 2nd state variable of

Input: , current time

1. from model of ;

2. update ’s value to

3. set the next sensor value update time to

3) The Impact of Model Inaccuracy: In RDDS, the commu-
nication load is increased only when the models are not suffi-
ciently accurate. In this section, we introduce intentional errors
to show the impact of model inaccuracy.

We model a physical process that has two components in
RDDS, , as well as an additional non-neg-
ligible third component, . When the second com-
ponent is equal to , the expected change of after time

in RDDS is

(2)

However, the true change of is

(3)

In RDDS, updates and communication occur only when

(4)

Hence, the expected update rate is

(5)

This shows that the increase of the update rate is proportional
to the square root of the third term. For instance, if is 1 meter
in measuring the moving distance of a vehicle, the model inac-
curacy incurs 1.56 additional updates per second since the ac-
celeration of a typical starting vehicle is known to be less than
4.9 . Further, the effect of the third component is transient
in many physical processes; approaches 0 for a com-
paratively long period after the starts. Instead of using a more
complex model, which incurs constant overhead, we have devel-
oped a QoD adaptation mechanism, discussed in the following
section, which handles transient and bursty workloads caused
by model inaccuracies.

C. QoS/QoD Guarantees via Reactive/Proactive Adaptation

As discussed in the previous sections, the accuracy of the
sensor data at the subscribers is determined by the model preci-
sion bound . However, it is a challenging task to set a proper
precision bound at design or deployment time, since the max-
imally achievable data quality changes at runtime as the op-
erating environment changes. For example, the system can be
overloaded if is too small. Conversely, the accuracy of the
sensor data may be too low if is too big. Hence, RDDS uses an
adaptive control mechanism to dynamically adjust the precision
bound at runtime.

1) QoS/QoD Specification: In RDDS, QoD and QoS are ex-
plicitly specified by the user. We define QoD in terms of the
precision bound of the sensor data. Recall that from
sensor has a precision bound . The actual precision bound
of the stream is altered through precision bound scaling. Both
at the publishers and the subscribers, the system specification

consists of a QoD specification and a QoS
specification . The QoD specification is given by

, where denote the nominal preci-
sion bounds of the data streams , respec-
tively, and represents the maximum tolerable precision
bound scaling factor, i.e., . Accordingly, the actual
precision bound of is given by , which is less
than or equal to the maximum precision bound .
The QoS specification represents the CPU uti-
lization bound of the node. prevents the system from over-
loading while satisfying the target performance. At runtime, the
target utilization bound is set such that . It
should be noted that there is no lower bound on the precision as,
in general, users require the precision bound to be as small as
possible (if the system is not overloaded.) Each publisher and
subscriber set their own QoS goal either at deployment
time or runtime. Before subscribers subscribe to topic from a
publisher, they should reach an agreement on of with the
publisher.



398 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012

Fig. 4. The double-loop control architecture of RDDS.

TABLE I
SUMMARY OF ADAPTATION MECHANISMS IN RDDS

2) Double-Loop Control Strategy in RDDS: To guarantee
the desired QoS and QoD, RDDS exploits two control loops,
as shown in Fig. 4. A key intuition that affects the architec-
ture of the control loops is that the dynamics of RDDS mani-
fest in two different time scales. Since TPS is sender-initiated,
publishers can counteract current violations of the QoS imme-
diately. Adaptation at the publishers can follow in a short time
scale. However, global load propagation from publishers to sub-
scribers occurs relatively slowly since workloads are filtered at
the publishers at first. Further, the communication latency be-
tween publishers and subscribers makes it difficult, if not im-
possible, to react instantly to workload changes. Due to the com-
munication delays, corrective behavior at the publishers based
on current status may be incorrect. To address this problem, the
second control loop is proactive and occurs in a longer time
scale. The potential buffer overflows at the subscribers are moni-
tored proactively with longer periodic intervals and are reported
to the publishers.

The control strategy of RDDS is summarized in Table I, and
is discussed in detail in the following sections.

3) Reactive Adaptation at Publishers: A well-established
feedback control theory is applied to support the desired uti-
lization bound at the publishers. To evaluate the relationship be-
tween the model accuracy and the CPU load , we estimate
the CPU load at the sampling instant via the CPU loads and
the model accuracy at the previous sampling instants. We ex-
press this relationship in a difference equation in the discrete
time domain

(6)

where is the system order. This difference equation models the
dynamics of the RDDS publisher. The model coefficients ’s
and ’s can be derived via system identification[11]. After the
modeling, we design a controller for the model. The goal of the
controller is to ensure that the measured CPU utilization, ,
is equal to the target utilization, . To support both the av-
erage and the transient performance, we apply PI (proportional
integral) control, which can support the long-term stability via

control in addition to control for short-term reactions. At

the sampling instant, the PI controller computes the control
signal , which is the model accuracy adjustment required to
support

(7)

where and are controller parameters. The desired prop-
erties, such as settling time and overshoot, are determined by
choosing the right values for the controller parameters. In gen-
eral, there is a tradeoff between the stability and settling time of
a system. We used the Root Locus technique [12], which is the
most common controller design technique, to choose the appro-
priate controller parameters.

