
Enabling Modularity in the Littoral Combat Ship
 Gordon Hunt Frank Crow Paul Pazandak, Ph.D.
 TRG Systems Progeny Stan Schneider, Ph.D., CEO
 LCS CSA Prime Real-Time Innovations

The views expressed in this paper are those of the author and do not reflect the official policy or
position of the Department of the Navy, the Department of Defense, or the U.S. Government.

Abstract	
The US Navy began extensive efforts to examine
the best way to structure future surface combatant
forces in response to the May 2002 Defense
Planning Guidance (DPG) and the Quadrennial
Defense Review (QDR). The Secretary of the
Navy and the Chief of Naval Operations (CNO)
concurred on a program requirement that became
the Littoral Combat Ship (LCS) program in Spring
2002.

The Program Executive Office (PEO) LCS was
created to align several program offices into a
single consolidated PEO which focused entirely on
delivering the LCS program in July 2011. The
program focuses on three mission areas within the
Littoral Surface Warfare operations which
emphasize the prosecution of Surface Warfare
(SUW), Mine Countermeasures (MCM) and Anti-
Submarine Warfare (ASW).

The design of the LCS permits the use of recon-
figurable modular mission packages1 in support of
these missions. Thus, these ships are essentially
“Seaframes” that provide the integrated systems
required to support the various mission packages.
These systems include command and control,
computers, and intelligence (C4I) along with an
integrated unmanned vehicle control system and
common resources such as power, compressed air
and water, etc.

It is essential to provide an open technical archi-
tecture and a modular design that provides flexi-
bility and ease of upgrade in order to support the
rapid installation and integration of these mission

packages. Standards-based interfaces between
mission packages and the Seaframe are also neces-
sary to allow these systems to be developed inde-
pendently.

This paper focuses on the justification for, and
tenets of, an open architecture in order to provide
the modularity required within LCS. We then
delve into the details of the architectural design,
decisions, and lessons learned building the Com-
mon Software Architecture (CSA) for LCS.
Finally, we provide an introduction to the underly-
ing technology that provides the foundation for the
open architecture of LCS CSA, and many other
DoD programs – the Object Management Group
(OMG) Data Distribution Service for Real-Time
Systems2 (DDS), a DoD-mandated standard.

1 Navy	 Open	 Architecture	 	
1.1 Problems	 &	 Motivation	
There is an ongoing and dramatic change in de-
fense procurement acquisition; in lieu of systems
integrators, the DoD is starting to define and main-
tain flexible system architectures for the electronic
and software systems they wish to procure. By
taking architectural management of the integra-
tion infrastructure and the integrated system of
systems architecture, the DoD seeks to evolve the
acquisition of defense capabilities towards a strat-
egy that promotes open competition, cost control,
innovation, and the rapid replacement and upgrade
of capabilities to address warfighter needs.

Implementing these system-of-systems while satis-
fying the combined system attributes of perfor-
mance, scalability, and reliability is challenging.

Adding additional software requirements including
interoperability, flexibility, modularity and porta-
bility makes the problem even more difficult. The
Navy is not undertaking these challenges for the
sake of the software architecture alone, but rather
to enable fiscally-constrained fielding of dominant
capabilities that leverage a large industry base for
technical innovation3. The Navy has a long history
of open architecture efforts4 so it is important to
understand what is different.

To date, it has been the various integrators that
have realized many of the benefits of open archi-
tecture approaches. However, this has resulted in
vendor-specific product lines and platform-
specific solutions which dramatically limit the
Government’s ability to bring multiple vendors
and new capabilities together affordably. This is
especially problematic for the LCS platform: it has
two distinct Seaframe variants, and multiple mis-
sion packages that should be interchangeable be-
tween them. This presents a significant configura-
tion and integration challenge. Certainly brute
force could work, but what about the mission
modules yet to be identified or capabilities that
have already been fielded on other platforms?
Current open architecture approaches do not put
enough specificity into the Government’s hands to
get ahead of this integration challenge and certain-
ly do not address the cost constraints of integra-
tion. It is a problem larger than interface specifi-
cations, data rights, COTS standards, or source
code.

1.2 Approach	 &	 Solutions	 	 	 	
The Navy has employed an Open Systems Archi-
tecture5 (OSA) strategy which covers the complete
life-cycle of technology and capability acquisition.
Up to now, defense procurement agencies have
been asking for open architecture solutions from
their supply chains, and the result has been their
adoption of open standards, modular system
frameworks, and Commercial-Off-The-Shelf
(COTS) standards-based technologies. All of these
are absolutely components of OSA, but unless

they are brought together within an open infra-
structure architecture, an open data model, appro-
priate data rights, properly incentivized contract-
ing, and metrics-based programmatic oversight,
realizing the benefits of OSA principles will be a
long road.

To be meaningfully interoperable, different sys-
tems built at different times, with different hard-
ware, different software architectures, different
technologies and different uses of the data and
system information must be cost-effectively inte-
gratable. This does not mean, nor imply, interop-
erability by commonality, plug-and-play integra-
tion, or any other over-used promise of open archi-
tecture. Furthermore, this is not implying that all
integration must be government-led. OSA is about
integration without ambiguity, and the ability to
achieve interoperability between systems – at
scale, repeatedly, across system ownership bound-
aries.

