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The Internet of Things (IoT) - expansion of the Internet to include physical devices; thereby 
bridging the divide between the physical world and cyberspace. These devices or \things" 
are uniquely identifiable, fitted with sensors and actuators, which enable them to gather 
information about their environment and respond intelligently.

The Industrial IoT (IIoT) (distinct from consumer IoT) will help realize critical infrastructures, 
such as smart-grids, intelligent transportation systems, advanced manufacturing, health-
care tele-monitoring, etc.

Healthcare systems: Hospital errors is the 6th Leading cause of preventable deaths. These 
errors are caused by false alarms, slow responses, and inaccurate treatment delivery.  By 
integrating multiple monitoring devices, alarms can be triggered only when multiple 
devices indicate critical physiological parameters, thereby reducing the risk of false alarms. 
Smart drug delivery systems can react to patient conditions much faster and more reliably.

Distributed Power Generation: A wind farm comprises of around 100 turbines and each 
turbine has upto a 1000 sensors. Integrating these turbines together and building a 
distributed control system, is very challenging. Each turbine costs more than a million 
dollars. The distributed control system should be able to manage load and prevent damage 
to these expensive assets. 

Asset tracking: Monitoring high-value mobile assets like locomotives, marine vessels and 
industrial equipment.  Condition based Maintenance. 
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Industrial Automation: Integration of various PLC( Programmable logic controllers)  on 
factory assembly lines.

IIoT systems are characterized by:

1) large-scale, distributed systems with many data publishers, publishing data at high 
volume and velocity. 

2) Resulting unbounded asynchronous streams of data must be processed on the fly in a 
distributed and parallel manner to provide low-latency results. 

3) Analyzed information must be transmitted downstream to a heterogeneous set of 
subscribers.

Emerging IIoT systems can be understood as a distributed asynchronous data-flow.
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KEY CHALLENGE: 

Lies in developing a dataflow oriented programming model and middleware technology 
that can address both data distribution and processing requirements adequately. 

Distribution aspects of the data-flow are sufficiently handled by pub-sub technologies like 
OMG DDS. However, the data-processing aspects – local to the individual stages of a 
distributed data-flow- are often not implemented as a dataflow due to the lack of sufficient  
composability and generality in API of pub-sub middleware. 

For Example: 

DDS offers various ways to receive data such as:

listener callbacks for push-based notication,

read/take functions for polling,

waitset and read-condition to receive data from several entities at a time, 

and query-conditions to enable application specific filtering and de-multiplexing. 

BUT: 

These primitives, are designed for data and meta-data delivery as opposed to processing.
Further, the lack of proper abstractions
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forces programmers to develop event-driven applications using the observer pattern. 

A desirable programming model is one that provides a first-class abstraction for streams; 
and one that is composable and offers a reusable set of primitives for multiplexing, 
demultiplexing, merging, splitting and filtering over streams.  

MOREOVER, implementing these stream processing primitives in a functional style as 
opposed to imperative style, yields a significant improvement in the expressiveness, 
composability and scalability of the programs. 
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To develop an end-to-end dataflow model that unifies both local data-processing and 
distribution: We have investigated in the integration of composable event processing 
inspired by Reactive programming and have blended it with data-centric publish-subscribe. 

We have combined concrete instances of pub-sub technology and reactive programming, 
to evaluate and demonstrate our research ideas. 

The data-centric pub/sub instance we have used is OMG's DDS, more specifically the DDS 
implementation provided by Real Time Innovations

Inc; 

while the reactive programming instance we have used is Microsoft's .NET Reactive 
Extensions (Rx.NET).  We have made our solution available as a reusable open-source 
library called Rx4DDS.NET.

Reactive programming languages provide a dedicated abstraction for time-changing values 
called signals or behaviors. The language runtime tracks changes to the values of 
signals/behaviors and propagates the change through the application by re-evaluating 
dependent variables automatically. Originally reactive programming was developed in the 
context of pure functional languages like Haskell and was termed as Functional Reactive 
Programming(FRP). Since then RP has been implemented in many other languages like 
scala (Scala.React), javascript (FlapJax) and java (Frappe). 
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Composable Event Processing: Is a modern variant of FRP and is an emerging new way of 
developing scalable reactive applications. For example it is being used at Netflix to efficiently 
scale and handle user requests.  
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1) First we provide a brief overview of the two technologies: DDS and Rx 

2) Then we show the strong correspondence between the distributed asynchronous data-
flow model of DDS and the local asynchronous processing model of Rx. The remarkable 
overlap and synergy between them forms the basis of Rx4DDS.NET

3) To evaluate our solution we implemented DEBS 2013 grand challenge queries using 
both the imperative style of programming and reactive style by using Rx4DDS.NET 
library.

4) We present the benefits our reactive solution over the imperative solution to the case-
study problem, i.e., DEBS 2013 grand challenge queries. 

5) Finally we present some experimental results and conclude. 
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OMG’s Data Distribution Service or DDS – is a Data-Centric and Event-Driven publish-
subscribe middleware. 

