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Abstract
Publish/Subscribe (pub/sub) semantics are critical for
IoT applications due to their loosely coupled nature.
Although OMG DDS, MQTT, and ZeroMQ are mature
pub/sub solutions used for IoT, prior studies show that
their performance varies significantly under different
load conditions and QoS configurations, which makes
middleware selection and configuration decisions hard.
Moreover, the load conditions and role of QoS settings in
prior comparison studies are not comprehensive and well-
documented. To address these limitations, we (1) propose
a set of performance-related properties for pub/sub mid-
dleware and investigate their support in DDS, MQTT,
and ZeroMQ; (2) perform systematic experiments under
three representative, lab-based real-world IoT use cases;
and (3) improve DDS performance by applying three
of our proposed QoS properties. Empirical results show
that DDS has the most thorough QoS support, and more
reliable performance in most scenarios. In addition, its
Multicast, TurboMode, and AutoThrottle QoS policies
can effectively improve DDS performance in terms of
throughput and latency.

CCS Concepts: • Software and its engineering → Mes-
sage oriented middleware; Publish-subscribe / event-
based architectures; • General and reference → Evalu-
ation.
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1 Introduction
Distributed deployment of real-time applications and
high-speed dissemination of massive data have been hall-
marks of the Internet of Things (IoT) platforms. IoT
applications typically adopt publish/subscribe (pub/-
sub) middleware for asynchronous and cross-platform
communication. OMG Data Distribution Service (DDS),
ZeroMQ, and MQTT are three representative pub/sub
technologies that have entirely different architectures (de-
centralized data-centric, decentralized message-centric,
and centralized message-centric, respectively). All of
them implement the pub/sub messaging pattern and
provide a set of configurable parameters for customizing
middleware behaviors and resource allocation. Accord-
ingly, an essential question that needs to be answered
is how to choose an appropriate middleware given a
workload condition, and which parameters should be
regarded for making the optimal configuration decisions.

Therefore, this study makes three major contributions
to research on this problem:

1. We propose a set of QoS properties that are tied
to the performance of IoT pub/sub applications
and investigate which of those are supported by
DDS, MQTT, and ZeroMQ.

2. We then conduct a systematic set of experiments to
assess their performance in three pub/sub use cases
(high-frequency, periodic, and sporadic), which pro-
vide us with baselines for doing further perfor-
mance optimization.

3. Since empirical results show that DDS has the
most stable performance in the above scenarios
and provides the most in-line support to the QoS
properties we proposed, we further experimentally
validate the impact of three competitive QoS poli-
cies (Multicast, TurboMode, and AutoThrottle)
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on improving DDS application performance under
such conditions.

2 Essential QoS Properties for IoT Systems
The primary purpose of this section is to introduce sev-
eral performance-related QoS policies available in DDS,
MQTT, and ZeroMQ that are necessary for performance-
sensitive IoT applications. Although industrial middle-
ware vendors provide considerable adjustable QoS prop-
erties for satisfying diverse demands in efficiency, reliabil-
ity, security, durability, etc., only a small portion of them
have an apparent influence on application performance
(throughput, latency) in normal use cases. This section
empirically selects those that can effectively change in-
bound/outbound network traffic or message processing
logic due to the fact that the performance of pub/sub
middleware depends mainly on the network congestion
status and internal resource utilization.
2.1 Reliability
Reliability policy determines whether messages can be re-
liably transmitted, which fatally affect the data-processing
and decision-making processes of IoT applications. DDS
provides two types of transmission guarantees: Best Ef-
fort (i.e., no guarantees) and Reliable (i.e., retry until
success). MQTT provides three service levels: QoS 0,
QoS 1, QoS 2, representing "at-most-once", "at-least-
once", and "exactly-once", respectively. MQTT’s QoS 0
is equivalent to DDS’ BestEffort and QoS 2 to DDS’ Re-
liable delivery. ZMQ pub/sub pattern may lose messages
when the network is congested.
2.2 Multicast
Multicast allows IoT applications to scale better when
multiple subscribers exist. Both DDS and ZeroMQ allow
users to set the number of hops that multicasting mes-
sages can traverse, which intends to avoid flooding large
networks with multicast traffic. Although MQTT runs
over unicast protocol, it emulates the application-layer
multicast by wrapping up point-to-point TCP connec-
tions, which is also known as multicast-over-unicast. The
protocol utilized in ZeroMQ for multicast include Prag-
matic General Multicast (PGM) [5] and Encapsulated
Pragmatic General Multicast (EPGM).
2.3 Intelligent Batching
Message batching intends to improve the throughput of
IoT applications. It avoids frequent system calls through
the network stack due to message by message processing
and can be performed at a fixed interval or over number
of messages. The TurboMode QoS in DDS automati-
cally decides the optimal number of bytes in a batch on
publisher side based on the data sample size, writing
speed and the real-time system state. Message batch-
ing in ZeroMQ can be enabled at either publisher or

