

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

Hamed Soroush, Philip M. Irey IV, Gerardo Pardo-Castellote, Steve Canup

Next-generation Cybersecurity for Advanced Real-time
Distributed Systems

March 2015

The views expressed in this paper are those of the author and do not reflect the official policy or
position of the Department of the Navy, the Department of Defense, or the U.S. Government.

ABSTRACT
The Data Distribution Service (DDS) is a common
information technology standard mandated for use
by the Department of Defense (DoD) and heavily
used by industry. DDS usage is particularly
pervasive in Navy surface combatants, especially
because of its reliability, robustness, and
provisioning of quality of service. Until recently,
DDS has offered limited support for security. For
instance, existing DDS systems support isolating
DDS applications into a security enclave running at
“system high.” Inside the “protected domain,”
applications are authorized to publish and subscribe
to any data in the DDS Global Data Space.
However, applications are not authenticated unless
done at the application layer, and metadata is sent
unencrypted and unprotected against tampering.
Typical DDS infrastructure provides no guarantees
(other than those provided by the physical
protection of the system) related to information
confidentiality, pedigree, or integrity.

With naval cybersecurity requirements being
pushed out into current and future programs of
record, steps are being taken to provide a more
secure environment that is less susceptible to cyber-
attacks. In order to help meet these requirements in
distributed systems, the U.S. Navy has recently
funded the prototype development of security
extensions to DDS. Documentation from this effort
contributed significantly to the development of the
Object Management Group (OMG) DDS Security
Specification standard. This paper will describe the
design of the security extensions to DDS that
provide the necessary support for authentication,
authorization, confidentiality, integrity, and
auditing. In addition, it discusses the relevance of
the extensions to the Navy’s cybersecurity strategy
moving forward.

Introduction
In the 1990s, the architecture and technologies used
by surface Navy combat systems were limiting
performance and scalability. Architectures and
technologies that could overcome these limitations
were evaluated, resulting in recommendations to
use distributed network architectures and standards-
based, commercial off-the-shelf (COTS)
technologies [1]. DDS was one of the key
standards-based COTS technologies recommended
for publish-subscribe data distribution. Key DDS
features that drove this recommendation include
support for the development of scalable distributed
computing systems, support for loose coupling
between components, the capability to provide
high-performance data transfer, and capabilities
such as highly flexible quality of service (QoS)
control needed to support a wide range of real-time
combat system requirements. DDS was widely
adopted by surface Navy combat systems for
publish-subscribe data transfer.

The introduction of publish-subscribe to combat
systems completely changed the way interfaces
were developed. Rather than defining strictly point-
to-point interface design specifications to describe
data exchanges that occur between two endpoints,
interfaces were now described as topics, which
specified the type of data to be sent, and the QoS
with which to distribute that data. While the
technology significantly reduced the complexity of
making interface changes and increased flexibility,
it presented challenges for addressing security
requirements that would be desired in future
combat system iterations.

DoD cybersecurity requirements for Navy afloat
platforms, along with all DoD systems, originate
from DoD Instruction 8500.1, “Cybersecurity,” and
eventually trace down to specific platform

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

requirements. For example, a series of data-in-
transit (DIT) controls are defined to protect data as
it flows through networks. Navy afloat platforms
employ a defense-in-depth strategy applying these
cybersecurity requirements at a variety of critical
points on a platform.

In 2010, recognizing the need to address
cybersecurity requirements more broadly in its
combat systems, the Navy initiated a Small
Business Innovative Research (SBIR) topic [2] to
“develop the capability to authenticate, authorize,
encrypt, key manage and audit publishers and
subscribers in a real-time deadline scheduled
pub/sub software environment on a per middleware
message basis.” Through the execution of this
SBIR, DDS security extensions to support these
cybersecurity capabilities were prototyped and then
documented in the OMG DDS Security
Specification standard. Today, multiple vendors are
adding these cybersecurity capabilities to their DDS
implementations.