DDS supports a variety of QoS policies and thereby supports highly flexible and complex 
data flow requirements posed by IIoT systems. 

DDS is event-driven and supports loose-coupling between - the Publishers (data generators) 
and Subscribers (data receivers)

Which are decoupled wrt to: 

Time – They need not be present at the same time 

Space – They may be located any where

QoS – Publishers must offer better or equivalent QoS than required by data subscribers.

Platforms and programming languages. 

Event-Driven design is a pre-requisite for building systems that are REACTIVE.  
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Reactive Systems, are quite simply – Systems that react to all external Stimuli. 
It should react to 
- Failure, Isolate it and Recover from it. 
- Load Variations 
- User interaction events and incoming data. 

Event driven design promotes loose-coupling and asynchrony between system 
components which in turn helps in achieving the remaining three traits of: 

Resilience:  Ability to isolate and contain faults
Elasticity: Adapt to changing workload characteristics while maximizing resource usage. 
Responsiveness: Rapid and  CONSISTENT/ PREDICTABLE response times

Moreover, asynchronous event-based architectures unify scaling up and scaling out while 
deferring the choice of the scalability mechanism at deployment-time without hiding the 
network from the programming model.
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DDS provides a global data-space that is accessible to all interested communicating entities. 

Data objects are identified by their topic name, Data-type and Key.  

A Topic is a logical data-stream in DDS.

DDS DataWriters (belonging to the publisher) and DataReaders (belonging to the 
subscriber) are endpoints used in DDS applications to write and read typed data messages 
(DDS samples) from the global data space. DDS ensures that the endpoints are compatible 
with respect to the topic name, data type, and the QoS policies.

DDS supports keyed data types much like a primary key in a database. Keyed data types 
partition the global data-space into logical streams called instances which have an 
observable lifecycle.
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 Rx is:

 set of types representing asynchronous data streams

 set of operators for querying asynchronous data streams. 

 set of types to parameterize concurrency. 

Streams are first-class.

Built-in operators for multiplexing, de-multiplexing, filtering, 
merging and performing time-based operations on streams.

Rx has been classfied as a “cousin of reactive programming" since Rx does not provide a dedicated abstraction for time-
changing values which can be used in ordinary language expressions (i.e. automatic lifting of operators to work on 
behaviors/signals); rather it provides a container (observable) and the programmer needs to manually extract the values 
from this container and encode dependencies between container values explicitly (i.e. manual lifting of operators).

An object is first-class when it:

•can be stored in variables and data structures

•can be passed as a parameter to a subroutine

•can be returned as the result of a subroutine

•can be constructed at runtime

•has intrinsic identity
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An IObservable<T> produces values of type T/represents a stream of type T.  This interface 
has a single function: Subscribe using which Observers subscribe to data streams much like 
the Subject-Observer pattern. 

IObservable<T> supports chaining of functional operators to create pipelines of data 
processing stages.

An IObserver<T> has three methods: onNext, onError and onCompleted.  An observer’s 
onNext method is called back when a stream has a new data element; If the stream 
completes or has an error, the OnCompleted, and OnError operations are called, 
respectively.
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Rx supports streams of streams where every object produced by an Observable is another 
Observable (e.g.,IObservable<IObservable

<T). 

Some Rx operators, such as GroupBy, demultiplex a single stream of T into a stream of 
keyed streams producing IObservable<IGroupedObservable<Key,T>>

13



No Concurrent Work Is Introduced In Rx Without Going Through IScheduler Interface.
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Diagram shows the conceptual mapping between DDS and Rx: the data received by a 
DataReader is converted into an Rx Observable which is later consumed by downstream 
query operators

16



For keyed data-types, DDS distinguishes each key as a separate instance. An instance can be 
thought of as a continuously changing row in a database table. Since, each instance is a 
logical stream in within a topic, a keyed topic can be viewed as a stream of keyed streams. 
Or Iobservable<IGroupedObservable<Key,T>>. Rx4DDS.NET library detects a new key, it 
reacts by producing a new IGroupedObservable<Key,T> with a new key.

DDS provides various events to keep track of communication status, such as deadlines 
missed and samples lost between DataReaders and DataWriters. For discovery of DDS 
entities, the DDS uses predened built-in topics: These can also be mapped to Rx 
observables. 

The contract between any two consecutive stages composed with Rx Observables is based 
on only two notions:

(1) the static type of the data owing across and 

(2) and the pair of IObservable and IObserver interfaces that represents the lifecycle of a 
data stream. 

These notions can be mapped directly to DDS in the form of strongly typed topics and the 
notion of instance lifecycle.
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Some DDS QoS policies like history Qos and Time-based filters can be mapped to Rx Replay 
and Sample operators. 
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2013 Grand Challenge problem comprises real-life data from a soccer game and challenge problem consists 
of four distinct

queries that must be executed on the incoming streams of data on the fly. 

The sensors are located near each player's cleats, in the ball, and attached to each goal keeper's hands.

