Tactical Microgrid Standard (TMS)

Daniel Herring

dherring@II.mit.edu

OMG MARS, Reston VA

2019-03-19

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Department of the Army under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Army.

© 2019 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Tactical Microgrids

- Self-sufficient power
- Warfighter owned and operated
- Thousands of sites, each unique

Tactical Power Over the Years

1) Spot Generation • Inefficient • Widely used since Vietnam

TMS Independent Verification Test

Humber-Garick Consulting Engineers & Schweitzer Engineering Laboratories

TMS Independent Verification Test

Humber-Garick Consulting Engineers & Schweitzer Engineering Laboratories

Outline

- > TMS Overview
- DDS Reference Implementation
- Health and Status Telemetry: Data Diode
- Control Plane Protection: DDS Security Plugin
- Next Steps

Tactical Microgrid Power

Tactical Microgrid Communications

Mission-Driven Configurations

Microgrid Control Loops

Key Interfaces

CybersecurityA socio-technical problem

System Lifecycle

- Requirements
- Manufacturing
- Integration
- Acquisition
- Deployment
- Operations & Maintenance
- Sustainment

Cybersecurity enables trustworthy & reliable process control

Attacks Target Components and Connections

Process Control Points Communication Control Signal Control Action Measurement

Feedback

Example Attacks		
Delay	"Sorry, too late"	
Drop / Filter	"Oops, forgot"	
Modify	"Please run stop"	

Malware Injection Opportunities		
Temporary	Persistent	Supply Chain
Connection	Network	
	Connection	

Cybersecurity for Microgrids

System Operator Concerns

Am I in control?

Is the system running well?

How can I detect and fix problems?

Are the safeguards operational?

Safety
Availability
Integrity
Confidentiality

Ensure Process Control

Capability	Example
Authenticate	"Who are you?"
Maintain Identity	"I am X."
Authorize	"What are you allowed to do?"
Log	"What have you done, and when?"
Maintain Integrity	"Can I trust this data?"
Timekeeping	"What time is it?"

Safely Restore Control

Capability	Example
Manual Override	"Can I disable digital controls and manually operate the system?"
Break Glass	"Can I access the controls quickly in an emergency?"

Outline

- TMS Overview
- > DDS Reference Implementation
- Health and Status Telemetry: Data Diode
- Control Plane Protection: DDS Security Plugin

Why DDS?

- Strong Technology
 - Fully distributed pub/sub
 - Machine-readable IDL
 - Rich Quality of Service (QoS)
 - Portable API and interoperable wire protocol
 - Security architecture
- Healthy Ecosystem
 - Open standard
 - Stable governance
 - Multiple independent commercial implementations
 - Continuous innovation
 - Used across multiple industries

How We Use DDS

TMS Data Model

Middleware Agnostic

- Message Design
 - Device roles and representation
 - Mechanism, not policy
- Data Flows
 - Publishers and subscribers
 - Traffic Shaping
- DDS Reference Implementation
 - IDL Files
 - Topic Names
 - Quality of Service (QoS) Settings
 - Sequence Diagrams
 - Development Considerations

DDS Implementation Summary As of February 2018

PDF Documentation:

- 10-page Data Model Requirements
- 100-page Data Model Object Definitions
- 30-page Implementation Guide

IDL Code: 1381 lines (+ 516 blank lines)

- 34 topic name constants
- 82 structures
- 14 typedefs
- 23 enums
- 127 numeric constants

Sample DDS Statistics

From July 2018 Independent Verification Test

- 9-15 devices
- 40-1308 B payloads
- 344 kbps average total

What's Next

for DDS Reference Implementation

- Additional IDL
 New device types and capabilities
- DDS XTypes
 Backwards-compatible message versioning
- DDS Security
 API-compatible data protection
- Support Tools
 Acquisitions and development support

Outline

- TMS Overview
- DDS Reference Implementation
- ➤ Health and Status Telemetry: Data Diode
- Control Plane Protection: DDS Security Plugin

Data Diode = One-Way Access

- Provide access for remote monitoring
- May filter outgoing traffic
- Block external threats

Data Diode Implementation

- Physical isolation
- No return path
- Cannot be reprogrammed

Data Diode Architecture for DDS

- Publish to right
- Periodic re-transmit "reliable" topics

- Static discovery
- Infinite lease
- Best effort reliability

Data Diode Status

Prototyped

- Commercial data diode
- RTI Connext DDS Micro
- Demonstrated
 - Hardware protection
 - One-way DDS traffic
- Developing
 - Full bridge software
 - Support for more DDS implementations
 - Tactical hardware package

What's Next

for Data Diode

- Develop capability on other DDS implementations
 Some modifications required
 - RTI Connext DDS Pro
 - Twin Oaks CoreDX DDS
 - Others?
- DDS API Standardization
 Make this a standard feature
- DDS Security Integration
 How to maintain end-to-end data protection
- Forward Error Correction
 Improved reliability without acknowledgement
- Multicast?
 Eliminate need for second bridge?

Outline

- TMS Overview
- DDS Reference Implementation
- Health and Status Telemetry: Data Diode
- ➤ Control Plane Protection: DDS Security Plugin

DDS Security Architecture

https://www.omg.org/spec/DDS-SECURITY/

Strong Identity Cryptographic Bindings

Tactical Microgrid Cybersecurity

Usability Requirements

- Simple Operations and Maintenance
 - Policies and Procedures
 - User interface (MIL-STD-1472)
- Dynamic Reconfiguration
 - Add and remove devices without editing files
 - Per-device trust levels: owned, allied, neutral, untrusted
- Stronger Protections
 - Multiple layers of defense
 - Integration with other defenses
- Detect and Respond to Faults and Threats
 - Anomaly / intrusion detection
 - Trust rooted in physical presence of operator

What's Next for DDS Security

- Start with Built-in Plugin
 Baseline Capability
 - Encrypted communications
 - On-site administration
- Develop Custom Plugin
 Full Capability
 - Address all requirements
 - Incremental functionality upgrades
 - Long-term support

Outline

- TMS Overview
- DDS Reference Implementation
- Health and Status Telemetry: Data Diode
- Control Plane Protection: DDS Security Plugin
- ➤ Next Steps

Recap of What's Next for TMS

- DDS Reference Implementation
- Data Diode
- DDS Security

Future TMS Needs for DDS

Functionality

- Testing
 - Validation and Verification
 - System Integration
 - Stress Testing
- Operation
 - Check participants
 - Check topics
 - Check IDL version
 - Check QoS
 - Check data
 - Intrusion detection

Tooling

- Service Contracts
 - Data dependencies, values
 - Timing constraints
- Recording and Playback
- Test Vectors and Fuzzing

Objective: standards-based, non-proprietary solutions.

Conclusion

- See good future for both TMS and DDS
- Standardization brings economies of scale
- Many opportunities
- Look forward to further collaboration

Tactical Microgrid Standards Consortium (TMSC)

Standards Development and Implementation

- US Army Corps of Engineers
- MIT Lincoln Laboratory
- Humber-Garick Consulting Engineers

- US Army C5ISR
- Schweitzer Engineering Laboratories

Adoption

- US Army PM E2S2
- US Marine Corps

Plus many, many industrial and government organizations.