The expansion of the DDS standard to include
mechanisms for authentication, authorization and
access control, confidentiality, integrity, and
auditing provides capabilities that can be used to
address a variety of cybersecurity requirements of
interest to the Navy. For example, DDS extensions
for authentication, authorization and access control,
confidentiality, and integrity can directly support
DIT requirements. The provided auditing
capabilities can be used by SIEM [System Incident
and Event Monitoring] mechanisms to record
security events. DDS Security improves the fidelity
of event reconstruction by adding a degree of
certainty: identifying the participants in the event
and their actions.

The DDS standard defines a common set of service
plugin interfaces (SPIs) to achieve interoperability
and allows the implementation of the plug-ins to be
customized depending on end user security
requirements. The flexibility provided by this
pluggable architecture will allow the Navy to
integrate DDS Security capabilities more easily into
its information systems architecture.

To support typical use cases, DDS Security also
comes with a standardized built-in implementation
of the security plugins.

Navy Cybersecurity Strategy
The cybersecurity strategy for Navy afloat systems
is similar to any other system of systems strategy.
A Navy afloat platform is divided into multiple
functional domains, as shown in Figure 1. Specific
cybersecurity requirements are defined for each of
those domains and the systems within those
domains. A subset of those requirements will
address communication within and between those
domains. Each domain and system in the domain
will have multiple DIT requirements driven by
various functional and cybersecurity requirements.

Figure'1:'Notional'Shipboard'Enclaves'

For domains where DDS is used, plans must be
developed to introduce the new security
mechanisms provided by the DDS Security
standard. Prior to this, analysis must be done to
determine which of the mechanisms should be used
and to what level they should be used (i.e., choice
of algorithms and key sizes). The analysis is critical
since many of the DDS-based data flows have strict
timing requirements and any unnecessary overhead
(i.e., encrypting an entire message where only a
portion really needs to be encrypted) could impact
the ability to deliver the data in the required time
interval. DDS Security was designed to be highly
flexible, protecting exactly what needs protection
and minimizing overhead.

Data Distribution Service (DDS)
Today, DDS is widely used by numerous surface
Navy combat systems. In these systems, topics are
defined to distribute specified messages. For
example, systems using Product Line Architecture
(PLA) components publish data conforming to the
PLA Common Data Model on DDS topics.
Subscribers to those topics then consume the data.

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

To accommodate the large number of topics and
scalability needed by some systems, topics can be
partitioned into separate DDS domains.

Background on Data Distribution Service
The OMG DDS is a communication application
program interface (API) and interoperability
standard. DDS provides a data-centric publish-
subscribe model for a middleware that integrates
loosely coupled real-time distributed systems. A
key DDS feature is that it is data-centric in the
sense it separates state management and data
distribution from application logic and supports
discoverable data models. This exposes the data
model to the communication middleware, enabling
the DDS middleware to reason about and optimize
the performance of data movement in the system.
In order to customize run-time behavior and
achieve a desired performance profile, DDS allows
publishing and subscribing entities to express
several QoS parameters, such as data durability,
reliability, delivery deadline, ownership, liveliness,
and resource limits. Offered versus requested QoS
requirements of the participating entities are
matched before any communication can proceed. In
case of a mismatch, corresponding applications are
notified by the middleware. The QoS capabilities
provided by DDS are used to tailor the distribution
of data so that critical system requirements can be
met.

DDS Terminology
A domain is a concept used to bind individual
applications together for communication. To
communicate with each other, DataWriters and
DataReaders must have the same Topic of the same
data type and be members of the same domain.
Applications in one domain cannot subscribe to
data published in a different domain.

DomainParticipant objects enable an application to
exchange messages within domains.
DomainParticipants are used to create and use
Topics, Publishers, DataWriters, Subscribers, and
DataReaders in the corresponding domain. An
application uses a DataWriter to publish data into a
domain. A DataReader is the point through which a
subscribing application accesses data received over
the network. A Publisher is used to group
individual DataWriters, and a Subscriber is used to
group DataReaders. Default QoS behavior can be

specified for a Publisher and have it apply to all
DataWriters in the Publisher’s group. A similar
relationship holds between a subscriber and its
group of DataReaders. Topics provide the basic
connection points between DataWriters and
DataReaders. To communicate, the Topic of a
DataWriter on one node must match the Topic of a
DataReader on any other node.

