
AUTHORS

Dave Seltz
Regional Field Application Engineer Manager, RTI

Pablo Perez
Senior Application Engineer, RTI

INTRODUCTION

Over the past decade, containerization has captured the
attention of the engineering community across all verticals due
to the compelling benefits it offers to software development,
security, and operations (DevSecOps) teams. Containerization
enhances and accelerates DevSecOps by promoting software
consistency, test automation, fault reproducibility and early
detection of security vulnerabilities, ultimately leading to more
robust and secure service deployments.

Some of the key benefits of containerization include:

• Isolation and Consistency: Containers encapsulate an
application and its dependencies, ensuring consistent
behavior across various environments. This helps eliminate
“it works on my machine” issues and provides a consistent
base for testing and validation.

• Portability: Containers allow you to package the
application along with its dependencies, making
it easier to manage different versions of the
application, even when rolled out to heterogeneous
deployment environments.

• Scalability: Containers can be quickly scaled up or down
based on demand. This scalability enables efficient
resource utilization and helps in managing performance
concerns related to sudden spikes in traffic or loads.

Moreover, containers are an integral part of modern Continuous
Integration/Continuous Delivery (CI/CD) pipelines. Containerized
build environments, automated test platforms and artifact
generation are some of the most common use cases. The output
of a CI/CD pipeline is typically a tested and hardened container
that is uploaded to a container repository. Containers are also well-
suited for microservices architectures, in which large distributed
systems are composed of many single-purpose, loosely-coupled
services that can be scaled on demand. Containerization enables
better segmentation of microservices, making it easier to isolate,
design, and deploy individual components.

MOTIVATION: WHY CONTAINERIZE?

Containers are lightweight, standalone, executable software
packages that include everything needed to run an application.
A container framework like Docker is used for building, running,
and managing containers. In a containerized deployment,
separate containers share the machine’s OS kernel and therefore
don’t require a separate OS per application. This offers the
advantage of using less memory, while also reducing server and
licensing costs.

Why are containers popular? Because encapsulating everything
needed to run the applications means they can be easily
moved from platform to platform and from development
to deployment.

Also, as mentioned earlier, containers are relatively lightweight.
It is not necessary to spin up a whole OS and all the services
associated with it. One simply leverages the existing kernel on
the host.

Another advantage is that containers offer configurable
isolation: Users can selectively share specific OS resources with
containers, such as IPC (shared memory) or the host’s network
stack, or isolate containers in their use of these resources
to avoid things such as port collision. Users can separately
configure resource limits for each container as well.

Lastly users can update each container application individually,
including all its dependencies without affecting applications in
different containers.

Containerization is a great fit for highly distributed systems that
need to dynamically reconfigure, add, and remove applications
on demand. Using an open standard such as the OMG Data
Distribution Service (DDS™) is ideal for containers. DDS
abstracts the communications infrastructure from applications,
and provides a consistent environment for managing, migrating,
updating, and removing distributed software components,
enabling the efficient and robust delivery of the right information
to the right place at the right time. Some key attributes of DDS:

• Highly modular

• Completely Distributed

• Supports multiple platforms, transports, and
language bindings

• Offers data centricity

• Supports a Modular Open System Approach (MOSA) and
DevSecOps development

Accelerating DevSecOps with Connext
KNOWLEDGE BASE ARTICLE

DDS CONTAINERIZATION AND BEST PRACTICES

http://www.rti.com

KNOWLEDGE BASE ARTICLE • ACCELERATING DEVSECOPS WITH CONNEXT: DDS CONTAINERIZATION AND BEST PRACTICES

2

RTI Connext®, a software connectivity framework based on the
DDS standard, is used today by many Real-Time Innovations
(RTI) customers in a containerized environment.

CONTAINER TECHNOLOGY AND CONTAINERIZATION TOOLS

The Open Container Initiative (OCI) is an open-source project that
establishes a set of industry standards for container formats and
container runtimes. The OCI was formed to ensure that container
images and runtimes remain vendor-neutral, interoperable, and
widely adopted. The two main components of the OCI are the
“Image Specification” and the “Runtime Specification.”

