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Abstract	  
The US Navy began extensive efforts to examine 
the best way to structure future surface combatant 
forces in response to the May 2002 Defense 
Planning Guidance (DPG) and the Quadrennial 
Defense Review (QDR).  The Secretary of the 
Navy and the Chief of Naval Operations (CNO) 
concurred on a program requirement that became 
the Littoral Combat Ship (LCS) program in Spring 
2002. 

The Program Executive Office (PEO) LCS was 
created to align several program offices into a 
single consolidated PEO which focused entirely on 
delivering the LCS program in July 2011.   The 
program focuses on three mission areas within the 
Littoral Surface Warfare operations which 
emphasize the prosecution of Surface Warfare 
(SUW), Mine Countermeasures (MCM) and Anti-
Submarine Warfare (ASW).  

The design of the LCS permits the use of recon-
figurable modular mission packages1 in support of 
these missions. Thus, these ships are essentially 
“Seaframes” that provide the integrated systems 
required to support the various mission packages.   
These systems include command and control, 
computers, and intelligence (C4I) along with an 
integrated unmanned vehicle control system and 
common resources such as power, compressed air 
and water, etc. 

It is essential to provide an open technical archi-
tecture and a modular design that provides flexi-
bility and ease of upgrade in order to support the 
rapid installation and integration of these mission 

packages.  Standards-based interfaces between 
mission packages and the Seaframe are also neces-
sary to allow these systems to be developed inde-
pendently. 

This paper focuses on the justification for, and 
tenets of, an open architecture in order to provide 
the modularity required within LCS.  We then 
delve into the details of the architectural design, 
decisions, and lessons learned building the Com-
mon Software Architecture (CSA) for LCS. 
Finally, we provide an introduction to the underly-
ing technology that provides the foundation for the 
open architecture of LCS CSA, and many other 
DoD programs – the Object Management Group 
(OMG) Data Distribution Service for Real-Time 
Systems2 (DDS), a DoD-mandated standard. 

1 Navy	  Open	  Architecture	  	  
1.1 Problems	  &	  Motivation	  
There is an ongoing and dramatic change in de-
fense procurement acquisition; in lieu of systems 
integrators, the DoD is starting to define and main-
tain flexible system architectures for the electronic 
and software systems they wish to procure. By 
taking architectural management of the integra-
tion infrastructure and the integrated system of 
systems architecture, the DoD seeks to evolve the 
acquisition of defense capabilities towards a strat-
egy that promotes open competition, cost control, 
innovation, and the rapid replacement and upgrade 
of capabilities to address warfighter needs.   

Implementing these system-of-systems while satis-
fying the combined system attributes of perfor-
mance, scalability, and reliability is challenging.  



Adding additional software requirements including 
interoperability, flexibility, modularity and porta-
bility makes the problem even more difficult.  The 
Navy is not undertaking these challenges for the 
sake of the software architecture alone, but rather 
to enable fiscally-constrained fielding of dominant 
capabilities that leverage a large industry base for 
technical innovation3. The Navy has a long history 
of open architecture efforts4 so it is important to 
understand what is different. 

To date, it has been the various integrators that 
have realized many of the benefits of open archi-
tecture approaches.  However, this has resulted in 
vendor-specific product lines and platform-
specific solutions which dramatically limit the 
Government’s ability to bring multiple vendors 
and new capabilities together affordably.  This is 
especially problematic for the LCS platform: it has 
two distinct Seaframe variants, and multiple mis-
sion packages that should be interchangeable be-
tween them. This presents a significant configura-
tion and integration challenge.  Certainly brute 
force could work, but what about the mission 
modules yet to be identified or capabilities that 
have already been fielded on other platforms?  
Current open architecture approaches do not put 
enough specificity into the Government’s hands to 
get ahead of this integration challenge and certain-
ly do not address the cost constraints of integra-
tion.   It is a problem larger than interface specifi-
cations, data rights, COTS standards, or source 
code. 

1.2 Approach	  &	  Solutions	  	  	  	  
The Navy has employed an Open Systems Archi-
tecture5 (OSA) strategy which covers the complete 
life-cycle of technology and capability acquisition.  
Up to now, defense procurement agencies have 
been asking for open architecture solutions from 
their supply chains, and the result has been their 
adoption of open standards, modular system 
frameworks, and Commercial-Off-The-Shelf 
(COTS) standards-based technologies. All of these 
are absolutely components of OSA, but unless 

they are brought together within an open infra-
structure architecture, an open data model, appro-
priate data rights, properly incentivized contract-
ing, and metrics-based programmatic oversight, 
realizing the benefits of OSA principles will be a 
long road. 

To be meaningfully interoperable, different sys-
tems built at different times, with different hard-
ware, different software architectures, different 
technologies and different uses of the data and 
system information must be cost-effectively inte-
gratable. This does not mean, nor imply, interop-
erability by commonality, plug-and-play integra-
tion, or any other over-used promise of open archi-
tecture. Furthermore, this is not implying that all 
integration must be government-led.  OSA is about 
integration without ambiguity, and the ability to 
achieve interoperability between systems – at 
scale, repeatedly, across system ownership bound-
aries.  