There are several approaches for defining and using
data types in a DDS-based solution, including using
built-in types, defining types at compile time, and
programmatically defining dynamic types. In
general, DDS types are specified in the standard
Interface Definition Language before being mapped
to a desired target language such as C++ or Java.
Once defined, middleware automatically discovers
data objects and manages the QoS.

DDS objects (DomainParticipants, DataWriters,
and DataReaders) that may reside on different
nodes find out about each other through a
mechanism called DDS Discovery. This mechanism
is used to detect when participants enter or leave
the DDS domain, and allows them to learn about
each other’s identifiers, transport locators, and
requested or offered QoS.

The unique values of data passed over DDS are
called samples. A sample is a combination of a
topic (distinguished by a topic name), an instance
(distinguished by a key value), and the actual user
data of a certain type.

DDS Security
The DDS Security extension is comprised of a
security model, a pluggable architecture and
associated SPIs, and specification of built-in
implementations of these SPIs. In this section, the
authors provide a general description of each of
these high-level components.

DDS Security Model
In general, a security model defines the security
principals, associated threats, the objects being
secured, and the operations on the objects to be
restricted according to a security policy. In the
DDS Security model, what is being secured is a
specific DDS domain and, in the domain, the ability
to read or write information (e.g., specific topic or
even data-object instances in the topic) in the
domain.

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

To provide such secure access, domain participants
must first be authenticated so their identity can be
established. Once authentication has been obtained,
access control policies are enforced that determine
whether the participant is allowed to perform
specific actions. Examples of such actions are
joining a DDS domain, defining a new topic, and
reading or writing a specific topic.

Threat Model
Specific threats that DDS Security is designed to
protect against are as follows.

Unauthorized subscription: An unauthorized
eavesdropper who is connected to the same
network should not be able to observe the data sent
over DDS by legitimate participants, for example,
by tapping into the communication channel or
simply subscribing to a multicast address used by
authorized subscribers.

DDS Security protects against unauthorized
subscription attacks by having senders securely
share a secret key with authenticated and
authorized receivers and using the key to encrypt
what they write.

Unauthorized publication: Unauthorized
participants should not be able to inject packets into
the DDS data space and have them processed as
valid packets by legitimate participants.

DDS Security protects against unauthorized
publication attacks by having senders authenticate
messages using digital signatures or hash-based
message authentication codes (MACs). The
required keys for computing MACs are distributed
securely.

Tampering and Replay: Authorized yet
compromised participants may use their knowledge
of shared secret keys for malicious behavior. For
example, a malicious participant, M, who is
authorized to subscribe to data on Topic T but not
authorized to publish on the topic, may use
information gained by subscribing to the data to
attempt to publish tampered information in the
network and to convince other subscribers of the
legitimacy of the tampered information.

DDS Security provides mechanisms to enforce the
use of digital signatures by all participants to
protect against this attack. In cases where the
performance penalty of using digital signatures is

deemed too high, the sender keeps different pair-
wise keyed-hash message authentication code
(HMAC) keys with each receiver, and DDS
Security validates them before data is delivered to
the receiver.

DDS Security Plugins Interfaces
DDS Security presents a pluggable architecture
with plugins for authentication, access control,
cryptographic operations, logging, and data
tagging. The interfaces of these plugins are part of
the standard, allowing for different
implementations of security protocols and
algorithms in each plugin. The pluggable
architecture of DDS Security and how it fits in the
overall ecosystem of DDS applications is depicted
in Figure 2.

Figure'2:'Architectural'View'of'DDS'Security'

Without going into the details of the standard
interface for each plugin, their general
characteristics are described. Details of the SPIs
can be found in [3].

Authentication Service Plugin
The authentication plugin SPI defines the types and
operations necessary to authenticate DDS domain
participants. With DDS Security enabled, every
DDS participant will be required to authenticate
prior to joining to a DDS domain. Furthermore,
DDS Security enhances the discovery mechanism
that registers participants with the DDS middleware
by making authentication a requirement. For
protected DDS domains, a participant enabling the
authentication plugin can only communicate with
participants who have the authentication plugin
enabled.