There is also a tradeoff in the choice of the sampling interval.
If the sampling interval is too short, the measured output of the
system can be highly variable, which can make the controller
too sensitive to transient changes of the system. Conversely, if
the sampling interval is too long, the speed of control is slow
and the dynamics of the system cannot be captured appropri-
ately. We performed an experiment on a testbed to understand
the impact of the sampling interval. In the testbed, 32 nodes both
publish and subscribe sensor streams and the CPU load at one of
the nodes is measured (the details of the testbed and its configu-
ration parameters are discussed in Section IV). Fig. 5 shows the
CPU loads when two different sampling intervals, 1 and 10 s, are
applied. All parameters are fixed during the observation; hence,
there are no external factors to affect the workload of the system.
However, Fig. 5(a) demonstrates that the CPU load has high
variability when the sampling interval is 1 s. When 1-s sampling
period is used, if the control rule of (7) is applied, the controller
could react to the stochastic changes in the system output, i.e.,
the measured CPU load, potentially making the system unstable.
In contrast, when the sampling interval is 10 s as in Fig. 5(b),
the response of the controller is delayed until the next sampling
point. When a 10-s sampling period is used, the average control
delay is 5 s.

The desired controller response time is application specific.
Our testbed, which is discussed in Section IV-B, can tolerate a
delay of a few seconds since the sensor data is gathered on a
per-second basis. To this end, we choose to use a 5-s sampling
interval, which, we believe, is a good tradeoff since it satisfies
the application-specific requirements. For more details on the
controller design and tuning, readers are referred to Hellerstein
et al. [12].

4) Proactive Adaptation at Subscribers: The primary pur-
pose of the feed-forward loop at the subscribers is to set the
proper arrival rate of the incoming sensor data streams from the
publishers. Since the potentially long network delays between
publishers and subscribers could render the reactive adaptation
approaches inappropriate, the corrective behavior based on the
current status may be incorrect when the control signal is ap-
plied at the publishers. An alternative solution for a subscriber
would be to use queueing theory to proactively predict poten-
tial buffer overflows and adjust the rates of the incoming sensor
streams. Queueing theory provides a predictive framework such
that the expected buffer occupancy and delays can be inferred
from the input loads. When a subscriber sets its target buffer oc-
cupancy to , the desired buffer size is the maximum buffer



KANG et al.: RDDS: A REAL-TIME DATA DISTRIBUTION SERVICE FOR CYBER-PHYSICAL SYSTEMS 399

Fig. 5. The measured CPU utilization with different sampling intervals.
(a) Sampling interval � 1 s. (b) Sampling interval � 10 s.

size times . Little’s law [13] tells us that the average
size of buffer in the system at the sampling instant is

(8)

where is the arrival rate of the sensor streams and is the
average data processing delay. This law is independent of the
probability distributions involved, and hence requires no as-
sumptions about the distribution of sensor data arrivals and pro-
cessing. The desired sensor data arrival rate for the next pe-
riod can be predicted when the target buffer length

and the average data processing delay are
known. When the current target utilization bound at a publisher
is , the target utilization bound for the next period is ad-
justed to

(9)

It should be noted that Little’s law assumes a long observation
window. Hence, the monitoring period at a subscriber should
be long enough to have a probabilistically meaningful amount
of sensor data.

The target utilization bound for the next period is generated at
each subscriber; for a subscriber , the target utilization bound

is generated. However, instead of sending this
control signal directly to its publisher, which requires the pub-
lisher to keep a separate state for each subscriber, each sub-
scriber forwards the control signal to the broker. At the broker,
the feed-forward control signals from the subscribers are ag-
gregated and the minimum of them is taken. This minimum is
the final feed-forward control signal from the subscribers to the
publisher. This conservative approach ensures that the conges-
tion at the most overloaded subscriber , which has the min-
imum value of , is reduced.

One problem with the above algorithm is that taking a min-
imum of the control signals can make the whole system vulner-
able to denial-of-service (DoS) attacks. For instance, if one of
the nodes is compromised, the node can break the whole system
by sending a control signal that is unacceptably low. To address
this problem, the broker might set a lower bound on and
only accept control signals that are greater than the lower bound.
Alternatively, more sophisticated DoS detection [14] and admis-
sion-control [15] mechanisms can be considered at the broker to
filter out signals from compromised nodes.

IV. EVALUATION

A. Performance Evaluation Goals

The objectives of the performance evaluation are to: 1) assess
the efficiency of semantics-aware communication in TPS and
2) determine if the integrated proactive/reactive adaptation
mechanism can provide guarantees on target CPU loads ac-
cording to a QoS specification. For the first objective, in
Experiment #1, we have studied and evaluated the behavior of
the algorithms under various conditions, where a set of param-
eters have been varied. The second objective is investigated in
Experiment #2 by comparing the adaptation performance of
RDDS while its controller is turned on and off.