The question and the solution lies in the definition 
(the technical specification as well as the IP and 
data rights strategy) of these system ownership 
boundaries.  At these boundaries one can address 
each specific system’s software architecture non-
functional requirements (Table 1) and define 
known, separable, testable, and independently ac-
quirable system functions.  

OSA defines several immediate key actions and 
steps.  

• Implement the coordinated set of business 
changes that improve competition, incentivize 
better performance, and deliver capability 
more rapidly; 

• Construct a limited number of technical refer-
ence frameworks to immediately support im-
proved competition and ultimately enable en-
terprise re-use; 

• Develop an Execution Guidebook for this 
strategy; and, 

• Lead and guide training the workforce on 
OSA implementation. 



OSA also supports the recently enacted National 
Defense Authorization Act which requires modu-
lar open systems approaches in acquisition pro-
grams.  An excerpt of HR 3979 Section 801 
MODULAR OPEN SYSTEMS APPROACHES 
IN ACQUISITION follows: 

(2) OPEN SYSTEMS APPROACH.—The term ‘‘open sys-
tems approach’’ means, with respect to an information tech-
nology system, an integrated business and technical strategy 
that— 

(A) employs a modular design and uses widely supported 
and consensus-based standards for key interfaces; 

(B) is subjected to successful validation and verification 
tests to ensure key interfaces comply with widely sup-
ported and consensus-based standards; and, 

(C) uses a system architecture that allows components to be 
added, modified, replaced, removed, or supported by 
different vendors throughout the lifecycle of the system 
to afford opportunities for enhanced competition and 
innovation while yielding— 

(i) significant cost and schedule savings; and 
(ii) increased interoperability. 

What does this all mean? An Open Systems Archi-
tecture is an architecture derived from a set of 

architecture design decisions that provide architec-
tural management to the organization acquiring the 
system in order to assure that the resulting archi-
tecture meets the business, technical, and regulato-
ry requirements of the acquiring organization.   

Practically, it means a system integrator still takes 
responsibility for integrating all the sub-systems 
together, but against an architectural specification 
and infrastructure governed by the acquisition 
program office. These specifications decouple ap-
plications from deployment specific technologies 
and platform specific concerns, provide common 
functions and capabilities, and most importantly, 
clearly specify the data in decoupled formats from 
system and software application implementations.  
The specifications are data-centric in that they 
promote the data as the primary point of integra-
tion and interoperability.     

Interoperability, along with other system non-
functional requirements, is being brought to the 
top line as a delivery requirement where interoper-

Table 1. Critical non-functional system software-architecture requirements. 

Non-Functional 
Requirement 

 

Definition 

Interchangeability To put each of (two things) in the place of another, or to be used in 
place of each other. 

Integratability To form, coordinate, or blend into a functioning or unified whole. To 
incorporate into a larger, functioning or unified whole. 

Replaceability One thing or person taking the place of another especially as a substi-
tute or successor. 

Extensibility The ability to add new components, subsystems, and capabilities to a 
system. 

Interoperability The ability of systems, units, or forces to provide services to and ac-
cept services from other systems, units, or forces, and to use the ser-
vices so exchanged to enable them to operate effectively together. 

Portability Abstraction of application logic and system interfaces to effect the 
usability of the same software in different environments 

Modularity A logical partitioning of the software design that allows complex 
software to be manageable for the purpose of implementation and 
maintenance 



ability is more than a common infrastructure, 
common messages, or COTS and standard-based 
technologies. The DoD is mandating the data-
centric architecture of systems they wish to pro-
cure with a common systems architecture that 
clearly and unambiguously describes and docu-
ment the data, its structure, its context, and its be-
havior.  

In the context of LCS and the Common Software 
Architecture (CSA), the construction of the tech-
nical reference framework, the capability decom-
position, and the service interface specification, 
was conducted by a team of industry and govern-
ment engineers resulting in the data-centric CSA 
infrastructure specification.  The technical refer-
ence framework addresses the system non-
functional software requirements and provides a 
software environment for long-term cost effective 
integration.  The careful separation of infrastruc-
ture and data provide additional benefits for test-
ing, and more importantly, provide a clear bounda-
ry for data rights and intellectual property separa-
tion.  

1.3 Remaining	  Challenges	  
Of the challenges remaining in the implementation 
of OSA, the technical side is likely the easiest to 
address.  There are many efforts underway that are 
separating the software platform (operating sys-
tem, IO, hardware) from the applications through 
standard APIs and system interface specifications.   
Yet, several efforts have evolved beyond this by 
also focusing on the data architecturesi.   This in-
cludes specifying the syntax, semantics, and be-
havior of the data.  Semantics is tricky as it is tra-
ditionally captured implicitly in application logic, 
unstated system-specific use of the data in mes-
sages, or domain-specific labels and words.  In 
order to be able to integrate systems-of-systems at 
                                                        
i E.g., Unmanned Aerial System Control Segment 
(UCS), Future Airborne Capability Environment 
(FACE) 

scale, the semantic content of the data-centric 
specifications must be fully captured.   

A bigger challenge confronting the implementa-
tion of OSA are the acquisition processes and con-
tracting flexibility needed to effectively compete 
and integrate from a broader industry base. While 
completely understood, this is likely going to take 
more effort. 

