

µDDS: A MIDDLEWARE FOR REAL-TIME WIRELESS
EMBEDDED SYSTEMS

Apolinar González, Walter Mata, Luis Villaseñor, Raúl Aquino, Magaly Chávez, Alfons Crespo

Abstract— A Wireless Sensor Network (WSN) is formed by a
large quantity of small devices with certain computing power,
wireless communication and sensing capabilities. These types of
networks have become popular as they have been developed for
applications which can carry out a vast quantity of tasks,
including home and building monitoring, object tracking,
precision agriculture, military applications, disaster recovery,
among others. For this type of applications a middleware is
used in software systems to bridge the gap between the
application and the underlying operating system and networks.
As a result, a middleware system can facilitate the development
of applications and is designed to provide common services to
the applications. The development of a middleware for sensor
networks presents several challenges due to the limited
computational resources and energy of the different nodes.
This work is related with the design, implementation and test of
a micro middleware for WSN with real-time (i.e. temporal)
restrictions; the proposal incorporates characteristics of a
message oriented middleware thus allowing the applications to
communicate by employing the publish/subscribe model.
Experimental evaluation shows that the proposed middleware
provides a stable and timely service for providing different QoS
levels.

I. INTRODUCTION
Wireless Sensor Network (WSN) is formed by a

large quantity of small devices with certain
computational power, wireless communication and sensing
capabilities [1]. The sensor nodes are generally disseminated
on the region of study, where each sensor node is
responsible for extracting data of the phenomenon of
interest, such as, humidity, temperature, pressure,
brightness, etc. The sensor nodes are capable of processing
and sending the collected data to one or more sinks, which
are in charge of transmitting the data to the end user
application.
The WSN have become popular as they have been
developed for applications which can carry out a vast
quantity of tasks, including home and building monitoring,
object tracking, precision agriculture, military applications,

and disasters recovery [1]-[5]. The paradigm of these nets
differs from the habitual ones which are based on the
information management in that WSNs have knowledge
over what is happening in the environment where they are
deployed, thus the decision making process depends on the
analysis of the sensed variable along the area of interest.

Manuscript received August, 2009. This work was developed as a part of

the D2ARS Project supported by CYTED. UNESCO code
120325;330417;120314;120305.

W. A., A. G., R. A., M. C., are with the Universidad de Colima, Av.
Universidad, Col. Las Víboras, Colima, Col., México. C.P. 28040; (e-mail:
{wmata, apogon, aquinor, maggilyly}@ucol.mx).

L. V. is with the CICESE Research Center. Ensenada, B.C. Mexico (e-
mail: luisvi@cicese.mx)

A. C. is with the Departamento de Informática de Sistemas y
Computadores, Universidad Politécnica de Valencia, Camino de Vera S/N,
Valencia, España. (email: alfons@disca.upv.es)

With respect to the development of applications for WNSs, a
middleware can be used to bridge the gap between the
application and the underlying operating systems and
networks [6],[7]. One of the basic purposes of any
middleware is to satisfy the application requirements; in this
work the middleware takes into account the specific features
of a WSN like the restrictions in energy, communication and
computing power [8]; consequently the design and
development of the sensor networks is highly related to
specific resources like battery, memory and processor
capabilities, as well as, the communication models and the
application requirements.

II. RELATED WORKS
There are several middleware proposals in the literature,

some of the most representative are described in this section.
Cougar [9] is focused on a model based on consults, where
the sensed data is considered to be in a virtual relational
database. Mate [10] is a small virtual machine
communication centered approach executed on TinyOS [11]
and the developers, by means of the use of this architecture,
can change in a simple way the set of instructions, the
execution of events and the subsystems of the virtual
machines. Impala [12] is a middleware for the ZebraNet
project, it is composed of 2 layers: the upper layer that
contains all the application protocols as well as the programs
for ZebraNet, while the lower layer contains three
middleware agents: the Application Adapter, the Application
Updater, and the Event Filter. Garnet [13] presents an
architectural framework that provides a data stream centric
abstraction. In a fixed network the data is gathered by the
applications which use the typical mechanisms of
advertising, discovery, registration, authentication and
publish/subscribe to identify, subscribe to and receive the
data streams of interest. It has some components which are
receivers, sensors/actuator, filtering and dispatching
services, consumer processes and services, the Super
coordinator, etc. MiLAN [14] sits on top of multiple
physical networks, and has an abstraction layer that allows
network-specific plugins to convert the MiLAN commands

