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Abstract— A Wireless Sensor Network (WSN) is formed by a 
large quantity of small devices with certain computing power, 
wireless communication and sensing capabilities. These types of 
networks have become popular as they have been developed for 
applications which can carry out a vast quantity of tasks, 
including home and building monitoring, object tracking, 
precision agriculture, military applications, disaster recovery, 
among others. For this type of applications a middleware is 
used in software systems to bridge the gap between the 
application and the underlying operating system and networks. 
As a result, a middleware system can facilitate the development 
of applications and is designed to provide common services to 
the applications. The development of a middleware for sensor 
networks presents several challenges due to the limited 
computational resources and energy of the different nodes. 
This work is related with the design, implementation and test of 
a micro middleware for WSN with real-time (i.e. temporal) 
restrictions; the proposal incorporates characteristics of a 
message oriented middleware thus allowing the applications to 
communicate by employing the publish/subscribe model. 
Experimental evaluation shows that the proposed middleware 
provides a stable and timely service for providing different QoS 
levels. 

I. INTRODUCTION 
Wireless Sensor Network (WSN) is formed by a 

large quantity of small devices with certain 
computational power, wireless communication and sensing 
capabilities [1]. The sensor nodes are generally disseminated 
on the region of study, where each sensor node is 
responsible for extracting data of the phenomenon of 
interest, such as, humidity, temperature, pressure, 
brightness, etc. The sensor nodes are capable of processing 
and sending the collected data to one or more sinks, which 
are in charge of transmitting the data to the end user 
application. 
The WSN have become popular as they have been 
developed for applications which can carry out a vast 
quantity of tasks, including home and building monitoring, 
object tracking, precision agriculture, military applications, 

and disasters recovery [1]-[5]. The paradigm of these nets 
differs from the habitual ones which are based on the 
information management in that WSNs have knowledge 
over what is happening in the environment where they are 
deployed, thus the decision making process depends on the 
analysis of the sensed variable along the area of interest. 

 
Manuscript received August, 2009. This work was developed as a part of 

the D2ARS Project supported by CYTED. UNESCO code 
120325;330417;120314;120305.  

W. A., A. G., R. A., M. C., are with the Universidad de Colima, Av. 
Universidad, Col. Las Víboras, Colima, Col., México. C.P. 28040; (e-mail: 
{wmata, apogon, aquinor, maggilyly}@ucol.mx).  

L. V. is with the CICESE Research Center. Ensenada, B.C. Mexico (e-
mail: luisvi@cicese.mx) 

A. C. is with the Departamento de Informática de Sistemas y 
Computadores, Universidad Politécnica de Valencia, Camino de Vera S/N, 
Valencia, España. (email: alfons@disca.upv.es) 

With respect to the development of applications for WNSs, a 
middleware can be used to bridge the gap between the 
application and the underlying operating systems and 
networks [6],[7]. One of the basic purposes of any 
middleware is to satisfy the application requirements; in this 
work the middleware takes into account the specific features 
of a WSN like the restrictions in energy, communication and 
computing power [8]; consequently the design and 
development of the sensor networks is highly related to 
specific resources like battery, memory and processor 
capabilities, as well as, the communication models and the 
application requirements.  

II. RELATED WORKS 
There are several middleware proposals in the literature, 

some of the most representative are described in this section. 
Cougar [9] is focused on a model based on consults, where 
the sensed data is considered to be in a virtual relational 
database. Mate [10] is a small virtual machine 
communication centered approach executed on TinyOS [11] 
and the developers, by means of the use of this architecture, 
can change in a simple way the set of instructions, the 
execution of events and the subsystems of the virtual 
machines. Impala [12] is a middleware for the ZebraNet 
project, it is composed of 2 layers: the upper layer that 
contains all the application protocols as well as the programs 
for ZebraNet, while the lower layer contains three 
middleware agents: the Application Adapter, the Application 
Updater, and the Event Filter. Garnet [13] presents an 
architectural framework that provides a data stream centric 
abstraction. In a fixed network the data is gathered by the 
applications which use the typical mechanisms of 
advertising, discovery, registration, authentication and 
publish/subscribe to identify, subscribe to and receive the 
data streams of interest. It has some components which are 
receivers, sensors/actuator, filtering and dispatching 
services, consumer processes and services, the Super 
coordinator, etc. MiLAN [14] sits on top of multiple 
physical networks, and has an abstraction layer that allows 
network-specific plugins to convert the MiLAN commands 
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to protocols-specific commands which are transmitted 
through the usual network protocol stack, this plugins are 
important as they help to determine which sets of nodes 
satisfy the QoS requirements of the application. Finally 
Mires [15] presents a publish/subscribe model, and 
incorporates two additional services: routing component and 
additional services. The communication between the nodes 
is given in three phases. First, the nodes in the network 
announce their available topics, such as, temperature or 
humidity which are collected from local sensors. Second, the 
advertised messages are routed to the sink node using a 
multi-hop routing algorithm and the user application can 
connect to these nodes to monitor the desired topics. Finally, 
subscribe messages are broadcast down to the network 
nodes. Mires is located on top of the OS, encapsulating its 
interfaces and providing higher-level services to the node 
application. 