1.4 Conclusion	  
The LCS CSA architecture and its implementation 
have adopted the tenets of OSA. It provides a great 
reference example as to how to decompose an 
open infrastructure into a set of reusable applica-
tions, implement a portable technical reference 
platform based on open-standards, and integrate 
rigorous model-based definitions of services and 
their data.  In the next section we describe LCS 
CSA in more detail. 

 

2 LCS	  Common	  Software	  
Architecture	  

The Common Software Architecture (CSA) pro-
vides an operating environment and a common set 
of services for the mission packages that are sup-
ported by the LCS Seaframe.   The goals of the 
LCS CSA were reviewed and approved by the 
LCS Community at its outset and are documented 
by the CSA Architecture Design Description 
(ADD). 

Generally speaking, the goals of CSA are to pro-
vide a common environment for the various mis-
sion packages that may be installed on the Sea-
frame, and to facilitate an open business model 
that supports innovation.   In order to refine that 
broad vision into a particular set of goals, an in-
depth analysis of existing approaches and systems 
engineering artifacts was conducted. 

That analysis identified the limitations of existing 
approaches, and the benefits of alternative ap-
proaches, which resulted in a clearly defined set of 
high-level design goals. While many design goals 



were identified, the particular design goals which 
enable modularity and thereby support the broader 
goals of the LCS program itself are described in 
the following section. 

It is important to remember while considering the 
following design goals, the fundamental tenets that 
most broad Department of Defense architectural 
efforts seek to achieve: 

• Support the functional needs of the system.  In 
the case of LCS, the tactical needs of Mission 
Package warfighters; 

• Minimize costs across all aspects of the life 
cycle. In this case, from Mission Package ca-
pability design through training and sustain-
ment; 

• Foster innovation and technical advances.  For 
LCS, this applies to both the Mission Packag-
es as well as the services provided by CSA; 

• Enable Open Acquisition and avoid vendor 
lock.  In this case, by ensuring LCS acquisi-
tion authorities are provided with clearly ar-
ticulated and vendor-neutral CSA service def-
initions. 

2.1 High-‐level	  Design	  Goals	  
In order for CSA to provide infrastructure and 
application services that would be useful and flex-
ible enough to be used by the mission modules, it 
was determined that a component-based Service 
Oriented Architecture (SOA) should be imple-
mented as a high-level design goal.   To avoid the 
limitations inherent in certain SOA approaches it 
was necessary to adopt the tenets of the Modular 
Open System Approach (MOSA). 

Large scale integration of diverse software sys-
tems often suffers from a measurable increase in 
integration complexity.   This is due to the way 
that services and applications communicate with 
each other.   A message-oriented communications 
backbone results in a web of connections which 
tends to expand exponentially as additional partic-
ipants are added to the environment.    

Message exchanges and request brokers have been 
used to mitigate these issues to some extent but 
the greatest reduction of integration complexity 

can only be realized by a data-centric publish/ 
subscribe communication paradigm. Therefore, it 
was determined that the CSA services would uti-
lize the OMG Data Distribution Service for Real-
Time Systems (DDS) as its primary means of 
communication to more easily support large scale 
integration. 

In order to fully support the open business model 
and reuse of CSA services, a model-driven devel-
opment (MDD) approach was adopted.   An MDD 
approach coupled with service-level requirements 
is used to clearly define interface and functional 
requirements in a conceptual manner.   The Uni-
fied Modeling Language (UML) models that were 
created describe the services using conceptual data 
types and operations which can then be reused for 
any future implementations of CSA regardless of 
hardware or technology specifics. 

In summary, the design goals for CSA included 
using: 

• Component-Based Architectures 
• A Modular Open System Approach 
• Service-Oriented Architectures 
• Data-Centric Publish-Subscribe Networking 
• Model-Driven Development 

The following subsections provide more details 
about these design goals, which are central to ena-
bling modularity, and directly support the goals of 
the LCS Program. 

2.1.1 Component-‐Based	  Architectures	  
A component-based architecture will allow Mis-
sion Package Application Software (MPAS) de-
signers to select only those components needed to 
meet mission-diverse requirements. Component 
definitions include the data sent and received by 
the component, the services provided and required 
by the component, as well as the functional and 
performance requirements for the services. 

Component definitions also include verification 
requirements, and associated test plans, data sets, 
procedures, harnesses/software development 
toolkits, and test results. 



The granularity of CSA components evolve over 
time and are based on extensibility and reuse 
needs, and adopt coupling and cohesion principles 
so that a component provides a related set of func-
tionality with consistent and stable interfaces. 

2.1.2 Modular	  Open	  System	  Approach	  	  
The CSA follows a MOSA design, development, 
and integration strategy.  MOSA is an integrated 
business and technical strategy that employs a 
modular design and, where appropriate, defines 
key interfaces using widely supported, consensus-
based standards that are published and maintained 
by a recognized industry standards organization. 

Standards can help to ensure that systems do not 
become locked into a single vendor. Standards 
should be widely accepted as well as formally rec-
ognized.  The choice of a standard is predicated 
not only on the content of the standard but also on 
its applicability to the CSA component for which 
it is under consideration. 