The question and the solution lies in the definition
(the technical specification as well as the IP and
data rights strategy) of these system ownership
boundaries. At these boundaries one can address
each specific system’s software architecture non-
functional requirements (Table 1) and define
known, separable, testable, and independently ac-
quirable system functions.

OSA defines several immediate key actions and
steps.

• Implement the coordinated set of business
changes that improve competition, incentivize
better performance, and deliver capability
more rapidly;

• Construct a limited number of technical refer-
ence frameworks to immediately support im-
proved competition and ultimately enable en-
terprise re-use;

• Develop an Execution Guidebook for this
strategy; and,

• Lead and guide training the workforce on
OSA implementation.

OSA also supports the recently enacted National
Defense Authorization Act which requires modu-
lar open systems approaches in acquisition pro-
grams. An excerpt of HR 3979 Section 801
MODULAR OPEN SYSTEMS APPROACHES
IN ACQUISITION follows:

(2) OPEN SYSTEMS APPROACH.—The term ‘‘open sys-
tems approach’’ means, with respect to an information tech-
nology system, an integrated business and technical strategy
that—

(A) employs a modular design and uses widely supported
and consensus-based standards for key interfaces;

(B) is subjected to successful validation and verification
tests to ensure key interfaces comply with widely sup-
ported and consensus-based standards; and,

(C) uses a system architecture that allows components to be
added, modified, replaced, removed, or supported by
different vendors throughout the lifecycle of the system
to afford opportunities for enhanced competition and
innovation while yielding—

(i) significant cost and schedule savings; and
(ii) increased interoperability.

What does this all mean? An Open Systems Archi-
tecture is an architecture derived from a set of

architecture design decisions that provide architec-
tural management to the organization acquiring the
system in order to assure that the resulting archi-
tecture meets the business, technical, and regulato-
ry requirements of the acquiring organization.

Practically, it means a system integrator still takes
responsibility for integrating all the sub-systems
together, but against an architectural specification
and infrastructure governed by the acquisition
program office. These specifications decouple ap-
plications from deployment specific technologies
and platform specific concerns, provide common
functions and capabilities, and most importantly,
clearly specify the data in decoupled formats from
system and software application implementations.
The specifications are data-centric in that they
promote the data as the primary point of integra-
tion and interoperability.

Interoperability, along with other system non-
functional requirements, is being brought to the
top line as a delivery requirement where interoper-

Table 1. Critical non-functional system software-architecture requirements.

Non-Functional
Requirement

Definition

Interchangeability To put each of (two things) in the place of another, or to be used in
place of each other.

Integratability To form, coordinate, or blend into a functioning or unified whole. To
incorporate into a larger, functioning or unified whole.

Replaceability One thing or person taking the place of another especially as a substi-
tute or successor.

Extensibility The ability to add new components, subsystems, and capabilities to a
system.

Interoperability The ability of systems, units, or forces to provide services to and ac-
cept services from other systems, units, or forces, and to use the ser-
vices so exchanged to enable them to operate effectively together.

Portability Abstraction of application logic and system interfaces to effect the
usability of the same software in different environments

Modularity A logical partitioning of the software design that allows complex
software to be manageable for the purpose of implementation and
maintenance

ability is more than a common infrastructure,
common messages, or COTS and standard-based
technologies. The DoD is mandating the data-
centric architecture of systems they wish to pro-
cure with a common systems architecture that
clearly and unambiguously describes and docu-
ment the data, its structure, its context, and its be-
havior.

In the context of LCS and the Common Software
Architecture (CSA), the construction of the tech-
nical reference framework, the capability decom-
position, and the service interface specification,
was conducted by a team of industry and govern-
ment engineers resulting in the data-centric CSA
infrastructure specification. The technical refer-
ence framework addresses the system non-
functional software requirements and provides a
software environment for long-term cost effective
integration. The careful separation of infrastruc-
ture and data provide additional benefits for test-
ing, and more importantly, provide a clear bounda-
ry for data rights and intellectual property separa-
tion.

1.3 Remaining	 Challenges	
Of the challenges remaining in the implementation
of OSA, the technical side is likely the easiest to
address. There are many efforts underway that are
separating the software platform (operating sys-
tem, IO, hardware) from the applications through
standard APIs and system interface specifications.
Yet, several efforts have evolved beyond this by
also focusing on the data architecturesi. This in-
cludes specifying the syntax, semantics, and be-
havior of the data. Semantics is tricky as it is tra-
ditionally captured implicitly in application logic,
unstated system-specific use of the data in mes-
sages, or domain-specific labels and words. In
order to be able to integrate systems-of-systems at

i E.g., Unmanned Aerial System Control Segment
(UCS), Future Airborne Capability Environment
(FACE)

scale, the semantic content of the data-centric
specifications must be fully captured.