1. Image Specification: A container image is a lightweight,
standalone, and executable software package that
includes everything needed to run an application,
including executable code, system and application
libraries, and configuration settings. The OCI Image
Specification defines how container images are
structured, including various components such as layers,
metadata, and configuration. This standardization ensures
that container images are portable and can be used
across different container runtimes.

2. Runtime Specification: A container runtime defines
how containers are created, started, stopped, and
managed. The OCI Runtime Specification aims to provide
consistency and compatibility across different container
runtimes, allowing container images to be executed
without modification on various platforms that support
the OCI standard.

The OCI standards are widely adopted in the industry, with
key container runtimes and tools such as Docker, Podman,
containerd, and RKT, among others, adhering to these standards.
This adoption ensures that containerization remains an open
and standardized practice, benefiting both developers and
operators in building and managing containerized applications.

CONTAINER NETWORKING AND DDS

Containers are just isolated and restricted Linux processes.
The network resources available to a container depend on its
configuration. There are several ways you can configure your
container network:

• bridge (default): an isolated network that local containers
can use to communicate with each other

• host: enables the direct use of the host’s network by
the container

• macvlan: gives containers their own MAC address, making
them appear as a physical device on the host’s network

• overlay: connect multiple Docker daemons together
and use swarm services to enable communication in
between containers

• <custom plugin>: third-party network plugins are
available for Docker

• none: disables networking in the container

MESSAGE EXCHANGE OVER THE BRIDGE NETWORK

 Figure 1. Detail of message exchange over the bridge network

A bridge network is the default Container network. It is a
private, internal network that allows containers to communicate
with each other within the same host. Containers attached
to the same bridge can communicate using IP addresses.
This network is often used when developers want to isolate
a group of containers from the host’s network. It also
allows communication between the host and containers
running locally.

Note: in Docker, a default bridge network is created
automatically, and newly-started containers connect to it unless
otherwise specified.

When using a bridge network, the container runtime installs
a NAT (Network Address Translator) between the host and
containers. This NAT prevents direct communication between
the local containers and remote hosts and containers using the
default transports in Connext.

There are two options to deal with this issue:

• Use a Connext transport that supports communication
over Wide Area Networks (WAN), such as the TCP or the
Real-Time WAN Transport. These transports support NAT
traversal and therefore enable communication between
local containers and remote hosts and containers.

• Use RTI Routing Service running on the local host (trivial
configuration in Linux hosts), to bridge data between the
local containers and the remote host or containers:

• One side of the Routing Service routes talks to the
bridge network.

• The other side talks to remote hosts.

• Remote hosts with bridge network containers
similarly have their own Routing Service.

• This approach reduces meta-traffic between hosts,
but potentially increases end-to-end latency for off-
host traffic.

Click here for more information.

http://www.rti.com
https://opencontainers.org/
https://community.rti.com/kb/how-use-rti-connext-dds-communicate-across-docker-containers-using-bridge-driver

KNOWLEDGE BASE ARTICLE • ACCELERATING DEVSECOPS WITH CONNEXT: DDS CONTAINERIZATION AND BEST PRACTICES

3

BENEFITS AND DISADVANTAGES OF BRIDGE NETWORK
COMMUNICATIONS

There are pros and cons to using DDS with a bridged network:

Pros

• Easy to configure if on-host communication is all that
is needed

• Multicast and unicast work as expected

• Provides good network isolation for containers

• Easy to map DDS ports per container

• Available on all Docker platforms

Cons

• More difficult to communicate off-host

• RTI Routing Service can help here (especially in
Linux hosts)

• In general, a WAN transport is required to traverse
the internal NAT

• Moreover, the default bridge has technical limitations

• User-created bridges are preferable

• See Docker documentation for additional details

MESSAGE EXCHANGE OVER THE HOST NETWORK

Figure 2. Detail of message exchange over the host network

In the host networking mode, a container shares the network
namespace with the host machine. In other words, the container
directly uses the host’s network stack and is effectively
connected to the same network interfaces as the host itself.
This means that the container can access network services and
resources just like the host. A Container does not get its own IP-
address, but shares the host’s networking namespace and port
space. NAT is not used in the host networking mode.