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

Once authenticated to the middleware, two
participants that have learned about each other (but
not yet trust each other) exchange messages to
mutually authenticate through a challenge-response
protocol. SPI is designed to oblige multiple
implementations with varying numbers of message
exchanges; therefore, a variety of such protocols
could be implemented in the plugin. Often a shared
secret is also derived from a successful
authentication message exchange. The shared secret
can be used to exchange cryptographic material for
encryption and message authentication.
Authentication SPI supports data structures for
shared secret establishment and use.

Access Control Service Plugin
Once a domain participant is authenticated, its
permissions are validated and enforced. The Access
control plugin API defines the types and operations
necessary to support an access control mechanism
for DDS domain participants.

Traditionally, access rights are described by using
matrices with rows representing subjects (users)
and columns representing objects (resources). A
cell would therefore define the access rights a given
subject has over an object. Such matrices are
implemented in two ways. The first approach is
row-centric, keeping a set of capabilities stored
with each subject. The second approach is column-
centric, keeping access control lists per object.
DDS Security supports both of these approaches.

In the case of DDS Security, the permissions
associated with a domain participant include the
permission to join to a certain domain, create a
topic, publish through its DataWriters into certain
topics, and subscribe via its DataReaders to certain
topics.

Cryptographic Service Plugin
The cryptographic plugin defines the types and
operations necessary for encryption, digest
creation, generation of message authentication
codes, and the key exchange for
DomainParticipants, DataWriters, and
DataReaders.

DDS users may have specific cryptographic
libraries they use for encryption as well as specific
requirements regarding the algorithms for digests,
message authentication, and signing. Applications

may also require having only some of those
functions performed, or performed only for certain
DDS Topics and not for others. This plugin API is
general enough to use in such different deployment
scenarios.

Logging Service Plugin
The logging service plugin API defines the types
and operations necessary to log security events for
DDS DomainParticipants. It provides the
capability to log all security events, including
expected behavior and all security violations or
errors. These security logs can be used for audits.
Other security plugins use this plugin to log events.

The logging API has two options for collecting log
data. The first is to log all events to a local file for
collection and storage. The second is to distribute
log events securely over the DDS.

Data Tagging Service Plugin
Data tagging adds a security label or tag to data. An
example use case for such tags is specifying data
classification levels. The tags could be used in
making access control decisions (i.e., in
conjunction with the access control plugin),
message prioritization, or consumption by
applications other than the middleware.

Four different possible approaches were identified
for data tagging in DDS Security. These approaches
include: data writer tagging, in which data received
from a certain DataWriter has the tag of the
DataWriter; data instance tagging, in which each
instance of the data has a tag; individual sample
tagging, in which every DDS sample has its own
tag attached; and per-field sample tagging, in which
each field in the sample has its associated tag.

DDS Security supports DataWriter tagging, as this
was considered the best choice among the four.
This solution does not require the tag to be added to
each individual sample and is more aligned with the
general approach in DDS wherein the metadata for
all DataWriter samples is the same. It also leads to
the highest performance, as the tags only need to be
exchanged once when the DataWriter is discovered
and not sent with each sample. This approach is
directly used for typical use cases where each
application or DomainParticipant writes data on a
Topic with a common set of tags (i.e., all at the
same specified security level). For use cases where

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

an application creates data at different
classifications, the application can create multiple
DataWriters with different tags. The other
identified approaches have a higher overhead and
more complex management of tags.

DDS Security does not currently provide a built-in
plugin for data tagging SPI.

Built-in Plugins
DDS Security defines the behavior and
implementation of at least one built-in plugin for
each kind of the discussed SPIs. The built-in
plugins provide out-of-the-box interoperability
between implementations of the specification. In
this section, the authors briefly discuss the
requirements that drove the design choices as well
as the structure of each of the built-in plugins.

Requirements and Priorities
The major functional requirements considered
when designing built-in plugins include:
authentication of applications joining a domain;
access control publishers and subscribers at the
domain and topic levels; message integrity and
authentication; encryption of data samples using
different keys for different topics; and the
capability of securely sending data over multicast.