III.  AN OVERVIEW OF DATA DISTRIBUTION SERVICE FOR 
REAL-TIME SYSTEMS 

The OMG Data Distribution Service (DDS) specification 
[16] standardizes the software application programming 
interface (API), where a distributed application can use the 
publish/subscribe communication mechanism which is 
centered in the data. It is based on Model Driven 
Architecture (MDA) [17],[18], which defines a Platform 
Independent Model (PIM) that is a view of a system from 
the platform independent viewpoint, as a result the 
middleware developers can derive any Platform Specific 
Model (PSM) which can be adjusted to the application 
requirements; thus allowing the construction of different 
DDS implementations dedicated to very specific needs [16].  

A. DDS Conceptual Model 
DDS introduces two levels of interfaces, which are: 
 

• DCPS (Data-Centric Publish/Subscribe), a low-level 
mandatory API that provides the functionality required 
for an application to publish and subscribe the values 
of data objects. This layer provides support for 21 QoS 
policies as we will see later; 

• DLRL (Data Local Reconstruction Layer), an optional 
high-level API that allows a simple integration of the 
Service into the application layer. 

 
 In summary we can say that the advantages of this 

infrastructure according to [19] are: 
 

• It is based on a simple publish/subscribe 
communication paradigm; 

• it has a flexible and adaptive architecture that supports 
auto-discovery of new stale endpoint applications; 

• the low overhead can be used with high-performance 
systems; 

• it has a deterministic data delivery; 

• it is dynamically scalable; 
• it provides an efficient use of transport bandwidth 
• it supports one to one, one to many, many to one and 

many to many communications; 
• and it has a large number of configuration parameters 

that provide to the developers a complete control of 
each message in the system. 

 
The information flows with the aid of the constructors as 

it is shown in figure 1. The Publisher and DataWriter are on 
the sending side while the Subscriber and DataReader are on 
the receiving side. The Topics are used to provide the basic 
connection between Publishers and Subscribers. The Topic 
of a given Publisher on one node must match the Topic  of 
an associated Subscriber on any other node. If the Topic 
does not match, communication will not take place. The 
Publisher is responsible for the distribution of the different 
data types, and the DataWriter is used to communicate to a 
Publisher the existence and value of data. Meanwhile the 
Subscriber is responsible for receiving the publishing data 
and making it available to the receiving application and the 
DataReader is used to access the received data [16]. 
 

 
Fig. 1.  DDS Entities [19] 

 

B. Quality of service in DDS 
One of the important aspects to consider is the Quality of 

Service (QoS), which is a concept used to specify certain 
behavior of a service. QoS provide the ability to control and 
limit the use of resources like network bandwidth, memory, 
reliability, timeliness, and persistence, among others.  

The DDS QoS model is a set of classes which are derived 
from QoSPolicy. DDS provides USER_DATA QoS policy, 
TOPIC_DATA QoS policy, DURABILITY QoS policy, 
DEADLINE QoS policy and other policies. Further details 
regarding these policies can be studied in [16]. 

IV. ARCHITECTURAL OVERVIEW OF A MIDDLEWARE FOR 
REAL-TIME WIRELESS EMBEDDED SYSTEMS 

The proposed architecture is shown in the figure 2, where 
the PaRTiKle real-time OS is executed directly on  the ARM 



  

or x86 hardware; figures 3 and 4 show how different kinds 
of nodes can communicate with other devices using  a 
ZigBee communication module; The µDDS middleware  sits 
between the node and user applications, and the PaRTiKle 
OS. 