A bigger challenge confronting the implementa-
tion of OSA are the acquisition processes and con-
tracting flexibility needed to effectively compete
and integrate from a broader industry base. While
completely understood, this is likely going to take
more effort.

1.4 Conclusion	
The LCS CSA architecture and its implementation
have adopted the tenets of OSA. It provides a great
reference example as to how to decompose an
open infrastructure into a set of reusable applica-
tions, implement a portable technical reference
platform based on open-standards, and integrate
rigorous model-based definitions of services and
their data. In the next section we describe LCS
CSA in more detail.

2 LCS	 Common	 Software	
Architecture	

The Common Software Architecture (CSA) pro-
vides an operating environment and a common set
of services for the mission packages that are sup-
ported by the LCS Seaframe. The goals of the
LCS CSA were reviewed and approved by the
LCS Community at its outset and are documented
by the CSA Architecture Design Description
(ADD).

Generally speaking, the goals of CSA are to pro-
vide a common environment for the various mis-
sion packages that may be installed on the Sea-
frame, and to facilitate an open business model
that supports innovation. In order to refine that
broad vision into a particular set of goals, an in-
depth analysis of existing approaches and systems
engineering artifacts was conducted.

That analysis identified the limitations of existing
approaches, and the benefits of alternative ap-
proaches, which resulted in a clearly defined set of
high-level design goals. While many design goals

were identified, the particular design goals which
enable modularity and thereby support the broader
goals of the LCS program itself are described in
the following section.

It is important to remember while considering the
following design goals, the fundamental tenets that
most broad Department of Defense architectural
efforts seek to achieve:

• Support the functional needs of the system. In
the case of LCS, the tactical needs of Mission
Package warfighters;

• Minimize costs across all aspects of the life
cycle. In this case, from Mission Package ca-
pability design through training and sustain-
ment;

• Foster innovation and technical advances. For
LCS, this applies to both the Mission Packag-
es as well as the services provided by CSA;

• Enable Open Acquisition and avoid vendor
lock. In this case, by ensuring LCS acquisi-
tion authorities are provided with clearly ar-
ticulated and vendor-neutral CSA service def-
initions.

2.1 High-‐level	 Design	 Goals	
In order for CSA to provide infrastructure and
application services that would be useful and flex-
ible enough to be used by the mission modules, it
was determined that a component-based Service
Oriented Architecture (SOA) should be imple-
mented as a high-level design goal. To avoid the
limitations inherent in certain SOA approaches it
was necessary to adopt the tenets of the Modular
Open System Approach (MOSA).

Large scale integration of diverse software sys-
tems often suffers from a measurable increase in
integration complexity. This is due to the way
that services and applications communicate with
each other. A message-oriented communications
backbone results in a web of connections which
tends to expand exponentially as additional partic-
ipants are added to the environment.

Message exchanges and request brokers have been
used to mitigate these issues to some extent but
the greatest reduction of integration complexity

can only be realized by a data-centric publish/
subscribe communication paradigm. Therefore, it
was determined that the CSA services would uti-
lize the OMG Data Distribution Service for Real-
Time Systems (DDS) as its primary means of
communication to more easily support large scale
integration.

In order to fully support the open business model
and reuse of CSA services, a model-driven devel-
opment (MDD) approach was adopted. An MDD
approach coupled with service-level requirements
is used to clearly define interface and functional
requirements in a conceptual manner. The Uni-
fied Modeling Language (UML) models that were
created describe the services using conceptual data
types and operations which can then be reused for
any future implementations of CSA regardless of
hardware or technology specifics.

In summary, the design goals for CSA included
using:

• Component-Based Architectures
• A Modular Open System Approach
• Service-Oriented Architectures
• Data-Centric Publish-Subscribe Networking
• Model-Driven Development

The following subsections provide more details
about these design goals, which are central to ena-
bling modularity, and directly support the goals of
the LCS Program.

2.1.1 Component-‐Based	 Architectures	
A component-based architecture will allow Mis-
sion Package Application Software (MPAS) de-
signers to select only those components needed to
meet mission-diverse requirements. Component
definitions include the data sent and received by
the component, the services provided and required
by the component, as well as the functional and
performance requirements for the services.

Component definitions also include verification
requirements, and associated test plans, data sets,
procedures, harnesses/software development
toolkits, and test results.

The granularity of CSA components evolve over
time and are based on extensibility and reuse
needs, and adopt coupling and cohesion principles
so that a component provides a related set of func-
tionality with consistent and stable interfaces.

2.1.2 Modular	 Open	 System	 Approach	 	
The CSA follows a MOSA design, development,
and integration strategy. MOSA is an integrated
business and technical strategy that employs a
modular design and, where appropriate, defines
key interfaces using widely supported, consensus-
based standards that are published and maintained
by a recognized industry standards organization.

Standards can help to ensure that systems do not
become locked into a single vendor. Standards
should be widely accepted as well as formally rec-
ognized. The choice of a standard is predicated
not only on the content of the standard but also on
its applicability to the CSA component for which
it is under consideration.