The nonfunctional requirements include high
performance and scalability, robustness and
availability, fitness to DDS support for data-
centricity, and ease of use.

Performance and Scalability
DDS is commonly deployed in systems that
demand high performance and need to scale to
large numbers of computers, processes, topics, and
data-objects belonging to each topic. Therefore,
plugin operations such as cryptographic or policy
enforcement operations should have minimal
impact on the performance and scalability of the
system. These considerations translate into practical
design decisions made for the built-in plugins as
discussed below.

Limited Use of Asymmetric Cryptography:
Because of its high computation costs, the use of
asymmetric key cryptography should be limited to
discovery, authentication, and shared secret
establishment phase, and not within the critical path

of data distribution. Symmetric ciphers should be
used when encrypting application data.

Support for Secure Multicast: Since multicasting
is crucial to achieve high performance in many
DDS deployments, built-in plugins should support
it even for ciphered data.

Topic-level Security: The use of ciphers, HMACs,
or digital signatures shall be selectable on a per
stream (Topic) basis. Furthermore, the built-in
plugins should support authentication-only modes,
providing data integrity of data even when it is not
encrypted.

Robustness and Availability
DDS has originally been designed to meet high
uptime requirements of mission-critical systems,
having robustness and reliability as main features.
DDS communication model and protocols are
defined and commonly implemented in a peer-to-
peer fashion without relying on any centralized
services; thus avoiding single points of failure. It is
required that the built-in security plugins do not
negate these properties of the middleware. This
means that centralized policy decision points or
services should be avoided in the plugin
implementation. Furthermore, each domain
participant should stay self-contained, having all
the necessary components they need to operate
securely in the presence of system partitions. Multi-
party key agreement protocols should be avoided in
the built-in plugins as the disruption of one party
easily disrupts them. Last but not the least, the
impact of a possible component compromise should
be kept to a minimum, preferably to that
component itself. This requirement translates into
security token and key compartmentalization of as
much as possible. Having a system-wide key for
the whole DDS domain, for example, would negate
this requirement and should be avoided. The keys
used for encrypting data written to a topic are
picked by the DataWriter and securely distributed
to the discovered readers through the use of
pairwise exchange keys derived from shared secrets
established with each DataReader.

Fitness to DDS Data-centric Model
Data-centricity is among the main features that
attract application developers to DDS. DDS
developers architect their systems by defining
domains to which DDS applications join and the

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

topics that they need to read and write. Therefore,
the access control mechanism provided by the
built-in plugins should support this level of
granularity.

It is of course possible to provide access control at
a finer granularity, including the keyed instances
that the applications read or write, content filters,
and QoS policies. However, this level of access
control potentially conflicts with the goal of ease of
configurability and maintainability and was
considered of lower priority for the built-in plugins.

Another important requirement also rises from the
semantics of DDS communication, according to
which individual samples can be consumed
independent of each other. Depending on the QoS
policy settings, samples written by a single
DataWriter may be received and processed out of
order relative to the order sent; may be received
with intermediate gaps resulting from best-effort
communication (if selected); or may be filtered by
content, time, or history. Consequently,
cryptographic transformations of samples (e.g.,
decryption, signature verification) should not
require reconstruction of a specific context using
previous samples.

Leveraging Existing Security Technologies
Our approach in the design of built-in plugins has
been to leverage existing technologies and tools for
security. The benefit of reuse is twofold: First and
foremost, use of already proven approaches
provides an overall better security solution. Second,
it reduces the barrier of entry for implementers.
Consequently, built-in plugin use established
cryptographic algorithms for creating ciphers,
signatures, and digests as well as standard
approaches to provision public key infrastructures.
Existing approaches for key management and
secure multicast have been leveraged as much as
possible; yet they have been adapted for use in
DDS’s data-centric model when needed.