 
Fig. 2. Global Architecture 

 
 

 
Fig. 3. Communication Node Architecture 

 

A. PaRTiKle OS Architecture 
PaRTiKle [18]-[23] is a recent embedded real-time 

operating system designed to be compatible with the POSIX 
5.1 standard. PaRTiKle has been designed bearing the 
following ideas in mind: 
• it must be as portable, configurable and maintainable as 

possible. 
• it must support multiple execution environments, thus 

allowing to execute the same application code (without 
any modification) under different environments, such as, 
in a bare machine, a Linux regular process and as a 
hypervisor domain. 

• it must support multiple programming languages; 

currently PaRTiKle supports Ada, C, C++ and Java 
 
PaRTiKle has been designed to support applications with 

real-time requirements, providing features such as full 
preemptability, minimal interrupt latencies, and all the 
necessary synchronization primitives, scheduling policies, 
and interrupt handling mechanisms needed for this type of 
applications. Figure 5 shows the PaRTiKle architecture that 
has been designed as a real kernel with a clean and well 
defined separation between kernel and application execution 
spaces. All kernel services are provided via a single entry 
point, which improves the robustness and also greatly 
simplifies the work to port PaRTiKle to other architectures 
and environments. 

 
Fig. 4. Advanced Node Architecture 

 

B. µDDS: A Middleware for real-time wireless embedded 
systems 

µDDS is a publish/subscribe middleware for real-time 
wireless embedded systems based on DDS specification and 
implements a subset of standard interfaces for event 
subscriptions and publication to be used by applications. 
Applications implemented on top of µDDS can disseminate 
and collect data through a publish/subscribe interface 
provided by the middleware. Different routing protocols can 
be used to implement the overlay network; the middleware 
is currently implemented on 802.15.4 standard devices 
which can support star, tree and mesh topologies. 

V. APPLICATION DEVELOPMENT WITH µDDS 
Figure 6 shows the development model of a µDDS 

application on PaRTiKle platform. There are three main 
elements of the development model, µDDS Middleware and 
µDDS library, user application and PaRTiKle’s Kernel. To 
build a µDDS application running on PaRTiKle, the figure 6 
sketches how it can do it, PaRTiKle provides a bash script, 
named mkkernel, for ease of building process, basically the 



  

steps performed by this script are: links the application with 
µDDS middleware, then the script links the resulting object 
together with the kernel object to create the executable 
containing all the components (.prtk). 

 
Fig. 5. PaRTiKle Architecture 

 
The mkkernel script requires the following parameters: 
 
$ mkkernel -f <output> <file1.o> [<file2.o> ...] 
 

where <output> is the name of the target executable once the 
process of building the application has concluded, and 
<file1.o>, <file2.o>, etc., are the object files obtained when 
the application is compiled using GCC with the option -c. 
The steps performed by this script are: 

 
1. It links the application against the user “C” library and 

the suitable run-time (the run-time is selected depending on 
the language used to implement the application). 

2. It turns every application’s symbol into a local symbol, 
except user entry point. 

3. Eventually, the script links the resulting object file 
together with the kernel object file to create the executive 
(*.prtk). 

  

 

Fig. 6. Building process of a µDDS application 
 

For development model in Real-Time Java a compiled 
application includes the GCJ runtime with the javax.realtime 
classes and the native methods as shown in the figure 7. 
GCJ, which is the GCC Java compiler, links with the libgcj 
by default, which includes a complete java runtime on the 
order of some megabytes with a set of characteristics that 
are not necessary for small platforms. The idea is to remove 
the any functionality which is not necessary for safety 
critical systems and also not necessary for real-time systems 
with hard timing restrictions. 

We started from scratch, copying the source code 
necessary to the directories where we had installed GCJ on 
PaRTiKle. The code was compiled generating a new, 
reduced, version of libgcj. The size obtained is in the range 
of hundreds of kilobytes for the complete application, which 
is composed of the application code (code developed by the 
end user), µDDS Middleware and the PaRTiKle operating 
system. The reduced version of libgcj is a subset of the 
runtime support and the CLASSPATH. Finally, this version 
of libgcj has all of the support to execute applications using 
the porting and adaption of  jRate on the PaRTiKle OS, a 
subset of java.lang and java.io, support for thread execution, 
and OS interfaces. The garbage collector, support for 
graphical interfaces, runtime classloading, bytecode 
interpretation, reflection, finalization, serialization, file and 
network I/O, and many parts of java.lang, java.util, and 
java.io, that were not considered essential, have been 
removed, for real-time and safety critical applications.  