B. Emulation Testbed

We have implemented a prototype of RDDS on a testbed.
A collaborative search-and-rescue scenario in a building fire
from [16] is adapted and emulated on our emulation testbed.
In this scenario, a team of firefighters is sent to participate in
the search-and-rescue operation. Each firefighter carries a PDA,
which collects data from nearby sensor nodes in the building via
wireless communication and publishes them to peer nodes. This
sharing of real-time sensor data via RDDS gives a global view
on the situation for each firefighter, rendering timely reaction to
the situation.

Fig. 6 shows the testbed. The testbed employs one Nokia
N810 Internet tablet [17] and a PC cluster to emulate the PDAs
of 32 firefighters. The N810 device is equipped with 400 MHz
TI OMAP processor, 128 MB RAM, 256 MB flash memory,
802.11b Wi-Fi radio, and runs Maemo, which is a modified ver-
sion of GNU/Linux slimmed down for mobile devices.3 Since
the number of available PDAs is limited, a PC cluster with up to
32 computing nodes is used to enable a large-scale evaluation.

3Maemo is based on GNU/Linux 2.6.21 kernel and compliant with POSIX
standards.



400 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012

Fig. 6. RDDS testbed.

Fig. 7. The modeled building with CFAST and SmokeView.

Each PC node has a dual-core 1.5 GHz processor, 1 Gbyte of
memory, and runs on Linux 2.6.31. One of the cluster nodes is
dedicated for the brokering service. The remaining 31 cluster
nodes are used to emulate firefighters’ PDAs. Another PC with
a 2.67 GHz quad core is used to generate sensor streams. The
N810 device and the PC cluster are connected via 802.11b
Wi-Fi. For the transport layer of communication, UDP trans-
port protocol is used in default. All emulated PDAs, either on
N810 or on the PC cluster, perform the same functionality.
However, the real measurements of performance, e.g., CPU
utilization, are performed in the N810 device. The N810 device,
we believe, represents emerging mobile computing platforms,
which are expected to interact with ubiquitous sensors in CPS.

Sensor streams are simulated using CFAST (The Consoli-
dated Model of Fire and Smoke Transport) fire simulator [18],
[19] from the National Institute of Standards and Technology
(NIST). Using the CFAST simulator, a wide-range of fire sce-
narios can be simulated in detail by configuring the input pa-
rameters, which include the geometry of the compartments, the
initial fire source and burning objects in the compartments, flow
vents, and wall materials. Traces are generated from the simu-
lator offline for repeatability and scalability of the experiments.
Each trace corresponds to the history of temperature change at
a specific location in the modeled building. Fig. 7 shows the
model of the building generated with CFAST and the accompa-
nying tool SmokeView [20]. In the runtime of each simulation,

TABLE II
TESTBED SETTINGS

TABLE III
BASELINE APPROACHES

these traces are replayed and sent to participating nodes with a
1-s interval.4

A summary of the testbed is shown in Table II.

C. Baselines

We compare our RDDS scheme with the baseline schemes
shown in Table III.

OpenDDS [22] is a state-of-the-art implementation of the
OMG DDS specification. It disseminates data from a publisher
to subscribers without exploiting the semantics of the sensor
data. Approx-Caching is a value-driven approach, in which a
publisher multicasts sensor observations only if the difference
between the current value and the last multicast is greater than
a threshold .

D. Experiment #1: Performance of Semantics-Aware
Communication in TPS

1) Scalability: First, we show the performance of seman-
tics-aware sensor data dissemination in RDDS. To this end, the
workload changes are monitored while the number of partici-
pating firefighters is changed from 1 to 32. During the experi-
ment, the controllers at publishers/subscribers are turned off; in
other words, the precision bound is fixed and does not change
over time. For both RDDS and Approx-Caching, the precision
bounds of all sensor streams are set to 0.5 C. According to the
discussion in Section III-B2, when is 1 s, which is a rough
requirement from [21], and C/s, needs to be
0.5 C to maintain the freshness of sensor data.

All evaluation results are based on at least 10 runs, and an
average of 95% confidence intervals are taken.

Figs. 8 and 9 show the scalability of RDDS and the base-
lines when we change the number of firefighters from 1 to 32.
Each firefighter receives data streams from 500 nearby temper-
ature sensors. As the number of firefighters increases, the total
number of sensor streams covered increases accordingly. Fig. 8
shows the total number of messages sent and received at each
participant as the number of firefighters increases. However, it
should be noted that the slope of the line is much flatter in RDDS
than in the baseline approaches since RDDS filters out most of
the incoming data from sensors as long as its sensor models can
predict the values within the precision bound . For instance,

4Real-time queries for search-and-rescue tasks can be invoked on a
per-second basis [21].



KANG et al.: RDDS: A REAL-TIME DATA DISTRIBUTION SERVICE FOR CYBER-PHYSICAL SYSTEMS 401

Fig. 8. Number of messages (� � ���).

Fig. 9. CPU load (� � ���).

RDDS filters out 84% of the original data when 16 firefighters
are deployed while Approx-Caching filters out only 44%. This
high filtering performance of RDDS implies that it can be ex-
tremely scalable in low-bandwidth networking environments.