A

to protocols-specific commands which are transmitted
through the usual network protocol stack, this plugins are
important as they help to determine which sets of nodes
satisfy the QoS requirements of the application. Finally
Mires [15] presents a publish/subscribe model, and
incorporates two additional services: routing component and
additional services. The communication between the nodes
is given in three phases. First, the nodes in the network
announce their available topics, such as, temperature or
humidity which are collected from local sensors. Second, the
advertised messages are routed to the sink node using a
multi-hop routing algorithm and the user application can
connect to these nodes to monitor the desired topics. Finally,
subscribe messages are broadcast down to the network
nodes. Mires is located on top of the OS, encapsulating its
interfaces and providing higher-level services to the node
application.

III. AN OVERVIEW OF DATA DISTRIBUTION SERVICE FOR
REAL-TIME SYSTEMS

The OMG Data Distribution Service (DDS) specification
[16] standardizes the software application programming
interface (API), where a distributed application can use the
publish/subscribe communication mechanism which is
centered in the data. It is based on Model Driven
Architecture (MDA) [17],[18], which defines a Platform
Independent Model (PIM) that is a view of a system from
the platform independent viewpoint, as a result the
middleware developers can derive any Platform Specific
Model (PSM) which can be adjusted to the application
requirements; thus allowing the construction of different
DDS implementations dedicated to very specific needs [16].

A. DDS Conceptual Model
DDS introduces two levels of interfaces, which are:

• DCPS (Data-Centric Publish/Subscribe), a low-level
mandatory API that provides the functionality required
for an application to publish and subscribe the values
of data objects. This layer provides support for 21 QoS
policies as we will see later;

• DLRL (Data Local Reconstruction Layer), an optional
high-level API that allows a simple integration of the
Service into the application layer.

 In summary we can say that the advantages of this

infrastructure according to [19] are:

• It is based on a simple publish/subscribe
communication paradigm;

• it has a flexible and adaptive architecture that supports
auto-discovery of new stale endpoint applications;

• the low overhead can be used with high-performance
systems;

• it has a deterministic data delivery;

• it is dynamically scalable;
• it provides an efficient use of transport bandwidth
• it supports one to one, one to many, many to one and

many to many communications;
• and it has a large number of configuration parameters

that provide to the developers a complete control of
each message in the system.

The information flows with the aid of the constructors as

it is shown in figure 1. The Publisher and DataWriter are on
the sending side while the Subscriber and DataReader are on
the receiving side. The Topics are used to provide the basic
connection between Publishers and Subscribers. The Topic
of a given Publisher on one node must match the Topic of
an associated Subscriber on any other node. If the Topic
does not match, communication will not take place. The
Publisher is responsible for the distribution of the different
data types, and the DataWriter is used to communicate to a
Publisher the existence and value of data. Meanwhile the
Subscriber is responsible for receiving the publishing data
and making it available to the receiving application and the
DataReader is used to access the received data [16].

Fig. 1. DDS Entities [19]

B. Quality of service in DDS
One of the important aspects to consider is the Quality of

Service (QoS), which is a concept used to specify certain
behavior of a service. QoS provide the ability to control and
limit the use of resources like network bandwidth, memory,
reliability, timeliness, and persistence, among others.

The DDS QoS model is a set of classes which are derived
from QoSPolicy. DDS provides USER_DATA QoS policy,
TOPIC_DATA QoS policy, DURABILITY QoS policy,
DEADLINE QoS policy and other policies. Further details
regarding these policies can be studied in [16].

IV. ARCHITECTURAL OVERVIEW OF A MIDDLEWARE FOR
REAL-TIME WIRELESS EMBEDDED SYSTEMS

The proposed architecture is shown in the figure 2, where
the PaRTiKle real-time OS is executed directly on the ARM

or x86 hardware; figures 3 and 4 show how different kinds
of nodes can communicate with other devices using a
ZigBee communication module; The µDDS middleware sits
between the node and user applications, and the PaRTiKle
OS.

Fig. 2. Global Architecture

Fig. 3. Communication Node Architecture

A. PaRTiKle OS Architecture
PaRTiKle [18]-[23] is a recent embedded real-time

operating system designed to be compatible with the POSIX
5.1 standard. PaRTiKle has been designed bearing the
following ideas in mind:
• it must be as portable, configurable and maintainable as

possible.
• it must support multiple execution environments, thus

allowing to execute the same application code (without
any modification) under different environments, such as,
in a bare machine, a Linux regular process and as a
hypervisor domain.