The CSA is modularized to include common com-
ponents that will have openly published, non-
proprietary interfaces to support extensibility and
reuse. Interfaces are standardized and configura-
tion managed. Commercial, open system interface
standards are specified for components that are
exposed for use by MPAS or other CSA compo-
nents. De facto standards have been selected
when open system standards do not exist when the
de facto standards are supported by multiple sup-
pliers. Custom interfaces have only been defined
where open or de facto standards do not exist.

2.1.3 A	 Service-‐Oriented	 Architecture	
Utilizing the broadly adopted SOA paradigm, the
CSA exposes services via open, published, non-
proprietary interfaces. Service-orientation pro-
motes engineering principles of modularity, en-
capsulation, information hiding and interface-
based design. In a SOA, warfighting operations
are defined in terms of activities, which are

mapped to services. Service definitions are not
dependent on knowing which system(s) implement
the services. Externally visible behavior of system
components are defined in terms of the services
they provide and require.

The benefits of using a service-oriented architec-
ture include:

• Interoperability: SOAs enable significant in-
teroperability between software, information,
and processes

• Integration: Standards-based approaches to
SOA enable one service to integrate multiple
applications and information from disparate
systems

• Reuse: More effective reuse of existing appli-
cations and systems, reducing (re)development
costs

• Composability: The loosely-coupled, stand-
ards-based approach of SOA allows services
to be easily connected and reconnected to
create new processes and operational threads

• Agility: The loose coupling between opera-
tional activities and application functions
offers the potential to increase operational
agility

• Risk Reduction: SOAs allow for the seamless
redundancy of critical functionality with vary-
ing levels of data fidelity.

In addition, the decoupled nature of the publish/
subscribe interaction pattern allows chains of sys-
tem functions to be executed to perform a service.
While MPAS components won’t be dynamically
composed by operators in the field, software com-
ponents will be designed such that system engi-
neers and architects can create different applica-
tions from these reusable components to provide
services in a composable manner.

2.1.4 Data-‐Centric	 Publish/Subscribe	
Communications	

The CSA promotes the use of a data-centric pub-
lish/subscribe paradigm for the distribution of data
and messages between CSA and MPAS compo-
nents.

An essential part of a component’s description is
the information it produces and/or the information
it consumes. Information (or changes in infor-
mation) is both a stimulus and a response for
event-driven processes. Based on subscriptions
requested by consuming components, infrastruc-
ture services can optimize the distribution of data
to where they are needed and at the necessary rate.

A data-centric information backbone has been
integrated into the CSA. It supports data subscrip-
tion by any authorized component; it supports ex-
tensibility; it provides a mechanism for timely re-
sponses to events; and, it minimizes synchroniza-
tion points across components. This publish / sub-
scribe model also allows for seamless redundancy
of critical functionality with varying levels of data
fidelity that could be of interest in risk reduction.

The publish/subscribe model supports the high
performance data exchange needs of CSA and
MPAS components, especially those components
associated with Unmanned Vehicle Control. The
model allows components to react immediately to
changes in system data produced by other compo-
nents. This “push” view is a very effective mecha-
nism for supporting the high performance chaining
of events within the environment to produce de-

sired effects. But not everything within the envi-
ronment is event-driven. A “pull” view is also
supported by data servers which subscribe to mes-
sages and retain the information until requested by
another component.

Figure 1 illustrates the information-driven nature
of CSA component interfaces. The larger arrows
in the figure illustrate data that is 'pushed' to
MPAS components based on subscriptions estab-
lished by those components. The smaller arrows
indicate data pushed from those components to be
made available to other MPAS components, based
on those components' subscriptions. The larger
arrows emphasize data flows to the components in
order to stimulate event-driven responses to
achieve desired effects.

Using publish/subscribe services allows compo-
nents to not be connected by logical point-to-point
interfaces. Publish/subscribe services support
many-to-many data exchanges and allow addition
of new components with minimized effort.

As illustrated in Figure 2, this information-
oriented approach is well suited for evolutionary
development of CSA and MPAS components.
New components can be developed to publish and
subscribe to existing data in accordance with the

Common Middleware API (Publish/Subscribe Model)

Information Architecture

Transport Services

Component

Attributes

Services

Component

Attributes

Services

Component

Attributes

Services

Component

Attributes

Services

Figure 1. Component Interfaces and Data Flow

established data models, as well as to publish new
data and extend the data model where appropriate.
Legacy components can be wrapped within a
transformation layer that translates between the
common system data / interface standard for that
component and any internal component represen-
tation. The data models also define each compo-
nent interface in a manner that automated software
testing tools can process.

This approach also supports gradual migration
from legacy MPAS components to smaller, more
reusable components. A single large-grained
component could produce a set of system-level
data that is allocated to several smaller compo-
nents in the CSA. As long as the large-grained
module exposes all of the messages defined for the
set of components it represented, it still conforms
to the CSA service specification. Subscribing
components would not be aware that one large-
grained component was producing those messages
instead of multiple smaller components.