The amount of communication is highly related to the CPU
load since each message incurs processing overhead. Fig. 9
shows the CPU load in the same experiment. The CPU load
increases proportionally to the amount of communication in
all approaches. Maintaining a proper level of the CPU load is
particularly important for CPS applications that need to guar-
antee the timely dissemination of critical sensor data. We can
see in Fig. 9 that OpenDDS and Approx-Caching are becoming
overloaded when the numbers of participants are 16 and 32,
respectively. In contrast, the CPU load of RDDS remains under
0.2 even when 32 participants are deployed.

Fig. 10 shows the breakdown of the CPU loads in the same
experiment. In the graph, three major tasks contribute to the
overall measured CPU load; cx3110x task is the cx3110x
WI-FI driver for interrupt handling, OMAP McSPI/O task is
the DMA transfer driver, and RDDS task is the RDDS task
itself. The combined CPU load of cx3110x task and OMAP
McSPI/O task represents the CPU overhead to process the in-
coming/outgoing data. As Fig. 10 shows, data communication

Fig. 10. The breakdown of CPU load.

is the primary source of CPU time for all approaches, and its
portions increase as the size of collaboration groups increases.
Given the high computation CPU overhead for communication,
RDDS gets most benefit by reducing the communication needs.
For example, when the number of firefighters doubles from
8 to 16, RDDS’s CPU load incurred by data communication
increases by 0.03 while Approximate-Caching incurs 0.17 CPU
load increase. This result shows that RDDS’s semantics-aware
communication using models is especially effective in reducing
the data communication overhead.

2) Impact of Lossy Communication: This section discusses
the impact of lossy communication and the choice of transport
protocol. In our evaluation, packets are dropped with random
probability and we measure the total number of exchanged
messages and the quality of the data at one of the nodes.
Two transport protocols, UDP and TCP, are used to test the
impact of the communication protocol. The quality of the
data is quantified by the root mean square error (RMSE) :

, where is the ground
trough, is the estimated value from the models, and is the
duration of the simulation.

Fig. 11 shows the results when the packet drop ratio is
changed from 0 to 0.5. A packet drop ratio of 0.5 indicates that
half of the messages are lost randomly during communication.
We can see from Fig. 11(a) that, when UDP is used, the total
number of exchanged messages is not affected by the lossy
communication since no retransmission is done for the lost mes-
sages. In contrast, the communication load for the TCP-based
approach increases proportionally to the packet drop ratio.
For instance, when the packet drop ratio increases from 0.2 to
0.3, around 14.5% more messages are exchanged to guarantee
reliable message delivery. However, as shown in Fig. 11(b), the
increased communication load does not significantly improve
the quality of the data or the accuracy of the models. For
example, when the packet drop ratio is changed from 0.4 to
0.5, the RMSE for the TCP-based approach increases by less
than 0.1. This increase is considered insignificant since the
precision bound in this evaluation is 1. Fig. 11(b) also shows
that the quality of the model does not increase monotonically
as more sensor data is fed to the model. This is due to the fact
that some data can degrade the performance of the models.
For instance, the model’s estimation quality improves and the



402 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012

Fig. 11. The impact of unreliable communication and transport protocols (� �
�). (a) Communication load. (b) RMSE.

RMSE decreases from 0.57 to 0.52 when the packet drop ratio
increases from 0.2 to 0.3.

The results in Fig. 11 show that RDDS’s semantics-aware ap-
proach is highly resilient to lossy communication. Further, reli-
able transport protocols should be used only for messages that
require 100% reliable delivery since they can result in high com-
munication overhead without a meaningful gain in the quality of
the models or the data.

E. Experiment #2: Adaptability to Unpredictable Workloads

We evaluate the adaptability of RDDS against unpredictable
workloads. For the evaluation, 32 participants are deployed and
the QoS controller at each publisher/subscriber is turned on. The
QoD is given by the maximum precision bound , which is
1 , and the QoS is given by the maximum CPU utilization
bound , which is 0.7. We compare RDDS when the QoS
controller is turned on and off.

1) Average Performance: The adaptability of RDDS is eval-
uated by changing the workload. The number of sensor streams
per firefighter is increased from 500 to 2500. For RDDS without
controllers, the precision bound is set to 0.7 C. Fig. 12 show the
average performance. Fig. 12(a) demonstrates that RDDS with
a controller achieves CPU load which is very close to the target
one under all workloads. In contrast, the CPU load fluctuates
significantly between under-utilization and overload when no
control is applied and the load changes between 0.2 and 1.0. Vio-
lating the CPU load goal implies that the dissemination of sensor

Fig. 12. Average performance. (a) CPU load. (b) Precision bound (�).

data can be delayed significantly. Fig. 12(b) shows the changes
of the precision bound during the experiment. In RDDS, in-
creases linearly as the workload increases.

2) Integrated Control Loop and Transient Performance: The
average performance is not enough to evaluate dynamic systems
like RDDS. In addition, transient performance, such as settling
time, should be considered as well.