SHARED MEMORY OVER THE HOST NETWORK

When using the Host network mode, DDS will interpret that
both applications are in the same machine and will try to
communicate using shared memory. This is an optimization
performed by RTI’s Shared Memory transport. To specify
whether to use shared memory or not, there are three
possible solutions:

1.  Disabling the Shared Memory transport, as explained in
the TRANSPORT_BUILTIN QosPolicy section of the
User’s Manual. The User’s Manuals for the different
Connext releases can be found on the RTI documentation
page here.

2. Configuring your Connext applications and Docker
containers to enable communication using shared
memory, as is done for a bridged network and is explained
in this Knowledge Base article.

3. Changing how the GUID is set, as explained in Controlling
How the GUID is Set (rtps_auto_id_kind) in the RTI
Connext DDS Core Libraries User’s Manual (the User’s
Manuals for the different Connext releases can be found
on the RTI documentation page here).

Click here for more information.

BENEFITS AND DISADVANTAGES OF THE HOST NETWORK
MODE

The advantages of using a host network with Connext are:

• Easy to configure for inter-host communication

• Multicast and unicast both work as expected

• Mostly easy configuration for on-host communication

• SHMEM config can prevent communication between
containers in some versions

• Getting a packet capture is straightforward (in
Linux hosts)

The disadvantages of using a host network include:

• Shared port space limits containerized DDS apps for
a domain

• Weaker isolation than a bridge network

• Works with Linux hosts only

SHARED MEMORY COMMUNICATION

By default, the IPC namespace of a Docker container is isolated
from the host machine and from other containers. Fortunately,
Docker provides a method to share the IPC of a Docker
container with other containers or with the host. To enable
message exchange using shared memory, one has to ensure
that containers are configured to share memory on the host:

• Option 1:

• Start one container with option --ipc=“shareable”.
(This container can be either a DDS publisher or
subscriber.)

• Start other containers with option
--ipc=“container:<name/id>”

http://www.rti.com
https://community.rti.com/documentation
https://community.rti.com/kb/communicate-between-two-docker-containers-using-rti-connext-dds-and-shared-memory
https://community.rti.com/documentation
https://community.rti.com/kb/how-use-rti-connext-dds-communicate-across-docker-containers-using-host-driver

KNOWLEDGE BASE ARTICLE • ACCELERATING DEVSECOPS WITH CONNEXT: DDS CONTAINERIZATION AND BEST PRACTICES

4

• Option 2:

• For SHMEM communication with the host start
containers with option --ipc=“host”

Click here for more information.

CREATE A DOCKER IMAGE WITH RTI CONNEXT

The first step in creating a DDS-enabled application container
is creating a “helper” image. This will be a container image that
includes a DDS host/target installation. Using RTI Connext, one
would gather host and target files in a directory and create
a Dockerfile:

*Note this image doesn’t work on platforms that don’t have a host
installer (e.g., Arm).

The second step in creating a Connext application container
is to use the Connext helper image we just created to provide
Connext build requirements (include headers and libraries).

A few points to note:

• For this step you would use a multistage build to allow
multiple FROM statements – the foundation of your build
comes from different bases (eg., your DDS “helper,” gcc
image, etc.).

• As with any container, it is important to keep the Connext
app container reasonably small

1.  Standard Linux distros (Ubuntu, UBI, etc.) images
are 70+ MB, so if possible, use something like
Alpine Linux is ~5MB (but is missing a lot of
potential dependencies).

2. gcr.io/distroless/cc works well for our C++
test application.

• Use a Docker volume mount to store QoS (Quality
of Service).

Here is a Dockerfile for an example of an application container
using Connext:

Build commands to use:

Commands to run the container image:

RUNNING RTI TOOLS AND SERVICES IN CONTAINERS

Running RTI Services applications in containers is
straightforward, but please check with your account team on
potential restrictions if you have a license-managed installation.
Running RTI Tools in containers is less straightforward. Tools
generally require a license to run, and the use of Tools is
intended for licensed developers only. Please do not put an
RTI license file in a shared image. Instead use a mount for the
license, pointing to the license when you run the container.