Ease of Use
One of the major requirements in designing built-in
plugins has been achieving a balance between rich
functionality and ease of use for most common
deployment scenarios. The importance of this
requirement becomes clear when one notes the
broad categories of the anticipated adopters of DDS
Security. Developers of specialized applications

would likely develop their own security plugins to
meet special requirements or to integrate with their
exiting security infrastructure. On the other hand,
users who want to secure their systems but do not
have complex security requirements are more likely
to use the built-in plugins out of the box. As a
result, they care a lot about the ease of plugin
configurability and maintainability. Hard-to-
configure security solutions often lead to incorrect
configurations that put the entire system at risk.

Built-in Authentication Plugin
The built-in authentication plugin is implemented
using a trusted certificate authority (CA). It
performs mutual authentication among discovered
participants using the Digital Signature Algorithm
(DSA) [4] and establishes a shared secret using the
Diffie-Hellman (D-H) Key Agreement [5].

The CA could be preexisting or created for
deploying applications on a DDS domain. Prior to a
domain participant being enabled, the built-in
authentication plugin associated with it must be
configured with: the X.509 certificate that defines
the shared CA and contains the 2048-bit RSA
public key; the 2048-bit RSA private key of the
domain participant; and an X.509 certificate that
chains up to the shared CA, which binds the 2048-
bit RSA key of the DomainParticipant to the
subject name for the DomainParticipant and any
intermediate CA certificates required to build the
chain. The configuration API for the built-in
authentication plug-in is left outside of the
specification, accommodating different security
concerns without breaking interoperability.

Once discovered and authenticated to the
middleware, domain participants are mutually
authenticated to each other by running a point-to-
point public key-based challenge-response
handshaking protocol [3]. Upon successfully
completing the handshake process, the participants
learn about each other’s identities and granted
access permissions as part of the secure discovery
process. They would also establish a shared secret
used to derive symmetric keys that enable message
exchange security.

Built-in Access Control Plugin
The built-in access control plugin implements the
access control plugin API using a permissions
document signed by a shared certificate authority

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

(permissions CA). The built-in access control
plugin is configured with three documents: the
permissions CA certificate; a domain governance
document signed by the permissions CA; and the
domain participant’s permissions signed by the
permissions CA.

The permissions CA certificate is a self-signed
x.509 certificate containing the CA’s public key
used to sign the domain governance and
participants’ permissions document.

The domain governance document is written in
XML [eXtensible Markup Language], specifying
which DDS domains shall be protected and the
details of the protection. The domain governance
document is signed by the permissions CA, and
configures the following security aspects of the
DDS domain: whether the discovery information
should be protected and the kind of protection
(MAC or ENCRYPT_THEN_MAC); whether
liveliness messages should be protected; whether a
discovered participant that cannot authenticate or
fails authentication should be allowed to join the
domain and see any data configured as unprotected;
whether discovery data on a specific topic should
be protected; whether metadata (e.g., sequence
numbers, heartbeats) should be protected and how;
whether the payload should be protected and how;
and whether read/write access to the topics should
be open to all or restricted to the participants with
proper permissions.

The XML permissions document contains the
permissions of the domain participant. The
permissions document binds the permissions to the
DomainParticipant’s distinguishable name as
defined in the built-in authentication plug-in.

Built-in Cryptographic Plugin
The built-in cryptographic plugin provides data
encryption services using Advanced Encryption
Standard (AES) in counter (CTR) mode. It supports
two AES key sizes: 128 bits and 256 bits. It also
provides HMAC services with two different
hashing functions: SHA256 and SHA1.

The approach followed is conceptually similar to
that used for a Secure Real-time Transport Protocol
(SRTP) [6]. However, it has been enhanced to
support additional scenarios, such as the presence
of services like a DDS persistence service or a data
relay service, which are present in DDS real-time

publish-subscribe (RTPS) systems and not
supported by SRTP.

AES in CTR mode is the algorithm used for data
confidentiality. While AES is a block cipher, the
use of counter mode effectively turns it into a
stream cipher. The algorithm generates key-stream
blocks that are XORed with the plaintext blocks to
get the ciphertext. Since the XOR operation is
symmetric, the decryption operation is exactly the
same.

Counter mode use allows decryption of blocks in
arbitrary order. This is paramount for the DDS
because a DataReader may not receive all the
samples written by a matched DataWriter as a
result of QoS-based filtering.