In this experiment, we introduce sudden changes in the
workload in order to observe the transient behavior of RDDS.
First, the reactive feedback control loop is tested by introducing
a sudden surge of the workload at N810 node. Secondly, the
proactive feed-forward control loop is tested by intentionally
delaying the processing time of each message. For the feedback
control test, at the 56th sampling instant, the number of sensor
streams per firefighter surges from 500 to 1500 as a step func-
tion. For the feed-forward test, at the 80th sampling instant, the
data processing rates at the N810 drops by 50% of the original.
The processing rate is dropped by intentionally doubling the
processing time of the messages.

Fig. 13 shows the results. The CPU load increases immedi-
ately at the 56th instant. However, it is stabilized to the target
CPU load within five sampling periods. The precision bound
also increases to approximately 0.68 C to achieve the target
CPU load. Further, at the 100th sampling instant, the load adap-
tation signals from the subscribers are applied to change the
target CPU load from 0.7 to 0.4. The precision bound again
adjusts to approximately 0.93 C to achieve the new target CPU
load. This result also shows that the difference of control periods



KANG et al.: RDDS: A REAL-TIME DATA DISTRIBUTION SERVICE FOR CYBER-PHYSICAL SYSTEMS 403

Fig. 13. Transient behavior.

between publishers and subscribers, which are 5 and 120 s, re-
spectively, is long enough to eliminate interference between the
two controllers.

V. RELATED WORK

A. Publish/Subscribe Paradigm

The publish/subscribe model has seen a lot of attention and
has been applied to a large variety of protocols and applica-
tions [6]. In the industrial automotive and building automation
domain, fieldbus networks, such as WorldFIP [23], CAN [24],
LonWorks [25], and BACnet [26] have used publish/subscribe
designs for decades [27]. Kaiser et al. developed a real-time
publish/subscribe model for distributed real-time systems that
use a controller area network (CAN) bus [28]. Academically,
since the pioneering publication by Oki et al. in 1993 [29], pub-
lish/subscribe systems have received a lot of attention. A broad
spectrum of research topics has been studied, including group
communication [30], reliable application-layer multicast [31],
mobility [32] and implementation issues [29], to name a few.

However, these systems ignore the problems that arise when
their operating environments are unstable and highly unpre-
dictable. In contrast, our work is the first in addressing such
issues.

B. Internet-Scale Sensing Services

A number of Internet-scale sensing services were designed
to organize and to disseminate wide-area sensor data to a
large number of users. The Sensor Andrew network devel-
oped at Carnegie Mellon University is developed around the
publish/subscribe architecture. However, for scalability is-
sues, Sensor Andrew to only be push-based, and thus more
centralized [33]. One of the project employing the query-re-
sponse paradigm is IrisNet, an architecture developed at Intel
Research [34]. However, IrisNet was primarily intended for
Internet connected desktop PCs and inexpensive commodity
off-the-shelf sensors such as Webcams, rather than for re-
source-constrained sensor networks. Multiple research groups
have worked on collaborative query-response sensing services
like SenseWeb [35] from Microsoft Research and SensorWeb
[36] from the Kno.e.sis Center. These systems are targeted
towards visualizing and sharing data with end-users. Similarly,
web applications such as Pachube [37] and Noisetube [38]

provide access to numerous sensors and actuators for use in
user-generated applications is facilitating a world in which a
massive data collection is put to use of individual users as well
as society.

Most of these systems assume stable and non-real-time
environments where the timeliness and reliability of sensor
data dissemination is not a critical issue. Further, these systems
do not provide a mechanism to handle unpredictable workload
changes. In contrast, RDDS targets a collaborative real-time
applications under highly unpredictable environments which
are common for CPS.

C. Data Semantics

Understanding the semantics of the data going through the
system has been very beneficial to a wide variety of applications.
Multimedia multicast uses data semantics to provide best-effort,
large-scale, multipoint communication, for applications such as
shared whiteboards, multiplayer games, and software distribu-
tion [39], [40]. Real-time databases rely on data semantics to
improve the performance of user transactions and the concur-
rency control in these systems [41].

Exploiting models of observed physical phenomena in order
to reduce the communication loads has been an active research
issue for sensor networking. In BBQ [42], time-varying multi-
variate Gaussian and Kalman filters are used at the base station
to minimize data acquisition costs. PRESTO [43] uses a sea-
sonal ARIMA model to predict the temperature changes with
less communication among sensors. However, previous model-
based approaches in sensor networking are application-specific,
and are not general enough to be used in different contexts.
In contrast, the semantics-aware dissemination mechanism in
RDDS can be seamlessly integrated into typical data diffusion
frameworks including TPS.