Here is an example Dockerfile for building a container running
the RTI Routing Service:

FROM ubuntu:20.04
WORKDIR /rti
ENV NDDSHOME /rti/rti_connext_dds-6.1.0
RUN --mount=type=bind,target=/rti/_tmp/ \
 /rti/_tmp/rti_connext_dds-6.1.0-pro-host-x64Linux.run \
 --mode unattended \
 --unattendedmodeui none \
 --prefix /rti \
 --disable_copy_examples true && \
 $NDDSHOME/bin/rtipkginstall \
 -unattended \
 /rti/_tmp/rti_connext_dds-6.1.0-pro-target-x64Linux4gcc7.3.0.rtipkg
RUN rm –rf /rti/_tmp

FROM myuser/rti-connext-dds:6.1.0 AS dds
FROM gcc:8 AS builder
ARG RTI_ARCH=x64Linux4gcc7.3.0
WORKDIR /build
ENV NDDSHOME /build/nddshome
COPY src .
RUN --mount=type=bind,from=dds,source=/rti/rti_connext_dds-6.1.0,tar-
get=/build/nddshome \
 cd src && \
 make –f makefile_test_${RTI_ARCH} && \
 mkdir /build/bin && \
 mv objs/${RTI_ARCH}/test_publisher /build/bin && \
 mv objs/${RTI_ARCH}/test_subscriber /build/bin
FROM gcr.io/distroless/cc AS run-base
WORKDIR /app
VOLUME /qos
WORKDIR /qos
FROM run-base AS pub
COPY --from=builder /build/bin/test_publisher .
ENTRYPOINT [“/app/test_publisher”]
FROM run-base AS sub
COPY --from=builder /build/bin/test_subscriber .
ENTRYPOINT [“/app/test_subscriber”]

$> docker build -t myuser/rti-connext-dds:6.1.0 .

$> docker build \
 -t myuser/rti-test-app-basic-pub:6.1.0 \
 --target pub .

$> docker build \
 -t myuser/rti-test-app-basic-sub:6.1.0 \
 --target sub .

$> docker run \
 --mount type=bind,source=/mnt/share/qos,target=/qos \
 myuser/rti-test-app-basic-pub:6.1.0

$> docker run \
 --mount type=bind,source=/mnt/share/qos,target=/qos \
 myuser/rti-test-app-basic-sub:6.1.0

FROM myuser/rti-connext-dds:6.1.0 AS rti
FROM gcr.io/distroless/cc
WORKDIR /rti
ENV NDDSHOME /rti/rti_connext_dds-6.1.0
COPY --from=rti \
 ${NDDSHOME}/resource/app/bin/x64Linux4gcc7.3.0/rtiroutingservice \
 /rti/bin/rtiroutingservice
COPY --from=rti ${NDDSHOME}/lib/x64Linux4gcc7.3.0 /rti/lib
VOLUME /plugins
VOLUME /xml
WORKDIR /xml
ENV LD_LIBRARY_PATH /rti/lib:/plugins
ENTRYPOINT [“/rti/bin/rtiroutingservice”]

http://www.rti.com
https://community.rti.com/kb/communicate-between-two-docker-containers-using-rti-connext-dds-and-shared-memory

KNOWLEDGE BASE ARTICLE • ACCELERATING DEVSECOPS WITH CONNEXT: DDS CONTAINERIZATION AND BEST PRACTICES

5

DEBUGGING AND TROUBLESHOOTING CONTAINERS
WITH CONNEXT

So how can developers debug Connext applications that are
running in containers? Well, it can be done just like any other
DDS applications, but there are some issues that are specific
to containers.

• If your DDS apps aren’t discovering/communicating,
please make sure to configure the networking correctly
(as described earlier in this paper). Apps using bridge
networking need special configuration to talk to remote
containers and hosts – Use WAN transport or RTI
Routing service.