The technology employed by CSA was chosen by

examining the available message-oriented mid-
dleware systems using a weighted and subjective
analysis. The criteria and weights for the study
(known as the CSA High-Performance Middle-
ware Evaluation) were determined and the results
peer-reviewed by the LCS Community. The se-
lected middleware, the Data Distribution Service
for Real-Time Systems, is an open standard over-
seen by the Object Management Group (OMG), an
international standards body. DDS will be de-
scribed in greater detail in section 4.

2.1.5 Model-‐Driven	 Development	
CSA employs a tailored Model Driven Develop-
ment (MDD) approach to system definition. It
leverages best practices and lessons learned from
both PEO IWS Product Line Architecture (PLA)
and OSD Unmanned Air System (UAS) Control
Segment (UCS).

The CSA Model is captured in UML using con-
ceptual data types and operations, with supporting
text descriptions. The UML model provides con-

Information architecture (data model) defines system data format, meaning, relationships

Information Backbone (networks, middleware, publish/subscribe services)

Compliant
Component

Performs
Functions

Produces
Assigned

System Data

Legacy
Component

Legacy
Functions

Produces
Legacy Data

Transforms
Data

Aggregated Component

Figure 2. Evolution of Legacy Components with CSA Publish/Subscribe Data Distribution

text for conceptual types using projections against
other types in the model. This gives a clearer un-
derstanding of any given conceptual type within
any given service versus the data used by other
services and operations.

A mapping from conceptual types to technology-
specific types is also defined in the model. This
enables the same service definitions to be mapped
against other technologies or hardware platforms
in the future, if necessary, without changing the
basic definition of the services.

The fully defined CSA Model includes:

• UML depictions of the interfaces exposed by
each CSA service

• Data models, as well as interface and message
definitions which use these models

• Functional behavior descriptions for service
interfaces (what should happen when an inter-
face is stimulated)

• Sequence diagrams to depict interface rela-
tionships and expected usage of those inter-
faces

• Information to support multi-language (Java,
C++, IDL, WSDL) code generation for inter-
faces

• Interface exposure (what the services need to
provide)

• Interface usage (what service consumers need
to do to use interfaces)

• Verification information to support automated
testing of services

Apart from the ability to map against disparate
platforms and technologies, the conceptual model-
ing approach gives a clear visual representation of
how the conceptual functionality is mapped into
the specifics of any given platform or technology
solution. This decouples conceptual aspects of
the services from any given implementation of
them.

2.2 Benefits	 over	 Competing/Past	
Solutions	

The initial analysis identified several areas that
could benefit from alternative approaches. While
the existing approaches were not entirely without

merit, they were limited and vertically focused.
For example, the Mission Package Services (MPS)
and its Mission Package Operating Environment
(MPOE) provided only low-level infrastructure
services that were often not fully utilized by the
mission packages that it supported. Many fea-
tures were not flexible enough to truly support the
diverse needs of the existing mission packages and
stopped short of providing common application
services.

Individual mission package features that were sim-
ilar to features provided by MPS had been used
preferentially as the MPS-equivalent services were
determined to be insufficient for the vertical focus
of the mission modules. The result was duplica-
tive and overlapping features and associated engi-
neering effort. The MPS Alerts services are a
prime example of this situation – the MPS-
provided solution did not fully meet the needs of
the mission packages and has been underutilized.

The MPS also made no attempt to provide applica-
tion-oriented services or functionality that was
common between the various mission packages.
The CSA approach was to identify all areas of
common functionality that is present in the exist-
ing mission packages. These common areas of
functionality such as infrastructure services, com-
mon business logic services, presentation services,
and common operating environment services be-
came the top-level functional domains of CSA.

Moreover, the MPS architecture was not particu-
larly modular, in that it did not provide a flexible
or open approach for 3rd parties to easily modify or
replace its components as they were tightly cou-
pled. The MPS fell short in providing a truly
component-based modular architecture which min-
imized the value of fully integrating its features
with the mission modules.

The CSA approach to service definition has result-
ed in a very modular design with clearly-defined
and granular components. The functionality pro-
vided by each CSA domain is defined by high-
level service descriptions. These high-level de-

scriptions are further refined into individual ser-
vice definitions which are defined by use cases,
requirements, UML models and specific service
definitions which follow the modular open ap-
proach defined by CSA. These artifacts are re-
viewed extensively by stakeholders and MPAS
developers.

Integration with the features provided by MPS was
difficult because MPS was primarily based on
libraries rather than discrete services. The MPS
libraries use CORBA which is an aging object-
centric communications middleware approach that
has well-known limitations and vendor-specific
integration issues. That approach to providing
common software facilities does not support the
realization of a service-oriented and modular ar-
chitecture.

CSA employs a standards-based data-centric pub-
lish/subscribe mechanism using DDS for interfac-
ing with its services. This results in discrete ser-
vices which are loosely coupled and easily re-
placed or upgraded by 3rd parties as needed. CSA
services can be upgraded or replaced independent-
ly from the MPAS that make use of the services.