D. Quality-of-Service (QoS)

There is a large body of literature on QoS in the networking
and Internet environments [44], especially regarding network
layer services, such as IntServ [45] and DiffServ [46], to
provide end-to-end delay guarantees. Another area of interest
is RPC-based middleware, including CORBA [47] and JMS
[48] that support QoS levels for their communication services
[49].Behnel et al. provide an overview of relevant QoS metrics
and describe their meaning in the context of publish/subscribe
systems [50]. Mahambre et al. focus on providing reliability
as a QoS metric for publish/subscribe systems, which is a
proportion of published events received by a subscriber [51].
However, to the best of our knowledge, QoS guarantees on
metrics that have been widely studied in the direct communi-
cation paradigm, such as latency, bandwidth, availability, jitter
or loss ratio, are not adequately addressed in publish/subscribe
systems [52]. In contrast, in our work, the CPU utilization at
publishers and subscribers is the primary QoS metric since
CPU overloads and congestion at intermediate as well as end
nodes are one of the primary sources of end-to-end delays.

E. Control Theory

Control theory, one of the most widely used mathematical
frameworks to control the behavior of dynamic systems [12],



404 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 8, NO. 2, MAY 2012

is at the core of our model precision control. Due to its ro-
bustness against unpredictable operating environments, control
theory has been applied to manage the performance of computer
systems, such as Web servers [53], and to provide QoS manage-
ment and real-time scheduling [54]. Sha et al. first investigated
the benefits of integrating a reactive feedback controller with
a queueing-theoretic predictor to guarantee the delays in Web
servers [55]. However, queueing theory is not very effective to
model the bursty workloads of CPS that RDDS targets. It is
demonstrated in [56] that the performance of queueing-model-
based feedback control degrades in the presence of bursty work-
load. In contrast, RDDS combines a control-theoretic feedback
controller and a queueing-theoretic predictor in a double control
loop, in which the latter sets the reference point that the former
tracks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced RDDS and its two core mech-
anisms to handle highly unpredictable nature of CPS environ-
ments. First, the semantics of sensor data is exploited to pro-
vide a timely, reliable, and scalable dissemination of sensor data.
Further, RDDS integrates a reactive feedback controller and a
proactive queueing-theoretic predictor in a double control loop
to enhance the QoS of TPS. We present performance evalua-
tion using actual experimental prototypes. The results are very
encouraging in that the proposed semantics-aware dissemina-
tion scheme in RDDS significantly reduces computation and
communication overhead. Further, the integrated double con-
trol loop provides robustness against unpredictable changes in
workloads, which are typical in dynamic CPS.

In the future, we plan to enhance RDDS in several different
directions. First, RDDS will be extended to include different
modeling schemes. Currently, RDDS supports only a simple
modeling scheme using state vectors, without exploiting the cor-
relation among distributed sensors. By utilizing the correlation
among sensors, we may further increase the accuracy of RDDS
models. However, the cost of using sophisticated models should
be evaluated. Second, we are interested in building a testbed that
is more realistic. In the original design of RDDS, participating
entities are supposed to construct an ad-hoc mesh network dy-
namically. However, our current testbed uses a fixed network
of both wired and wireless connections, ignoring the effect of
ad-hoc routing of a mesh network.

REFERENCES

[1] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical sys-
tems: A new frontier,” in Machine Learning in Cyber Trust. New
York: Springer, 2009, pp. 3–13.

[2] K. Sha, W. Shi, and O. Watkins, “Using wireless sensor networks for
fire rescue applications: Requirements and challenges,” in Proc. IEEE
Int. Conf. Electro/Inform. Technol., 2006, pp. 239–244.

[3] J. Wilson, V. Bhargava, A. Redfern, and P. Wright, “A wireless sensor
network and incident command interface for urban firefighting,” in
Proc. 4th Ann. Int. Conf. Mobile and Ubiquitous Systems: Networking
Services, MobiQuitous’07, Aug. 2007, pp. 1–7.

[4] R. Sanchez, J. Evans, and G. Minden, “Networking on the battlefield:
Challenges in highly dynamic multi-hop wireless networks,” in Proc.
Conf. Military Commun., MILCOM’99, 1999, vol. 2, pp. 751–755.

[5] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and W. Schulz,
“Cartalk 2000: Safe and comfortable driving based upon inter-vehicle-
communication,” in Proc. IEEE Intell. Veh. Symp., Jun. 2002, vol. 2,
pp. 545–550.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[7] G. Pardo-Castellote, “Omg data-distribution service: Architectural
overview,” in Proc. 23rd Int. Conf. Distrib. Comput. Syst. Workshops,
May 2003, pp. 200–206.

[8] C. Olston, B. T. Loo, and J. Widom, “Adaptive precision setting
for cached approximate values,” SIGMOD Rec., vol. 30, no. 2, pp.
355–366, 2001.

[9] Applied Optimal Estimation, A. Gelb, Ed. Cambridge, MA: MIT
Press, 1974.

[10] K. Ramamritham, S. H. Son, and L. C. Dipippo, “Real-time databases
and data services,” Real-Time Syst., vol. 28, no. 2-3, pp. 179–215, 2004.

[11] L. Ljung, Systems Identification: Theory for the User, 2nd ed. Engle-
wood Cliffs, NJ: Prentice-Hall, 1999.