• it must support multiple programming languages;

currently PaRTiKle supports Ada, C, C++ and Java

PaRTiKle has been designed to support applications with

real-time requirements, providing features such as full
preemptability, minimal interrupt latencies, and all the
necessary synchronization primitives, scheduling policies,
and interrupt handling mechanisms needed for this type of
applications. Figure 5 shows the PaRTiKle architecture that
has been designed as a real kernel with a clean and well
defined separation between kernel and application execution
spaces. All kernel services are provided via a single entry
point, which improves the robustness and also greatly
simplifies the work to port PaRTiKle to other architectures
and environments.

Fig. 4. Advanced Node Architecture

B. µDDS: A Middleware for real-time wireless embedded
systems

µDDS is a publish/subscribe middleware for real-time
wireless embedded systems based on DDS specification and
implements a subset of standard interfaces for event
subscriptions and publication to be used by applications.
Applications implemented on top of µDDS can disseminate
and collect data through a publish/subscribe interface
provided by the middleware. Different routing protocols can
be used to implement the overlay network; the middleware
is currently implemented on 802.15.4 standard devices
which can support star, tree and mesh topologies.

V. APPLICATION DEVELOPMENT WITH µDDS
Figure 6 shows the development model of a µDDS

application on PaRTiKle platform. There are three main
elements of the development model, µDDS Middleware and
µDDS library, user application and PaRTiKle’s Kernel. To
build a µDDS application running on PaRTiKle, the figure 6
sketches how it can do it, PaRTiKle provides a bash script,
named mkkernel, for ease of building process, basically the

steps performed by this script are: links the application with
µDDS middleware, then the script links the resulting object
together with the kernel object to create the executable
containing all the components (.prtk).

Fig. 5. PaRTiKle Architecture

The mkkernel script requires the following parameters:

$ mkkernel -f <output> <file1.o> [<file2.o> ...]

where <output> is the name of the target executable once the
process of building the application has concluded, and
<file1.o>, <file2.o>, etc., are the object files obtained when
the application is compiled using GCC with the option -c.
The steps performed by this script are:

1. It links the application against the user “C” library and

the suitable run-time (the run-time is selected depending on
the language used to implement the application).

2. It turns every application’s symbol into a local symbol,
except user entry point.

3. Eventually, the script links the resulting object file
together with the kernel object file to create the executive
(*.prtk).

Fig. 6. Building process of a µDDS application

For development model in Real-Time Java a compiled
application includes the GCJ runtime with the javax.realtime
classes and the native methods as shown in the figure 7.
GCJ, which is the GCC Java compiler, links with the libgcj
by default, which includes a complete java runtime on the
order of some megabytes with a set of characteristics that
are not necessary for small platforms. The idea is to remove
the any functionality which is not necessary for safety
critical systems and also not necessary for real-time systems
with hard timing restrictions.

We started from scratch, copying the source code
necessary to the directories where we had installed GCJ on
PaRTiKle. The code was compiled generating a new,
reduced, version of libgcj. The size obtained is in the range
of hundreds of kilobytes for the complete application, which
is composed of the application code (code developed by the
end user), µDDS Middleware and the PaRTiKle operating
system. The reduced version of libgcj is a subset of the
runtime support and the CLASSPATH. Finally, this version
of libgcj has all of the support to execute applications using
the porting and adaption of jRate on the PaRTiKle OS, a
subset of java.lang and java.io, support for thread execution,
and OS interfaces. The garbage collector, support for
graphical interfaces, runtime classloading, bytecode
interpretation, reflection, finalization, serialization, file and
network I/O, and many parts of java.lang, java.util, and
java.io, that were not considered essential, have been
removed, for real-time and safety critical applications.

VI. IMPLEMENTATION AND EVALUATION
To study the performance of publish/subscribe systems

we implement the µDDS as our middleware base for
wireless embedded applications. The purpose of our
experiment is to run latency and throughput performance
tests with different message size and number of subscribers
in a practical environment.

The test was performed using eight devices based on an
ARM 7TDMI-S processor running at 60 Mhz, model
LPC2136 with 32 Kbytes RAM and 256 Kbytes EEPROM,
and a MaxStream XBee Pro with 802.15.4 protocol stack for
the wireless communication.