2.3 DDS-‐Related	 Aspects	
As stated above, CSA uses message-oriented mid-
dleware that is based on the OMG DDS standard.
Unlike CORBA or message-exchange solutions,
commercial implementations of the DDS standard
are guaranteed to be interoperable down to the
network protocol level. CSA uses only standard
DDS features of the middleware to specifically
avoid vendor-lock. Service providers or MPAS
developers are free to use any conformant imple-
mentation of DDS.

Using standards-based middleware supports the
open business model aspect of the LCS program,
but more importantly, the features of DDS support
a data-centric publish-subscribe architecture that is
loosely coupled. Data-centric architectures pro-
vide an environment that is easily extensible and
does not result in the same degree of integration

complexity that is inherent with other message-
centric approaches.

DDS provides a rich set of over 20 Quality of Ser-
vice (QoS) policies that specifically support low-
latency, high-bandwidth and high-volume data
exchange. CSA takes advantage of the high-
performance aspects of DDS to meet or exceed its
requirements for performance. CSA also makes
extensive use of the QoS policies that make use of
middleware-provided connectivity management
features which have traditionally been implement-
ed using various ad-hoc approaches.

2.4 Lessons	 Learned	
In the course of the development of CSA, several
lessons have been learned. Everything from pro-
cess improvement, to specific details of “look and
feel” of presentation components, to better ap-
proaches to data-centric design have been identi-
fied. The particular lessons that support modular
development and an open business model will be
briefly discussed.

In order to minimize confusion and inconsisten-
cies, and to ensure a consistent understanding of
service functionality, it is necessary to document
use cases prior to service modeling or System Re-
quirements Specification (SRS) requirement re-
finements. The use cases should provide a plain
English description of each service’s functionality
and identify key decisions affecting service behav-
ior as well as outstanding issues and questions.

To provide consistent approaches to software de-
velopment and unit testing, the CSA Software De-
velopment Plan (SDP) was expanded to specify
software quality guidelines based on the associated
SRS requirements. These requirements are often
driven by Security Technical Implementation
Guides (STIGs) and program office directives for
safety. The approaches defined by the SDP must
be applied consistently amongst all developers and
organizations that contribute to CSA services.

Service interfaces must make use of concisely de-
fined data structures and types. Data must not be

unnecessarily duplicated within messages when it
can be provided using discrete topics and instanc-
es. Message-centric approaches typically result in
duplication of data that is only valid during any
given service interaction. A data-centric approach
makes use of well-defined data states and relation-
ships between that data. CSA services make use
of data-centric architecture concepts to the greatest
extent possible.

The operations provided by CSA services should
avoid traditional message-centric request/response
patterns whenever possible. Request/response
interactions are best suited for message-oriented
technologies that use point-to-point connections.
Publish/subscribe interactions are typically one-to-
many and many-to-one and are not characterized
by point-to-point relationships between partici-
pants.

Data-centric services typically do not need to
know which participants are requesting operations,
and any data generated in response should reflect
the new state of the system rather than provide a
traditional success/failure message. CSA services
make use of data-centric interaction patterns to the
greatest extent possible and avoid request/response
interactions.

Although DDS implementations are based on the
OMG standard, they are not necessarily limited to
the specification and often provide vendor-specific
additions as well. Participants that make use of
CSA services must agree with QoS policies speci-
fied on topics that are defined by the service. It is
necessary to avoid vendor-specific functionality
whenever possible and to provide a means of shar-
ing service-provided QoS policy settings.

The CSA provides an API known as the DDS En-
capsulation Layer (DDS-EL) that enforces a con-
sistent use of DDS and provides a means of shar-
ing QoS policy settings in a standard way, and
providing the most valuable features of DDS in a
simplified manner. While use of the DDS-EL is
not currently mandatory, all existing services have
been written using it. Its use is highly recom-

mended by any group implementing services or
consumers of the services in order to decrease de-
velopment effort and to reduce integration issues.

3 Overview	 of	 OMG	 DDS	
DDS is composed of two primary but distinct
specifications – one for the application layer inter-
faces, and another that assures wire-level interop-
erability between vendor implementations. These
layers ensure not only that a different vendor’s
DDS implementationii can be swapped in without
impacting application code, but that systems built
using different implementations of DDS will in-
teroperate.

DDS has been embraced by numerous DoD pro-
grams, and Prime contractors working on Open
System Architecture initiatives. Users include vir-
tually all major US Prime contractors, US defense
research laboratories, and many commercial tele-
communications, transportation, utilities, automo-
tive, manufacturing, mining, and financial compa-
nies. With encouragement from the Navy, the first
version of the OMG DDS specification was adopt-
ed in 2004.

In the previous sections, we discussed some as-
pects of this standard in the context of the work on
CSA. Here we provide a general overview of
DDS, and highlight more of the features that can
be leveraged to support open system architectures.

3.1 General	 Design	
At its core, DDS is data-centric and publish-
subscribe. It is these two central architectural fea-
tures that differentiate it from all other distributed
system design approaches, and make it inherently
ideal for the implementation of open systems.
Moreover, the ramifications of adopting these fea-
tures cascade deep into the design of your system,
and result in significant long-term benefits includ-

ii Currently, the OMG website lists 11 implementations
of the DDS specification (http://portals.
omg.org/dds/category/web-links/vendors)

ing lowering costs, and improving evolvability,
interoperability, scalability, and more.