The CSA is modularized to include common com-
ponents that will have openly published, non-
proprietary interfaces to support extensibility and 
reuse.  Interfaces are standardized and configura-
tion managed.  Commercial, open system interface 
standards are specified for components that are 
exposed for use by MPAS or other CSA compo-
nents.  De facto standards have been selected 
when open system standards do not exist when the 
de facto standards are supported by multiple sup-
pliers.  Custom interfaces have only been defined 
where open or de facto standards do not exist. 

2.1.3 A	  Service-‐Oriented	  Architecture	  
Utilizing the broadly adopted SOA paradigm, the 
CSA exposes services via open, published, non-
proprietary interfaces. Service-orientation pro-
motes engineering principles of modularity, en-
capsulation, information hiding and interface-
based design.  In a SOA, warfighting operations 
are defined in terms of activities, which are 

mapped to services.  Service definitions are not 
dependent on knowing which system(s) implement 
the services.  Externally visible behavior of system 
components are defined in terms of the services 
they provide and require. 

The benefits of using a service-oriented architec-
ture include: 

• Interoperability: SOAs enable significant in-
teroperability between software, information, 
and processes 

• Integration: Standards-based approaches to 
SOA enable one service to integrate multiple 
applications and information from disparate 
systems 

• Reuse: More effective reuse of existing appli-
cations and systems, reducing (re)development 
costs 

• Composability: The loosely-coupled, stand-
ards-based approach of SOA allows services 
to be easily connected and reconnected to 
create new processes and operational threads 

• Agility: The loose coupling between opera-
tional activities and application functions 
offers the potential to increase operational 
agility 

• Risk Reduction: SOAs allow for the seamless 
redundancy of critical functionality with vary-
ing levels of data fidelity. 

In addition, the decoupled nature of the publish/ 
subscribe interaction pattern allows chains of sys-
tem functions to be executed to perform a service.  
While MPAS components won’t be dynamically 
composed by operators in the field, software com-
ponents will be designed such that system engi-
neers and architects can create different applica-
tions from these reusable components to provide 
services in a composable manner. 

2.1.4 Data-‐Centric	  Publish/Subscribe	  
Communications	  

The CSA promotes the use of a data-centric pub-
lish/subscribe paradigm for the distribution of data 
and messages between CSA and MPAS compo-
nents. 



An essential part of a component’s description is 
the information it produces and/or the information 
it consumes.  Information (or changes in infor-
mation) is both a stimulus and a response for 
event-driven processes.  Based on subscriptions 
requested by consuming components, infrastruc-
ture services can optimize the distribution of data 
to where they are needed and at the necessary rate.  

A data-centric information backbone has been 
integrated into the CSA. It supports data subscrip-
tion by any authorized component; it supports ex-
tensibility; it provides a mechanism for timely re-
sponses to events; and, it minimizes synchroniza-
tion points across components. This publish / sub-
scribe model also allows for seamless redundancy 
of critical functionality with varying levels of data 
fidelity that could be of interest in risk reduction. 

The publish/subscribe model supports the high 
performance data exchange needs of CSA and 
MPAS components, especially those components 
associated with Unmanned Vehicle Control.  The 
model allows components to react immediately to 
changes in system data produced by other compo-
nents. This “push” view is a very effective mecha-
nism for supporting the high performance chaining 
of events within the environment to produce de-

sired effects.  But not everything within the envi-
ronment is event-driven.  A “pull” view is also 
supported by data servers which subscribe to mes-
sages and retain the information until requested by 
another component. 

Figure 1 illustrates the information-driven nature 
of CSA component interfaces. The larger arrows 
in the figure illustrate data that is 'pushed' to 
MPAS components based on subscriptions estab-
lished by those components.  The smaller arrows 
indicate data pushed from those components to be 
made available to other MPAS components, based 
on those components' subscriptions.  The larger 
arrows emphasize data flows to the components in 
order to stimulate event-driven responses to 
achieve desired effects. 

Using publish/subscribe services allows compo-
nents to not be connected by logical point-to-point 
interfaces.  Publish/subscribe services support 
many-to-many data exchanges and allow addition 
of new components with minimized effort. 

As illustrated in Figure 2, this information-
oriented approach is well suited for evolutionary 
development of CSA and MPAS components.  
New components can be developed to publish and 
subscribe to existing data in accordance with the 
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Figure 1. Component Interfaces and Data Flow 



established data models, as well as to publish new 
data and extend the data model where appropriate.  
Legacy components can be wrapped within a 
transformation layer that translates between the 
common system data / interface standard for that 
component and any internal component represen-
tation.  The data models also define each compo-
nent interface in a manner that automated software 
testing tools can process. 

This approach also supports gradual migration 
from legacy MPAS components to smaller, more 
reusable components.  A single large-grained 
component could produce a set of system-level 
data that is allocated to several smaller compo-
nents in the CSA.  As long as the large-grained 
module exposes all of the messages defined for the 
set of components it represented, it still conforms 
to the CSA service specification.  Subscribing 
components would not be aware that one large-
grained component was producing those messages 
instead of multiple smaller components. 

The technology employed by CSA was chosen by 

examining the available message-oriented mid-
dleware systems using a weighted and subjective 
analysis.   The criteria and weights for the study 
(known as the CSA High-Performance Middle-
ware Evaluation) were determined and the results 
peer-reviewed by the LCS Community.  The se-
lected middleware, the Data Distribution Service 
for Real-Time Systems, is an open standard over-
seen by the Object Management Group (OMG), an 
international standards body.  DDS will be de-
scribed in greater detail in section 4. 