A. Throughput test
In this test, the publisher sends data where the size varies

from 16 bytes to 4Kb and is sent to one or more subscriber
applications. The throughput is the total number of messages
received per second by all the subscribers in the system
divided by message fanout. The test code contains two
applications: one for the publishing node and the other for
the subscribing node(s). The publisher applications are
started first followed by the subscriber applications, then the
publication application sends a burst of data and repeats the
cycle for a specified duration. Figure 8 shows the
Throughput performance results of the test.

Fig. 7. Java application build process

0

100

200

300

400

500

600

700

16 32 64 128 256 512 1024 2048 4096

m
es
sa
ge
s/
se
co
nd

bytes

Throughput

Fig. 8. Throughput Test

B. Latency test
Similarly to the throughput test, the publisher sends data

with varying size from 16 bytes to 4 Kb to one or more
subscriber applications in which the latency is estimated as a
half of the round-trip time of a message. The test code
contains two applications: one for the publishing node, one
for the subscribing node(s). The publisher application is
started firts, followed by each subscriber, then the publisher
starts publishing data. The test ends when all the messages
have been sent and the same number of replies has been
received by the publisher. Figure 9 shows the latency
results.

C. QoS Test
For the QoS policy, µDDS implement some of the QoS

model of DDS, such as deadline and time based filter. The
Deadline QoS indicates the minimum rate at which a
DataWriter will send data. The Time-Based Filter provides a
way to set a minimum separation period, which is used to
specify that a DataReader wants new messages no more
often than this time period; according to the specification, if
the value of this QoS policie is 0, it means that the

DataReader wants all values.

0

5

10

15

20

25

16 32 64 128 256 512 1024 2048 4096

us

bytes

Latency

Fig. 9. Latency Test

Figure 10 shows the performance of dealing with

notifications per second with different Topics and
TIME_BASED_FILTER (TBF) settings. The result shows
that µDDS achieves maximal processing capacity for
notifications in a second when Topic Number grow up to
600 and TIME_BASED_FILTER = 1.

0

100

200

300

400

500

600

10 20 30 60 80 10
0

12
0

13
0

16
0

18
0

20
0

21
0

22
0

23
0

26
0

30
0

60
0

N
ot
ifi
ca
ti
on

/S
ec

#Topic

TBF=1

TBF=4

Fig. 10. TIME BASED FILTER QoS Test

Figure 11 shows the Deadline Missed Ratio as a function

of the number of Topics while considering different
DEADLINE periods. The result show that Deadline
increases slowly when Topic Number is bigger than 160 for
Deadline = 2 and 200 for Deadline = 4.

These results have been obtained with a service that just
run with topic number ranging from 10 to 500, which was
observed 20 times in order to obtain the average value.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

50 80 160 200 400

D
M
R(
%
)

Topic

Deadline=2

Deadline=4

Fig. 11. DEADLINE Test

VII. CONCLUSIONS
In this paper, a new DDS compatible real-time

middleware has been presented; µDDS is a
publish/subscribe middleware that allows real-time wireless
embedded applications to interoperate with each other, and
is capable of supporting different QoS levels for various
applications. The combination of a compact Java
environment, the µDDS and the PaRTiKle OS, has resulted
in a very small footprint, low latency, and highly reliable
platform for time critical Java applications. In order to
validate and evaluate the performance of our
implementation, several tests have been designed and
performed. All the testing realized in this work, shows that
the performance of this implementation is very efficient,
achieving very good results in throughput, latency and the
QoS performed. Evaluations results demonstrate that µDDS
is lightweight and efficient, and the use of the µDDS
middleware simplifies the development process of real-time
wireless embedded publish/subscribe applications.

In the future we will provide our software architecture for
other hardware architectures such as XScale and PPC, and
we will implement the memory model TLSF which is
supported by the PaRTiKle operating system, for which we
must integrate the adaptation and implementation of RTSJ
that we realized.

REFERENCES
[1] R. Aquino, A. González, V. Rangel, M. García, L. A. Villaseñor, A.

Edwards-Block, “Wireless Communication Protocol Based on EDF
for Wireless Body Sensor Networks,” k. Journal of Applied Scioences
and Technology, Vol 6, No 2, August 2008.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor Networks,” IEEE Communications Magazine, pp.
102-114, Aug. 2002.

[3] A. Cerpa, J. Elson, M. Hamilton, and J. Zhao, “Habitat monitoring:
application driver for wireless communications technology”. ACM
SIGCOMM workshop on data communications in Latin America and
the Caribbean, Costa Rica, Apr. 2002.