VI.  IMPLEMENTATION AND EVALUATION 
To study the performance of publish/subscribe systems 

we implement the µDDS as our middleware base for 
wireless embedded applications. The purpose of our 
experiment is to run latency and throughput performance 
tests with different message size and number of subscribers 
in a practical environment.  

The test was performed using eight devices based on an 
ARM 7TDMI-S processor running at 60 Mhz, model 
LPC2136 with 32 Kbytes RAM and 256 Kbytes EEPROM, 
and a MaxStream XBee Pro with 802.15.4 protocol stack for 
the wireless communication. 

A. Throughput test 
In this test, the publisher sends data where the size varies 

from 16 bytes to 4Kb and is sent to one or more subscriber 
applications. The throughput is the total number of messages 
received per second by all the subscribers in the system 
divided by message fanout. The test code contains two 
applications: one for the publishing node and the other for 
the subscribing node(s). The publisher applications are 
started first followed by the subscriber applications, then the 
publication application sends a burst of data and repeats the 
cycle for a specified duration. Figure 8 shows the 
Throughput performance results of the test. 



  

 
 

 
Fig. 7. Java application build process 
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Fig. 8. Throughput Test 

 

B. Latency test 
Similarly to the throughput test, the publisher sends data 

with varying size from 16 bytes to 4 Kb to one or more 
subscriber applications in which the latency is estimated as a 
half of the round-trip time of a message. The test code 
contains two applications: one for the publishing node, one 
for the subscribing node(s). The publisher application is 
started firts, followed by each subscriber, then the publisher 
starts publishing data. The test ends when all the messages 
have been sent and the same number of replies has been 
received by the publisher. Figure 9 shows the latency 
results. 

C. QoS Test    
For the QoS policy, µDDS implement some of the QoS 

model of DDS, such as deadline and time based filter. The 
Deadline QoS indicates the minimum rate at which a 
DataWriter will send data. The Time-Based Filter provides a 
way to set a minimum separation period, which is used to 
specify that a DataReader wants new messages no more 
often than this time period; according to the specification, if 
the value of this QoS policie is 0, it means that the 

DataReader wants all values. 
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Fig. 9. Latency Test 

 
Figure 10 shows the performance of dealing with 

notifications per second with different Topics and 
TIME_BASED_FILTER (TBF) settings. The result shows 
that µDDS achieves maximal processing capacity for 
notifications in a second when Topic Number grow up to 
600 and TIME_BASED_FILTER = 1. 
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Fig. 10. TIME BASED FILTER QoS Test 

 
Figure 11 shows the Deadline Missed Ratio as a function 

of the number of Topics while considering different 
DEADLINE periods. The result show that Deadline 
increases slowly when Topic Number is bigger than 160 for 
Deadline = 2 and 200 for Deadline = 4. 

These results have been obtained with a service that just 
run with topic number ranging from 10 to 500, which was 
observed 20 times in order to obtain the average value. 
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Fig. 11. DEADLINE Test 



  

VII. CONCLUSIONS 
In this paper, a new DDS compatible real-time 

middleware has been presented; µDDS is a 
publish/subscribe middleware that allows real-time wireless 
embedded applications to interoperate with each other, and 
is capable of supporting different QoS levels for various 
applications. The combination of a compact Java 
environment, the µDDS and the PaRTiKle OS, has resulted 
in a very small footprint, low latency, and highly reliable 
platform for time critical Java applications. In order to 
validate and evaluate the performance of our 
implementation, several tests have been designed and 
performed. All the testing realized in this work, shows that 
the performance of this implementation is very efficient, 
achieving very good results in throughput, latency and the 
QoS performed. Evaluations results demonstrate that µDDS 
is lightweight and efficient, and the use of the µDDS 
middleware simplifies the development process of real-time 
wireless embedded publish/subscribe applications. 

In the future we will provide our software architecture for 
other hardware architectures such as XScale and PPC, and 
we will implement the memory model TLSF which is 
supported by the PaRTiKle operating system, for which we 
must integrate the adaptation and implementation of RTSJ 
that we realized. 
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