2.1.5 Model-‐Driven	  Development	  
CSA employs a tailored Model Driven Develop-
ment (MDD) approach to system definition.  It 
leverages best practices and lessons learned from 
both PEO IWS Product Line Architecture (PLA) 
and OSD Unmanned Air System (UAS) Control 
Segment (UCS). 

The CSA Model is captured in UML using con-
ceptual data types and operations, with supporting 
text descriptions.  The UML model provides con-

Information architecture (data model) defines system data format, meaning, relationships
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Figure 2. Evolution of Legacy Components with CSA Publish/Subscribe Data Distribution 



text for conceptual types using projections against 
other types in the model.   This gives a clearer un-
derstanding of any given conceptual type within 
any given service versus the data used by other 
services and operations. 

A mapping from conceptual types to technology-
specific types is also defined in the model.   This 
enables the same service definitions to be mapped 
against other technologies or hardware platforms 
in the future, if necessary, without changing the 
basic definition of the services. 

The fully defined CSA Model includes: 

• UML depictions of the interfaces exposed by 
each CSA service 

• Data models, as well as interface and message 
definitions which use these models 

• Functional behavior descriptions for service 
interfaces (what should happen when an inter-
face is stimulated) 

• Sequence diagrams to depict interface rela-
tionships and expected usage of those inter-
faces 

• Information to support multi-language (Java, 
C++, IDL, WSDL) code generation for inter-
faces 

• Interface exposure (what the services need to 
provide) 

• Interface usage (what service consumers need 
to do to use interfaces) 

• Verification information to support automated 
testing of services 

Apart from the ability to map against disparate 
platforms and technologies, the conceptual model-
ing approach gives a clear visual representation of 
how the conceptual functionality is mapped into 
the specifics of any given platform or technology 
solution.   This decouples conceptual aspects of 
the services from any given implementation of 
them. 

2.2 Benefits	  over	  Competing/Past	  
Solutions	  

The initial analysis identified several areas that 
could benefit from alternative approaches.   While 
the existing approaches were not entirely without 

merit, they were limited and vertically focused.   
For example, the Mission Package Services (MPS) 
and its Mission Package Operating Environment 
(MPOE) provided only low-level infrastructure 
services that were often not fully utilized by the 
mission packages that it supported.   Many fea-
tures were not flexible enough to truly support the 
diverse needs of the existing mission packages and 
stopped short of providing common application 
services. 

Individual mission package features that were sim-
ilar to features provided by MPS had been used 
preferentially as the MPS-equivalent services were 
determined to be insufficient for the vertical focus 
of the mission modules.  The result was duplica-
tive and overlapping features and associated engi-
neering effort.   The MPS Alerts services are a 
prime example of this situation – the MPS-
provided solution did not fully meet the needs of 
the mission packages and has been underutilized. 

The MPS also made no attempt to provide applica-
tion-oriented services or functionality that was 
common between the various mission packages.   
The CSA approach was to identify all areas of 
common functionality that is present in the exist-
ing mission packages.   These common areas of 
functionality such as infrastructure services, com-
mon business logic services, presentation services, 
and common operating environment services be-
came the top-level functional domains of CSA. 

Moreover, the MPS architecture was not particu-
larly modular, in that it did not provide a flexible 
or open approach for 3rd parties to easily modify or 
replace its components as they were tightly cou-
pled.  The MPS fell short in providing a truly 
component-based modular architecture which min-
imized the value of fully integrating its features 
with the mission modules. 

The CSA approach to service definition has result-
ed in a very modular design with clearly-defined 
and granular components. The functionality pro-
vided by each CSA domain is defined by high-
level service descriptions. These high-level de-



scriptions are further refined into individual ser-
vice definitions which are defined by use cases, 
requirements, UML models and specific service 
definitions which follow the modular open ap-
proach defined by CSA. These artifacts are re-
viewed extensively by stakeholders and MPAS 
developers. 

Integration with the features provided by MPS was 
difficult because MPS was primarily based on 
libraries rather than discrete services.  The MPS 
libraries use CORBA which is an aging object-
centric communications middleware approach that 
has well-known limitations and vendor-specific 
integration issues.  That approach to providing 
common software facilities does not support the 
realization of a service-oriented and modular ar-
chitecture. 

CSA employs a standards-based data-centric pub-
lish/subscribe mechanism using DDS for interfac-
ing with its services.   This results in discrete ser-
vices which are loosely coupled and easily re-
placed or upgraded by 3rd parties as needed.   CSA 
services can be upgraded or replaced independent-
ly from the MPAS that make use of the services. 

2.3 DDS-‐Related	  Aspects	  
As stated above, CSA uses message-oriented mid-
dleware that is based on the OMG DDS standard.   
Unlike CORBA or message-exchange solutions, 
commercial implementations of the DDS standard 
are guaranteed to be interoperable down to the 
network protocol level.   CSA uses only standard 
DDS features of the middleware to specifically 
avoid vendor-lock.   Service providers or MPAS 
developers are free to use any conformant imple-
mentation of DDS. 