DDS Systems are data-centric. At a very basic
level, in order to build a distributed system, the
various applications and processes need to com-
municate. The prevalent distributed system design
methodology is to focus on the methods or proce-
dures and component interaction (e.g., object-
oriented programming). It is a natural extension of
the way standalone applications have been de-
signed for decades, and it works quite well. How-

ever, distributed systems using this interaction
paradigm tend to be brittle, more difficult to
evolve or extend, and they can be nearly impossi-
ble to evolve by anyone but the original develop-
ers. These systems require potentially significant
code changes when new components are intro-
duced in the distributed program logic. This will
result in significant maintenance and upgrade costs
for the customer.

A data-centric or data-oriented methodology, on
the other hand, focuses on the flow of data through
the system. Data-centricity elevates data to “first
class citizenship” within the system, and not simp-
ly the byproduct of a remote method invocation of
other paradigms: the data is relevant independent
of the producer or consumer. The producer and
consumer are no longer inextricably tied together.

Conversely, method-centric approaches tend to
seed brittle, difficult to scale solutions.

Data-centricity is the first step toward building
open system architectures. However, the shift in
paradigms from object-centric to data-centric can
be challenging for system architects and pro-
grammers to adjust to, similar to the introduction
of object-oriented thinking to the procedural pro-
grammers of the 1990’s.

A comparison between object-oriented and data-
oriented programming is shown in Figure 3.

DDS Systems are loosely coupled. Rather than
sending information from one specific process to
another, DDS uses the notion of a data bus. Ap-
plications publish data to the bus, and other appli-
cations interested in the data receive it. So, appli-
cations are not tightly bound to each other, result-
ing in systems that are no longer brittle.

In DDS terms, processes that produce data are
called publishers, and those that the consume data
are called subscribers. Subscribers declare their
interest in the data by using a well-known Topic
name, which is mapped to a well-known data
structure. An application can have any number of
publishers, subscribers, and topics. Overly simpli-
fied, one can think of the data bus as numerous
telephone party lines, one for each topic, that ap-
plications can talk on and listen to. As subscribers

Figure 3. A comparison of data-oriented programming with object-oriented programming. The data-
oriented approach enforces attention on the data rather than on the processes that manipulate the data.

and publishers come online, they announce their
interest in specific topics. This enables the sub-
scribers and publishers to discover each other, and
to negotiate delivery agreements based upon nu-
merous quality of service parameters. These pa-
rameters are needed to ensure that a publisher can
meet the delivery requirements of the subscriber.
For example, some subscribers may only want to
receive data from publishers that can emit data at
60 samples per second, or that provide reliable
delivery of the data (versus best effort).

DDS also provides the concept of domains that
enable an enforceable partitioning of the data bus,
limiting a publisher or subscriber to only partici-
pate in one domain. This allows the data, for ex-
ample, to flow in different domains in order to
separate concerns, or to limit data access.

This decoupling of applications from each other
has significant benefits. For example, it facilitates
scalability as it allows any number of new data
producers and consumers to be added, without
coding changes or bringing the system down.
Since only data interactions are specified (rather
than interfaces), devices or processes can be up-
graded or added without the need to change code
and exhaustively retest every configuration. It also
enables DDS to provide fault tolerance, where if
one or more processes fail (publisher or subscrib-
er), DDS can detect this and allow a replacement
process to immediately take over for it.

It is worth noting that DDS also supports other
interaction paradigms such as request-reply, for
situations when its required. Being built upon
DDS, they inherit all of the benefits of data-centric
publish-subscribe.

DDS systems are data-aware. For open systems
built using DDS, the structure of the data being
sent over the network is understood by the mid-
dleware, and it is not simply treated as a “blob” of
data that needs to be moved from point A to point
B. In DDS, the structure of the data is declared
using an interface definition language (IDL). This
IDL is shared, along with the quality of service

parameters discussed above, during a discovery
phase (when a new publisher or subscriber joins
the system) to match publishers and subscribers.
This data (or structure) awareness enables DDS
to reason about the data, optimize the management
of it, and offer data services to the applications.

A core feature that DDS provides is a logical
global data space across the distributed system,
where all processes have the same shared view of
the data they subscribe to. DDS will automatically
manage and update the state of data instances –
such as the value of a stock, or the position of a
sensor – as the data arrives, locally managing this
complexity for each process. A process can ask to
be alerted when any data arrives, or only when
specific changes in the data occurs. A useful anal-
ogy is to think of DDS as managing data in mo-
tion, while a database manages data at rest.

Moreover, since DDS is data-aware, an application
can tell DDS what data within a topic it is interest-
ed in by using SQL data filters. Only data that
satisfies the filters are forwarded to the applica-
tion. For example, an application may only want
data for a specific targeting region, or for sensor
state that changes in value by more than 5%. This
filtering is generally done on the receiving (sub-
scriber) side, however some advanced implemen-
tations of DDS may also forward a filter to the
publisher as an optimization in order to reduce
network traffic (e.g., if all existing subscribers are
only interested in satellite data over Maine, then
the publishers can stop publishing imagery for the
rest of the US).