• If you restarted your container and the rest of the network
can’t see it, check for a GUID collision issue:

• Make sure to use --pid=“host”

• Make sure to use rtps_auto_id_kind == RTPS_AUTO_
ID_FROM_UUID

Packet Capture of Docker Bridge Networks

To use Wireshark to capture packets on a Docker container
using a bridge network, find the host interface for the
bridge network:

• Run docker network ls

• Find the NETWORK ID of the Docker network to capture

• Find the network interface for this ID

• ip a | grep <NETWORK ID>

• ifconfig | grep <NETWORK ID>

• Run packet capture on this interface to see traffic
between the containers on the network bridge

Another great tool for debugging containers is the docker
inspect command. It provides an easy way of retrieving
the configuration of a Docker container, including such
information as:

• Defined environment variables ($NDDSHOME, $LD_
LIBRARY_PATH, $NDDS_QOS_PROFILES, etc)

• Network configuration

• IPC namespace configuration

Example output from the docker inspect command for a
Connext application container is shown at right:

BENEFITS AND IMPACT TO DEVSECOPS TEAMS

Containerization can reinforce the benefits of Connext by
providing a flexible, scalable and consistent development and
deployment environment for DDS-based applications.

Containerization complements and enhances the benefits of
DDS and Connext in the following ways:

• Isolation and Consistency: Containers encapsulate
the DDS application and its dependencies, ensuring a
consistent environment across different stages of the
development and deployment lifecycle.

• Portability: Containerized DDS applications are
portable across different environments and platforms.
This is particularly valuable in DDS systems that need
to operate in various contexts, such as edge devices,
cloud environments, and data centers. Containerization
simplifies the deployment process and reduces
compatibility issues.

http://www.rti.com

6

KNOWLEDGE BASE ARTICLE • ACCELERATING DEVSECOPS WITH CONNEXT: DDS CONTAINERIZATION AND BEST PRACTICES

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS
rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks of Real-Time Innovations, Inc.
All other trademarks used in this document are the property of their respective owners. ©2023 RTI. All rights reserved. 50056 V1 1223

Real-Time Innovations (RTI) is the largest software framework company for autonomous systems. RTI Connext® is the world’s leading architecture for developing intelligent
distributed systems. Uniquely, Connext shares data directly, connecting AI algorithms to real-time networks of devices to build autonomous systems.

RTI is the best in the world at ensuring our customers’ success in deploying production systems. With over 2,000 designs, RTI software runs over 250 autonomous vehicle
programs, controls the largest power plants in North America, coordinates combat management on U.S. Navy ships, drives a new generation of medical robotics, enables flying
cars, and provides 24/7 intelligence for hospital and emergency medicine. RTI runs a smarter world.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG®) Data Distribution Service (DDS™) standard. RTI is privately held and headquartered
in Sunnyvale, California with regional offices in Colorado, Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext software today: www.rti.com/downloads.

ABOUT RTI

• Scalability: Containers can be easily scaled horizontally
or vertically to accommodate varying workloads
in DDS systems. As the demand for real-time data
communication grows, container orchestration
platforms such as Kubernetes can automatically scale
the number of containers based on traffic, ensuring
optimal performance.

• Resource Efficiency: DDS applications typically require
real-time capabilities and efficient resource utilization.
Containers share the host’s operating system kernel,
leading to efficient use of resources, while maintaining the
low-latency requirements of DDS.

By combining the benefits of Connext with the advantages
of containerization, DevSecOps teams across all verticals can
build more agile, scalable, and reliable real-time communication
systems that can adapt to changing requirements and
heterogenous deployment environments.

Additional Resources

1. Create a docker image with Connext

2. Communicate across containers

3. Using “host” driver to communicate DPs

4. Communicate DPs through SHMEM

5. RTI Xcelerator: Containers and Connext (filter on “Learn”)

6. 2023 Webinar: Data Communications Issues and
Strategies in a Containerized Environment

http://www.rti.com
http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com/downloads
https://community.rti.com/kb/creating-docker-image-rti-connext-dds
https://community.rti.com/kb/how-use-rti-connext-dds-communicate-across-docker-containers-using-bridge-driver
https://community.rti.com/kb/how-use-rti-connext-dds-communicate-across-docker-containers-using-host-driver
https://community.rti.com/kb/communicate-between-two-docker-containers-using-rti-connext-dds-and-shared-memory
https://www.rti.com/xcelerators
https://www.rti.com/resources/data-communication-containerized-environment
https://www.rti.com/resources/data-communication-containerized-environment