Using standards-based middleware supports the 
open business model aspect of the LCS program, 
but more importantly, the features of DDS support 
a data-centric publish-subscribe architecture that is 
loosely coupled.   Data-centric architectures pro-
vide an environment that is easily extensible and 
does not result in the same degree of integration 

complexity that is inherent with other message-
centric approaches. 

DDS provides a rich set of over 20 Quality of Ser-
vice (QoS) policies that specifically support low-
latency, high-bandwidth and high-volume data 
exchange.   CSA takes advantage of the high-
performance aspects of DDS to meet or exceed its 
requirements for performance.   CSA also makes 
extensive use of the QoS policies that make use of 
middleware-provided connectivity management 
features which have traditionally been implement-
ed using various ad-hoc approaches. 

2.4 Lessons	  Learned	  
In the course of the development of CSA, several 
lessons have been learned.   Everything from pro-
cess improvement, to specific details of “look and 
feel” of presentation components, to better ap-
proaches to data-centric design have been identi-
fied.   The particular lessons that support modular 
development and an open business model will be 
briefly discussed. 

In order to minimize confusion and inconsisten-
cies, and to ensure a consistent understanding of 
service functionality, it is necessary to document 
use cases prior to service modeling or System Re-
quirements Specification (SRS) requirement re-
finements.   The use cases should provide a plain 
English description of each service’s functionality 
and identify key decisions affecting service behav-
ior as well as outstanding issues and questions. 

To provide consistent approaches to software de-
velopment and unit testing, the CSA Software De-
velopment Plan (SDP) was expanded to specify 
software quality guidelines based on the associated 
SRS requirements.   These requirements are often 
driven by Security Technical Implementation 
Guides (STIGs) and program office directives for 
safety.   The approaches defined by the SDP must 
be applied consistently amongst all developers and 
organizations that contribute to CSA services. 

Service interfaces must make use of concisely de-
fined data structures and types.   Data must not be 



unnecessarily duplicated within messages when it 
can be provided using discrete topics and instanc-
es.   Message-centric approaches typically result in 
duplication of data that is only valid during any 
given service interaction.   A data-centric approach 
makes use of well-defined data states and relation-
ships between that data.   CSA services make use 
of data-centric architecture concepts to the greatest 
extent possible. 

The operations provided by CSA services should 
avoid traditional message-centric request/response 
patterns whenever possible.   Request/response 
interactions are best suited for message-oriented 
technologies that use point-to-point connections.   
Publish/subscribe interactions are typically one-to-
many and many-to-one and are not characterized 
by point-to-point relationships between partici-
pants.    

Data-centric services typically do not need to 
know which participants are requesting operations, 
and any data generated in response should reflect 
the new state of the system rather than provide a 
traditional success/failure message.   CSA services 
make use of data-centric interaction patterns to the 
greatest extent possible and avoid request/response 
interactions. 

Although DDS implementations are based on the 
OMG standard, they are not necessarily limited to 
the specification and often provide vendor-specific 
additions as well.   Participants that make use of 
CSA services must agree with QoS policies speci-
fied on topics that are defined by the service.   It is 
necessary to avoid vendor-specific functionality 
whenever possible and to provide a means of shar-
ing service-provided QoS policy settings.   

The CSA provides an API known as the DDS En-
capsulation Layer (DDS-EL) that enforces a con-
sistent use of DDS and provides a means of shar-
ing QoS policy settings in a standard way, and 
providing the most valuable features of DDS in a 
simplified manner.   While use of the DDS-EL is 
not currently mandatory, all existing services have 
been written using it.   Its use is highly recom-

mended by any group implementing services or 
consumers of the services in order to decrease de-
velopment effort and to reduce integration issues. 

3 Overview	  of	  OMG	  DDS	  
DDS is composed of two primary but distinct 
specifications – one for the application layer inter-
faces, and another that assures wire-level interop-
erability between vendor implementations. These 
layers ensure not only that a different vendor’s 
DDS implementationii can be swapped in without 
impacting application code, but that systems built 
using different implementations of DDS will in-
teroperate. 

DDS has been embraced by numerous DoD pro-
grams, and Prime contractors working on Open 
System Architecture initiatives. Users include vir-
tually all major US Prime contractors, US defense 
research laboratories, and many commercial tele-
communications, transportation, utilities, automo-
tive, manufacturing, mining, and financial compa-
nies. With encouragement from the Navy, the first 
version of the OMG DDS specification was adopt-
ed in 2004.   

In the previous sections, we discussed some as-
pects of this standard in the context of the work on 
CSA. Here we provide a general overview of 
DDS, and highlight more of the features that can 
be leveraged to support open system architectures. 

3.1 General	  Design	  
At its core, DDS is data-centric and publish-
subscribe. It is these two central architectural fea-
tures that differentiate it from all other distributed 
system design approaches, and make it inherently 
ideal for the implementation of open systems. 
Moreover, the ramifications of adopting these fea-
tures cascade deep into the design of your system, 
and result in significant long-term benefits includ-
                                                        
ii Currently, the OMG website lists 11 implementations 
of the DDS specification (http://portals. 
omg.org/dds/category/web-links/vendors) 



ing lowering costs, and improving evolvability, 
interoperability, scalability, and more. 