Since DDS knows the structure of all of the dataiii,
it can reason about the data. This allows the DDS
middleware to build in common data-oriented fea-
tures that applications can reuse, thereby signifi-

iii Application designers can implement data structures
as binary sequences that DDS cannot filter on, in con-
flict with the open system tenets. However, this is nec-
essary for some types of data such as raw sensor data.

cantly reducing the complexity, size, development
and lifecycle maintenance costs of the application
code (see Figure 4). Feature-limited middleware
may tout their compact size, but the trade-off is
that the application developers will be burdened
with correctly designing, implementing, testing
and maintaining these needed features in their own
code. Programs may spend millions, or tens of
millions, trying to get distributed system commu-
nication right, but often fail. Leveraging proven
implementations of DDS significantly reduce
these costs.

Another advantage of exposing the structure of the
data to DDS is that the middleware can provide
language & platform independence, and even pro-
tocol independence. DDS naturally maps the data
into a language neutral form that can be ingested
by multiple programming languages running on
any number of operating systems and hardware
platforms.

3.2 DDS	 Security	
RTI recently completed the creation of an OMG-
supported security specification for DDS6, funded

in large part by a Navy IWS Phase II SBIR. RTI’s
implementation of this standard has been tested at
the Quantico Cybersecurity Range. The DDS
Security specification was adopted by OMG in
December. A detailed description can be found in
our companion IIS 2015 paper entitled “Next-
generation Cybersecurity for Advanced Real-time
Distributed Systems”.

4 Conclusions	 /	 Summary	
Implementations of the OMG DDS specification
simplify application and integration logic by offer-
ing more capability than traditional messaging

solutions. Instead of exchanging messages, soft-
ware components communicate by sharing first-
class data objects. Applications operate directly on
these objects (create, read, update and delete). De-
velopers do not have to deal with low-level mes-
saging or networking interfaces, which in turn,
significantly reduces application development time
and cost.

DDS handles the details of data distribution and
management, including serialization and lifecycle

Figure 4. DDS reduces development and lifecycle costs.

management. It also provides for data in motion
what a database provides for data at rest:

• Decoupling. Data producers are agnostic to the
number of consumers and the type of pro-
cessing they do. This allows components to be
added and changed without affecting those
that are already deployed.

• Easy integration. The interfaces in a system—
as defined by the data model—are explicit and
discoverable. Integration requires no
knowledge of a component’s implementation
and you do not need to reverse engineer proto-
cols and messages.

• Robustness. DDS maintains a system’s shared
state, providing a single source of truth. Late
and re-joining applications automatically syn-
chronize with the current state. This ensures
applications have a consistent world view
even in dynamic and large-scale environ-
ments.

Progeny has taken advantage of these features for
the design and implementation of LCS CSA, lead-
ing to a system that is easier to scale, evolve, and
maintain.

5 Acronyms	
ADD Architecture Design Description
ASW Anti-Submarine Warfare

C4I Command And Control, Computers,
And Intelligence

CNO Chief of Naval Operations
CORBA Common Object Request Broker Archi-

tecture
COTS Commercial-Off-The-Shelf
CSA Common Software Architecture

DDS Data Distribution Service
DDS-EL DDS Encapsulation Layer
DPG Defense Planning Guidance

FACE Future Airborne Capability Environment
IDL Interface Definition Language

LCS Littoral Combat Ship

MCM Mine Countermeasures
MDD Model-Driven Design
MPAS Mission Package Application Software

MPOE Mission Package Operating Environ-
ment

MPS Mission Package Services
MOSA Modular Open System Approach

OMG Object Management Group
OSA Open Systems Architecture
PEO Program Executive Office
PLA Product Line Architecture

QDR Quadrennial Defense Review
QoS Quality of Service

SDP Software Development Plan
SOA Service Oriented Architecture
SRS System Requirements Specification
STIGs Security Technical Implementation

Guides
SUW Surface Warfare

UAS Unmanned Air System
UCS UAS Control Segment
UML Unified Modeling Language

6 References	

1. Payloads over Platforms: Charting a New Course”
Proceedings Magazine, July 2012 Vol 138/7/1,313
http://www.usni.org/magazines/proceedings/2012-
07/payloads-over-platforms-charting-new-course

2. Data Distribution Service (DDS),
http://portals.omg.org/dds/

3. Better Buying Power, http://bbp.dau.mil/

4. Towards Affordable DoD Combat Systems in the
Age of Sequestration,
http://blog.sei.cmu.edu/post.cfm/ towards-
affordable-dod-combat-systems-in-the-age-of-
sequestration

5. Open Systems Architecture (OSA) Brochure,
https://acc.dau.mil/adl/en-
US/695451/file/75899/OSABrochure.pdf

6. DDS Security Specification,

http://www.omg.org/spec/DDS-SECURITY/