Built-in Logging Plugin
The built-in logging plugin publishes the logging
information to a specific built-in DDS topic. The
access control for this topic is set such that any
domain participant with the permission necessary to
join to the domain is allowed to write to this topic.
However, to read the topic, the DomainParticipant
needs a grant for it in its permissions document.

CONCLUSIONS
This paper described the requirements and design
of the security extensions to the DDS standard. The
DDS Security extension is comprised of a security
model, a pluggable architecture and associated
SPIs, and specification of built-in implementations
of these SPIs.

The expansion of the DDS standard to include
mechanisms to support authentication,
authorization and access control, confidentiality,
integrity, and auditing provides capabilities that can
be used to address a variety of cybersecurity
requirements of interest to the Navy; however, prior
to employing these mechanisms, analysis must be
conducted to determine exactly where and how
these new capabilities will be applied.

REFERENCES
[1] Michael W. Masters, Philip Irey, Leslie Madden,
Antonio Samuel, “An Open Technical Architecture for
the U.S. Navy”, Proceedings of ASNE Day 2004.
[2] Integrity and Authentication of Real-Time Data in
Navy Combat Systems, Navy SBIR 2010.2-Topic
N102-156.

NSWCDD/PN-15/143
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

[3] DDS Security Specification,
http://www.omg.org/spec/DDS-SECURITY/
[4] DSA, FIPS PUB 186-3 Digital Signature Standard
(DSS). http://csrc.nist.gov/publications/fips/fips186-
3/fips_186-3.pdf
[5] Diffie-Hellman (D-H) Key Agreement Method. IETF
RFC 2631. http://tools.ietf.org/html/rfc2631
[6] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K.
Norrman, “The Secure Real-time Transport Protocol
(SRTP)” IETF RFC 3711,
http://tools.ietf.org/html/rfc3711

ACKNOWLEDGEMENTS
The authors would like to thank Adam Simonoff
for his leadership as Technical Point of Contact for
the Small Business Innovative Research topics that
supported the development of Secure DDS. The
authors would also like to thank Paul Pazandak
from Real-Time Innovations and NSWCDD
employees Keith Meyers, Danica Leninsky, Lorna
Lockert, and Jim Cunningham for their thoughtful
review of the paper as well as the NSWCDD Naval
Innovative Science and Engineering program that
sponsored experiments conducted with DDS
Security.

AUTHOR BIOGRAPHIES
Hamed Soroush, PhD, is a Research Security
Engineer at Real-Time Innovations (RTI). His
expertise spans security, privacy, forensic,
networking, and embedded systems. Dr. Soroush
has sought to improve the performance and
trustworthiness of networked systems. He leads the
RTI security efforts in the Security Working Group
of the Industrial Internet Consortium. He holds a
Ph.D. in computer science from the University of
Massachusetts Amherst and a master’s degree in
information networking from Carnegie Mellon
University. Prior to joining RTI in 2014, Dr.
Soroush was a University of Virginia faculty
member for one year.

Philip M. Irey IV earned his master’s degree in
computer science from the Virginia Polytechnic
Institute and State University (Virginia Tech). The
focus of his 26 years with the U.S. Navy has been
on computing infrastructure for surface ship
systems. For the last two years, that focus has
shifted to cybersecurity for those systems.

Gerardo Pardo-Castellote, is the Chief
Technology Officer at RTI and an expert in secure
real-time software architectures and networking.
His professional experience includes real- time
distributed middleware, distributed systems and
software, control-system software, distributed
system software security and software-system
design. He was the main author of the OMG DDS
Specification and leads the development of the
current OMG DDS Security Specification. He
currently chairs the Data Distribution Group at the
OMG. Dr. Pardo-Castellote received his PhD in
electrical engineering from Stanford University. He
also holds an MS in computer science, an MSEE
from Stanford University, and a BS in physics from
the University of Granada, Spain.

Steve Canup, is a graduate of the Virginia
Polytechnic Institute and State University (Virginia
Tech) with a master’s degree in computer science.
He has worked for the U.S. Navy for the past 27
years, focusing the last 8 years on cybersecurity for
surface ship systems.