DDS Systems are data-centric. At a very basic 
level, in order to build a distributed system, the 
various applications and processes need to com-
municate.  The prevalent distributed system design 
methodology is to focus on the methods or proce-
dures and component interaction (e.g., object-
oriented programming). It is a natural extension of 
the way standalone applications have been de-
signed for decades, and it works quite well.  How-

ever, distributed systems using this interaction 
paradigm tend to be brittle, more difficult to 
evolve or extend, and they can be nearly impossi-
ble to evolve by anyone but the original develop-
ers.  These systems require potentially significant 
code changes when new components are intro-
duced in the distributed program logic.  This will 
result in significant maintenance and upgrade costs 
for the customer. 

A data-centric or data-oriented methodology, on 
the other hand, focuses on the flow of data through 
the system. Data-centricity elevates data to “first 
class citizenship” within the system, and not simp-
ly the byproduct of a remote method invocation of 
other paradigms: the data is relevant independent 
of the producer or consumer.   The producer and 
consumer are no longer inextricably tied together. 

Conversely, method-centric approaches tend to 
seed brittle, difficult to scale solutions. 

Data-centricity is the first step toward building 
open system architectures. However, the shift in 
paradigms from object-centric to data-centric can 
be challenging for system architects and pro-
grammers to adjust to, similar to the introduction 
of object-oriented thinking to the procedural pro-
grammers of the 1990’s.   

A comparison between object-oriented and data-
oriented programming is shown in Figure 3.  

DDS Systems are loosely coupled.  Rather than 
sending information from one specific process to 
another, DDS uses the notion of a data bus.  Ap-
plications publish data to the bus, and other appli-
cations interested in the data receive it. So, appli-
cations are not tightly bound to each other, result-
ing in systems that are no longer brittle.  

In DDS terms, processes that produce data are 
called publishers, and those that the consume data 
are called subscribers.  Subscribers declare their 
interest in the data by using a well-known Topic 
name, which is mapped to a well-known data 
structure.  An application can have any number of 
publishers, subscribers, and topics.  Overly simpli-
fied, one can think of the data bus as numerous 
telephone party lines, one for each topic, that ap-
plications can talk on and listen to. As subscribers 

Figure 3. A comparison of data-oriented programming with object-oriented programming. The data-
oriented approach enforces attention on the data rather than on the processes that manipulate the data. 



and publishers come online, they announce their 
interest in specific topics.  This enables the sub-
scribers and publishers to discover each other, and 
to negotiate delivery agreements based upon nu-
merous quality of service parameters.  These pa-
rameters are needed to ensure that a publisher can 
meet the delivery requirements of the subscriber.  
For example, some subscribers may only want to 
receive data from publishers that can emit data at 
60 samples per second, or that provide reliable 
delivery of the data (versus best effort).   

DDS also provides the concept of domains that 
enable an enforceable partitioning of the data bus, 
limiting a publisher or subscriber to only partici-
pate in one domain.  This allows the data, for ex-
ample, to flow in different domains in order to 
separate concerns, or to limit data access.   

This decoupling of applications from each other 
has significant benefits. For example, it facilitates 
scalability as it allows any number of new data 
producers and consumers to be added, without 
coding changes or bringing the system down. 
Since only data interactions are specified (rather 
than interfaces), devices or processes can be up-
graded or added without the need to change code 
and exhaustively retest every configuration. It also 
enables DDS to provide fault tolerance, where if 
one or more processes fail (publisher or subscrib-
er), DDS can detect this and allow a replacement 
process to immediately take over for it.  

It is worth noting that DDS also supports other 
interaction paradigms such as request-reply, for 
situations when its required. Being built upon 
DDS, they inherit all of the benefits of data-centric 
publish-subscribe.   

DDS systems are data-aware. For open systems 
built using DDS, the structure of the data being 
sent over the network is understood by the mid-
dleware, and it is not simply treated as a “blob” of 
data that needs to be moved from point A to point 
B.  In DDS, the structure of the data is declared 
using an interface definition language (IDL). This 
IDL is shared, along with the quality of service 

parameters discussed above, during a discovery 
phase (when a new publisher or subscriber joins 
the system) to match publishers and subscribers. 
This data (or structure) awareness enables DDS 
to reason about the data, optimize the management 
of it, and offer data services to the applications. 

A core feature that DDS provides is a logical 
global data space across the distributed system, 
where all processes have the same shared view of 
the data they subscribe to. DDS will automatically 
manage and update the state of data instances – 
such as the value of a stock, or the position of a 
sensor – as the data arrives, locally managing this 
complexity for each process. A process can ask to 
be alerted when any data arrives, or only when 
specific changes in the data occurs. A useful anal-
ogy is to think of DDS as managing data in mo-
tion, while a database manages data at rest. 

Moreover, since DDS is data-aware, an application 
can tell DDS what data within a topic it is interest-
ed in by using SQL data filters.  Only data that 
satisfies the filters are forwarded to the applica-
tion.  For example, an application may only want 
data for a specific targeting region, or for sensor 
state that changes in value by more than 5%.  This 
filtering is generally done on the receiving (sub-
scriber) side, however some advanced implemen-
tations of DDS may also forward a filter to the 
publisher as an optimization in order to reduce 
network traffic (e.g., if all existing subscribers are 
only interested in satellite data over Maine, then 
the publishers can stop publishing imagery for the 
rest of the US).  