[4] D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Mobile
Computing and Networking. pp.263-270, 1999.

[5] G. J. Pottie, W. J. Kaiser, “Wireless integrated networks sensors,”
Communications of the ACM 43(5):52-58, 2000.

[6] W. Mata, A. González, A. Crespo. “A Proposal for Real-Time
Middleware for Wireless Sensor Networks,” Workshop on Sensor
Networks and Applications (WseNA'08), Gramado, Brasil. Sept 2008.

[7] W. B. Heinzelman, A. L. Murphy, and H.S. Carvalho, “Middleware to
support sensor network applications,” IEEE Network, vol. 18, pp. 6-
14, 2004.

[8] D. E. Culler and W. Hong, “Wireless sensor networks – introduction,”
Communications ACM, 47(6):30-33, 2004.

[9] P. Bonnet , J. E. Gehrke, P. Seshadri, “Querying the physical world,”
IEEE Personal Communications 7(5):10–15, Oct. 2000.

[10] P. Levis and D. Culler, “Mate: a tiny virtual machine for sensor
networks,” In: Proceedings of the 10th international conference on
achitectural support for programming languages and operating
systems, San Jose, CA, USA, Oct. 2002.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” In: ACM
SIGOPS operating systems review 34(5):93–104, Dec. 2000.

[12] T. Liu and M. Martonosi, “Impala: a middleware system for managing
autonomic, parallel sensor systems,” In: Proceedings of the ninth

ACM SIGPLAN symposium on principles and practice of parallel
programming, San Diego, CA, USA, Jun. 2003.

[13] L. St Ville and P. Dickman, “Garnet: a middleware architecture for
distributing data streams originating in wireless sensor networks,” In:
Proceedings. 23rd International Conference on Distributed Computing
Systems Workshops, May. 2003.

[14] MiLAN Project. Available:
http://www.futurehealth.rochester.edu/milan

[15] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C.
Ferraz, and J. Kelner, “Mires: a publish/subscribe middleware for
sensor networks,” Personal and Ubiquitous Computing, 10(1):37–44,
Feb. 2006.

[16] OMG, Data Distribution Service for Real-Time Systems version 1.2.
OMG Technical Document, Jan. 2007.

[17] OMG, Model Driven Architecture (MDA), Document number
ormsc/2001-07-01. Technical report, OMG, 2001.

[18] OMG, Overview and guide to OMG’s architecture, OMG Technical
Document formal/03-06-01, Jun. 2003.

[19] G. Pardo-Castellote, B. Farabaugh, and R. Warren, (2005). An
Introduction to DDS and Data-centric Communications, Available:
http://www.omg.org/news/whitepapers/Intro_To_DDS.pdf.

[20] S. Peiro, M. Masmano, I. Ripoll, and A. Crespo, “PaRTiKle OS, a
replacement of the core of RTLinux,” In 9th Real-Time Linux
Workshop, 2007.

[21] W. Mata, A. González, R. Aquino, A. Crespo, I. Ripoll, M. Capel, “A
Wireless Networked Embedded Sistem with a New Real-Time Kernel
PaRTiKle,” Electronics, Robotics and Automotive Mechanics
Conference, CERMA 2007. ISBN 0-7695-2974-7, Cuernavaca,
México. Sep. 2007.

[22] S. Peiro, M. Masmano, I. Ripoll, A. Crespo. “PaRTiKle LPC, port to
the LPC2000,” Tehth Real-Time Linux Workshop, Colotlán, Jalisco
México. 2008.

[23] W. Mata, A. González, G. Fuentes, R. Fuentes, A. Crespo, D. Carr,
“Porting jRate(RT-Java) to a POSIX Real-Time Linux Kernel,” Tenth
Real-Time Linux Workshop, Colotlán, Jalisco México. 2008.

	I. INTRODUCTION
	II. Related Works
	III. An Overview Of Data Distribution Service For Real-Time Systems
	A. DDS Conceptual Model
	B. Quality of service in DDS

	IV. Architectural Overview of a Middleware For Real-Time Wireless Embedded Systems
	A. PaRTiKle OS Architecture
	B. µDDS: A Middleware for real-time wireless embedded systems

	V. Application Development with µDDS
	VI. Implementation and Evaluation
	A. Throughput test
	B. Latency test
	C. QoS Test

	VII. Conclusions