[12] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Con-
trol of Computing Systems. New York: Wiley, 2004.

[13] J. D. C. Little, “A proof for the queueing formula � � ��,” Oper.
Res., vol. 9, no. 3, pp. 383–387, 1961.

[14] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service attack-
detection techniques,” IEEE Internet Comput., vol. 10, pp. 82–89, Jan.
2006.

[15] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu, “Mitigating application-
level denial of service attacks on web servers: A client-transparent ap-
proach,” ACM Trans. Web, vol. 2, pp. 15:1–15:49, Jul. 2008.

[16] “Fire information and rescue equipment (FIRE) project,” 2008. [On-
line]. Available: http://fire.me.berkeley.edu/

[17] “Nokia N-Series,” 2008. [Online]. Available: http://www.nseries.com/
[18] R. D. F. G. Peacock and W. W. Jones, CFAST—Consolidated Model of

Fire Growth and Smoke Transport (Version 5): User’s Guide, National
Institute of Standards and Technology, Gaithersburg, MD, 2005, NIST
Special Publication 1034.

[19] “Fire growth and smoke transport modeling with CFAST,” 2008. [On-
line]. Available: http://cfast.nist.gov

[20] “Fire Dynamics Simulator and Smokeview (FDS-SMV),” 2010. [On-
line]. Available: http://fire.nist.gov/fds/

[21] X. Jiang, N. Chen, J. Hong, K. Wang, L. Takayama, and J. Landay,
“Siren: Context-aware computing for firefighting,” in Pervasive
Computing, A. Ferscha and F. Mattern, Eds. Berlin, Germany:
Springer-Verlag, 2004, vol. 3001, Lecture Notes in Computer Science,
pp. 87–105.

[22] “OpenDDS,” 2010. [Online]. Available: http://www.opendds.org
[23] L. Almeida, E. Tovar, J. Fonseca, and F. Vasques, “Schedulability anal-

ysis of real-time traffic in WorldFIP networks: An integrated approach,”
IEEE Trans. Ind. Electron., vol. 49, pp. 1165–1174, Oct. 2002.

[24] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Syst., vol. 35, pp. 239–272, 2007.

[25] D. Loy, D. Dietrich, and H.-J. Schweinzer, Eds., Open Control Net-
works: LonWorks/EIA 709 Technology Norwell, MA, Kluwer, 2001.

[26] S. Bushby and H. Newman, “The BACnet communication protocol for
building automation systems,” ASHRAE J., vol. 33, pp. 14–21, Apr.
1991.

[27] J.-P. Thomesse, “Fieldbus technology in industrial automation,” Proc.
IEEE, vol. 93, no. 6, pp. 1073–1101, Jun. 2005.

[28] J. Kaiser and M. Mock, “Implementing the real-time publisher/sub-
scriber model on the controller area network (CAN),” in Pro. 2nd
IEEE Int. Symp. Object-Oriented Real-Time Distrib. Comput., 1999,
pp. 172–181.

[29] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen, “The information bus: An
architecture for extensible distributed systems,” in Proc. 14th ACM
Symp. Operating Syst. Principles, SOSP’93, New York, 1993, pp.
58–68.

[30] D. Powell, “Group communication,” Commun. ACM, vol. 39, no. 4, pp.
50–53, 1996.

[31] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reli-
able multicast framework for lightweight sessions and application level
framing,” IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 784–803, 1997.

[32] Y. Huang and H. Garcia-Molina, “Publish/subscribe in a mobile envi-
ronment,” Wirel. Netw., vol. 10, no. 6, pp. 643–652, 2004.

[33] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H.
Garrett, J. M. F. Moura, and L. Soibelman, “Sensor Andrew: Large-
scale campus-wide sensing and actuation,” IBM J. Res. Develop., vol.
55, pp. 1–14, 2011.

[34] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan, “Irisnet: An
architecture for a worldwide sensor web,” IEEE Pervasive Comput.,
vol. 2, pp. 22–33, Oct. 2003.

[35] A. Kansal, S. Nath, J. Liu, and F. Zhao, “Senseweb: An infrastructure
for shared sensing,” IEEE MultiMedia, vol. 14, pp. 8–13, 2007.



KANG et al.: RDDS: A REAL-TIME DATA DISTRIBUTION SERVICE FOR CYBER-PHYSICAL SYSTEMS 405

[36] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,” IEEE
Internet Comput., vol. 12, pp. 78–83, Jul. 2008.

[37] “Pachube – Data infrastructure for the Internet of things,” P. team,
2011. [Online]. Available: http://www.pachube.com

[38] N. Maisonneuve, M. Stevens, and B. Ochab, “Participatory noise pol-
lution monitoring using mobile phones,” Info. Pol., vol. 15, pp. 51–71,
Apr. 2010.

[39] Y. Chawathe, S. McCanne, and E. Brewer, “RMX: Reliable multicast
for heterogeneous networks,” in Proc. IEEE INFOCOM, 2000, vol. 2,
pp. 795–804.