Since DDS knows the structure of all of the dataiii, 
it can reason about the data.  This allows the DDS 
middleware to build in common data-oriented fea-
tures that applications can reuse, thereby signifi-
                                                        
iii Application designers can implement data structures 
as binary sequences that DDS cannot filter on, in con-
flict with the open system tenets.  However, this is nec-
essary for some types of data such as raw sensor data. 



cantly reducing the complexity, size, development 
and lifecycle maintenance costs of the application 
code (see Figure 4).  Feature-limited middleware 
may tout their compact size, but the trade-off is 
that the application developers will be burdened 
with correctly designing, implementing, testing 
and maintaining these needed features in their own 
code. Programs may spend millions, or tens of 
millions, trying to get distributed system commu-
nication right, but often fail.  Leveraging proven 
implementations of DDS significantly reduce 
these costs. 

Another advantage of exposing the structure of the 
data to DDS is that the middleware can provide 
language & platform independence, and even pro-
tocol independence.  DDS naturally maps the data 
into a language neutral form that can be ingested 
by multiple programming languages running on 
any number of operating systems and hardware 
platforms.   

3.2 DDS	  Security	  
RTI recently completed the creation of an OMG-
supported security specification for DDS6, funded 

in large part by a Navy IWS Phase II SBIR.  RTI’s 
implementation of this standard has been tested at 
the Quantico Cybersecurity Range. The DDS 
Security specification was adopted by OMG in 
December.  A detailed description can be found in 
our companion IIS 2015 paper entitled “Next-
generation Cybersecurity for Advanced Real-time 
Distributed Systems”. 

4 Conclusions	  /	  Summary	  
Implementations of the OMG DDS specification 
simplify application and integration logic by offer-
ing more capability than traditional messaging 

solutions. Instead of exchanging messages, soft-
ware components communicate by sharing first-
class data objects. Applications operate directly on 
these objects (create, read, update and delete). De-
velopers do not have to deal with low-level mes-
saging or networking interfaces, which in turn, 
significantly reduces application development time 
and cost.  

DDS handles the details of data distribution and 
management, including serialization and lifecycle 

Figure 4. DDS reduces development and lifecycle costs. 

 



management. It also provides for data in motion 
what a database provides for data at rest:  

• Decoupling. Data producers are agnostic to the 
number of consumers and the type of pro-
cessing they do. This allows components to be 
added and changed without affecting those 
that are already deployed.  

• Easy integration. The interfaces in a system—
as defined by the data model—are explicit and 
discoverable. Integration requires no 
knowledge of a component’s implementation 
and you do not need to reverse engineer proto-
cols and messages.  

• Robustness. DDS maintains a system’s shared 
state, providing a single source of truth. Late 
and re-joining applications automatically syn-
chronize with the current state. This ensures 
applications have a consistent world view 
even in dynamic and large-scale environ-
ments. 

Progeny has taken advantage of these features for 
the design and implementation of LCS CSA, lead-
ing to a system that is easier to scale, evolve, and 
maintain. 

5 Acronyms	  
ADD Architecture Design Description  
ASW Anti-Submarine Warfare  
 

C4I Command And Control, Computers, 
And Intelligence  

CNO Chief of Naval Operations  
CORBA Common Object Request Broker Archi-

tecture 
COTS Commercial-Off-The-Shelf  
CSA Common Software Architecture  
 

DDS Data Distribution Service  
DDS-EL DDS Encapsulation Layer  
DPG Defense Planning Guidance  
 

FACE Future Airborne Capability Environment 
IDL Interface Definition Language  
 

LCS Littoral Combat Ship  
 

MCM Mine Countermeasures  
MDD Model-Driven Design  
MPAS Mission Package Application Software  

MPOE Mission Package Operating Environ-
ment  

MPS Mission Package Services  
MOSA Modular Open System Approach  
 

OMG Object Management Group  
OSA Open Systems Architecture  
PEO Program Executive Office  
PLA Product Line Architecture  
 

QDR Quadrennial Defense Review  
QoS Quality of Service  
 

SDP Software Development Plan  
SOA Service Oriented Architecture  
SRS System Requirements Specification  
STIGs Security Technical Implementation 

Guides  
SUW Surface Warfare    
 

UAS Unmanned Air System  
UCS UAS Control Segment  
UML Unified Modeling Language 
 
6 References	  
                                                        

1. Payloads over Platforms: Charting a New Course” 
Proceedings Magazine, July 2012 Vol 138/7/1,313 
http://www.usni.org/magazines/proceedings/2012-
07/payloads-over-platforms-charting-new-course 
 

2. Data Distribution Service (DDS), 
http://portals.omg.org/dds/ 

 
3. Better Buying Power, http://bbp.dau.mil/ 

4. Towards Affordable DoD Combat Systems in the 
Age of Sequestration, 
http://blog.sei.cmu.edu/post.cfm/ towards-
affordable-dod-combat-systems-in-the-age-of-
sequestration 

5. Open Systems Architecture (OSA) Brochure,  
https://acc.dau.mil/adl/en-
US/695451/file/75899/OSABrochure.pdf 

 
6. DDS Security Specification, 

http://www.omg.org/spec/DDS-SECURITY/ 