The sensors attached to the players generate data at 200Hz while the ball sensor outputs data at 2,000Hz.

Each data sample contains the sensor ID, a timestamp in picoseconds, and three-dimensional coordinates of 
location, velocity, and acceleration.

For brevity we only describe queries 1 and 3 and present results for the same: 

Query-1: 

Two sets of results current running statistics and aggregate running statistics must be returned. 

Current running statistics should return the distance, speed and running intensity of a player, where running 
intensity is classified into six states (stop, trot, low, medium, high and sprint) based on the current speed. 

Aggregate running statistics for each player are calculated from the current running statistics and must be 
reported for four

dierent time windows: 1 minute, 5 minutes, 20 minutes and entire game duration.

Query-3: 

Heat map statistics capturing how long each player stays in various pre-defined regions of the field.

The soccer field is divided into four grids with x rows and y columns (8x13, 16x25, 32x50, 64x100) and results 
should be generated for each grid type. Moreover, calculations must also be performed for 4 different time 
windows. As a result, query 3 must output 16 result streams.

We implemented the DEBS 2013 grand challenge both in an imperative style in C# and in a reactive style by 
making use of the Rx4DDS.NET library. 
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Imperative Approach: manually code the logic and maintain relevant state information for merging, joining, multiplexing, 
de-multiplexing and capturing data dependencies between multiple streams of data. 

Example:

To calculate average sensor data for a player from the sensor readings, we had to cache the sensor data for each sensor id 
as it arrives in a map of sensor id to sensor data. If the current data is for sensor id 13, then the corresponding player 
name is extracted and a list of other sensors also attached to this player is retrieved. Subsequently using the retrieved 
sensor ids as keys, the sensor data is retrieved from the map and used to compute the average player data.

In the reactive style: 

We can obtain the latest sample for each sensor attached to the player with the CombineLatest function and then 
calculate the average sensor values.

CombineLatest stream operator can be used to synchronize multiple streams into one by combining a new value 
observed on a stream with the latest values on other streams.

sensorStreamList is a list that contains references to each sensor stream associated with sensors attached to a player. For 
example, for player Nick Gertje with attached sensor ids (13, 14, 97, and 98), sensorStreamList for Nick Gertje holds 
references to sensor streams for sensors (13, 14, 97 and 98). Doing a CombineLatest on sensorStreamList returns a list (lst
in Listing 1) of latest sensor

data for each sensor attached to this player. returnPlayerData function is then used to obtain the average sensor values.
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One of the recurrent patterns in stream processing is to calculate statistics over a moving time window. All four

queries in the case study require this support for publishing aggregate statistics collected over different time windows.

Rx provides the “window abstraction" which is most commonly needed by stream processing applications, and it sup-

ports both discrete (i.e., based on number of samples) and  time-based windows.
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Rx provides abstractions that make concurrency management declarative. Thereby 
removing the need to make explicit calls to create threads or thread pools. 

Rx has a free threading model such that developers can choose to subscribe to a stream, 
receive notifications and process data on

different threads of control with a simple call to subscribeOn or ObserveOn, respectively.

In Query 1, the current running statistics and aggregate running statistics get computed for 
each player independently of the other players. Thus, we can use a pool of threads to 
perform the necessary computation on a per-player stream basis. 

Player_streams represents a stream of all player streams i.e., an 
IObservable<IGroupedObservable<String,PlayerData>>. 

Each player stream, which is an IGroupedObservable<String,PlayerData> keyed on player's 
name, is then processed further on a separate thread by using ObserveOn.
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The composability of operators in Rx allows us to write programs that preserve the conceptual high-level 
view of

the application logic and data-flow.

For example:

Query 1 computes the AggregateRunningData for each player for 1 minute, 5 minutes, 20 minutes and full 
game duration.

Player_streams is a stream of streams (e.g. IObservable<IGroupedObservable<String,PlayerData>>) 
comprises a stream for each player). Each player stream, represented by the variable player_stream is 
processed on a separate pooled thread by means of a single code statement, 
ObserveOn(ThreadPoolScheduler.Instance). 

The CurrentRunningData for each player (curr_running) is computed by the function 
CurrentRunningAnalysis() and is subsequently used by AggregateRunning*() to compute the 
AggregateRunningData for each player for 1 minute, 5 minutes, 20 minutes and full game durations, 
respectively.

The use of Publish() and Connect() pair ensures that a single underlying subscription to curr_running stream is 
shared by all subsequent AggregateRunning*() computations otherwise the same CurrentRunningData will 
get re-computed for each downstream AggregateRunning*() processing pipeline.
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Since Rx provides abstractions which make concurrency management declarative, testing 
different concurrency options for an application requires negligible effort. By changing a 
few lines of code we can test whether introducing parallelism provides increased 
performance gain (e.g., query 1) which is worth the added overhead or degrades it due 
to greater overhead (e.g., query 3).

In contrast, gaining such insights by testing different implementation alternatives in the 
imperative approach was more complex, requiring a fair amount of changes in the code.
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