[40] S. Dao, E. Shek, A. Vellaikal, R. R. Muntz, L. Zhang, M. Potkonjak,
and O. Wolfson, “Semantic multicast: Intelligently sharing collabora-
tive sessions,” ACM Comput. Surv., vol. 31, Jun. 1999.

[41] M. Xiong, K. Ramamritham, J. A. Stankovic, D. Towsley, and R.
Sivasankaran, “Scheduling transactions with temporal constraints:
Exploiting data semantics,” IEEE Trans. Knowl. Data Eng., vol. 14,
pp. 1155–1166, Sep. 2002.

[42] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
“Model-based approximate querying in sensor networks,” VLDB
Journal, vol. 14, pp. 417–443, 2005.

[43] M. Li, D. Ganesan, and P. Shenoy, “Presto: Feedback-driven data man-
agement in sensor networks,” in Proc. 3rd Conf. Networked Syst. De-
sign Implementation, NSDI’06, 2006.

[44] X. Xiao and L. Ni, “Internet QoS: A big picture,” IEEE Network, vol.
13, no. 2, pp. 8–18, Mar. 1999.

[45] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
A new resource reservation protocol,” IEEE Commun. Mag., vol. 40,
no. 5, pp. 116–127, May 2002.

[46] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An
Architecture for Differentiated Service, RFC Editor, 1998.

[47] V. Fay-Wolfe, L. C. DiPippo, G. Cooper, R. Johnston, P. Kortmann,
and B. Thuraisingham, “Real-time corba,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 11, no. 10, pp. 1073–1089, 2000.

[48] R. B. M. Happner and R. Sharma, “Sun microsystems. Java message
service specification,” 2000. [Online]. Available: http://www.sun.com/
products/jms

[49] D. Schmidt and F. Kuhns, “An overview of the real-time corba speci-
fication,” Computer, vol. 33, no. 6, pp. 56–63, Jun. 2000.

[50] S. Behnel, L. Fiege, and G. Muhl, “On quality-of-service and publish-
subscribe,” in Proc. 26th IEEE Int. Conf. Workshops Distrib. Comput.
Syst., ICDCSW’06, Washington, DC, 2006, p. 20.

[51] S. P. Mahambre and U. Bellur, “An adaptive approach for ensuring
reliability in event based middleware,” in Proc. 2nd Int. Conf. Distrib.
Event-Based Syst., DEBS’08, New York, 2008, pp. 157–168.

[52] F. Araújo and L. Rodrigues, “On QoS-aware publish-subscribe,” in
Proc. 22nd Int. Conf. Distrib. Comput. Syst., ICDCSW’02, Washington,
DC, 2002, pp. 511–515.

[53] Y. Diao, N. Gandhi, and J. Hellerstein, “Using MIMO feedback con-
trol to enforce policies for interrelated metrics with application to the
Apache web server,” Network Oper. Manage., pp. 291–234, Apr. 2002.

[54] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control real-
time scheduling: Framework, modeling, and algorithms,” Real-Time
Syst., vol. 23, no. 1-2, pp. 85–126, 2002.

[55] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queueing model based
network server performance control,” in Proc. 23rd IEEE Real-Time
Syst. Symp., RTSS’02, Washington, DC, 2002, p. 81.

[56] X. Liu, R. Zheng, J. Heo, Q. Wang, and L. Sha, “Timing performance
control in web server systems utilizing server internal state informa-
tion,” in Proc. Joint Int. Conf. Autonomic and Autonomous Syst. Int.
Conf. Networking and Services, ICAS-ICNS’05, 2005, p. 75.

Woochul Kang received the Ph.D. degree in
computer science from the University of Virginia,
Charlottesville, in 2009.

He is a Research Scientist at the Electronics and
Telecommunications Research Institute (ETRI),
Korea. Currently, he is investigating a distributed
middleware architecture that enables efficient and
timely access to real-time sensor data in large-scale
distributed cyber-physical systems (CPS). His
research interests include cyber-physical systems,
real-time embedded systems, large-scale distributed

systems, sensor networks, and feedback control of computing systems.

Krasimira Kapitanova (S’11) received the B.S.
degree in computer science and technologies from
Technical University Sofia, Sofia, Bulgaria, and
an M.C.S. degree from the University of Virginia,
Charlottesville. Currently, she is working towards the
Ph.D. degree in computer science at the University
of Virginia.

Her research interests include event description
and detection in wireless sensor networks, QoS
management, testing, and machine learning.

Sang Hyuk Son (S’84–M’85–SM’98) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, the M.S.
degree from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, and the Ph.D.
degree in computer science from the University of
Maryland, College Park, in 1986.

He is a Professor with the Department of Com-
puter Science, University of Virginia, Charlottesville.
His research interests include real-time and em-
bedded systems, database and data services, QoS

management, wireless sensor networks, and information security.
Prof. Son is on the Executive Board of the IEEE Technical Committee on

Real-Time Systems, for which he served as the Chair during 2007–2008. He
is currently serving as an Associate Editor for the IEEE TRANSACTIONS ON

COMPUTERS and the Real-Time Systems Journal.