subscriber side. Rather than deciding timeout or batch
size for a single chunk, ZeroMQ always forwards all mes-
sages queued in memory at the moment to the network
interface card in one go. However, due to the lack of
strict reliability guarantees in ZeroMQ’s pub/sub pat-
tern, messages sent in a large batch risk being lost when
the network is crowded. At the subscriber side, if the
subscriber can keep up with publisher and there is no
application-level queue backlog, ZeroMQ will turn off its
batching function for the sake of lower end-to-end de-
lay. Otherwise, the batching will be enabled to help the
worker thread promote the speed of flushing backlogged
messages. MQTT does not support intelligent batching.

2.4 Rate Limit
Rate Limit is a flow control mechanism that protects
network resources from being encroached by malicious ac-
tors in an IoT cluster by specifying the maximum rate at
which a publisher may send samples to the network. DDS
allows users to define the Custom Flow Controller that
maintains a separate FIFO queue for each connection
in which data instances generated by asynchronous pub-
lishers can be placed. ZeroMQ supports rate limit only
when the multicast protocol (PGM/EPGM) is enabled,
and is implemented by setting the multicast window size.
MQTT server shapes the egress traffic of each TCP/SSL
connection based on the Leaky Bucket (LB) algorithm.

2.5 Message LifeSpan
Message expiration mechanism restrains the longest time
that a message is regarded as a legal one in the sys-
tem, which improves overall memory utilization rate
and avoids delivering stale data. In the reliable trans-
port mode of DDS, if the LifeSpan QoS policy is not
configured, unconfirmed data instances will reside in
the publisher’s writing buffer for a long time and be
re-transmitted endlessly, which not only wastes mem-
ory and bandwidth, but also destroys the timeliness of
messages. Adhering to similar intent, MQTT implemen-
tations (EMQ X, HiveMQ, and VerneMQ) that adopt the
latest MQTT specification (MQTT 5.0) allow publishers
to specify a property for each sample called message-
expiry-interval that defines the actual lifespan of mes-
sages in seconds. There is no analog to LifeSpan QoS in
current ZeroMQ implementations.

2.6 Topic Priority
Topic priority aims to distinguish the importance of
different messages, which ensures that the overall utility
of a multi-topic IoT system is maximized under given
resource limitation. DDS enables this property via the
Tansport_Priority policy that is signified by a 32-bit
signed integer. An analogous parameter in ZeroMQ is
called ZMQ_TOS that is implemented in the same logic
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as DDS. Unlike the above system-level implementations,
the topic priority in MQTT applications is designated
as a configurable attribute of the message queue in the
broker with values from 0 to 255.

3 Understanding the Performance Baseline
The purpose of this section is to understand the baseline
performance of DDS, MQTT, and ZeroMQ under three
representative IoT workload conditions (high-frequency,
periodic, sporadic). We performed our tests on an ARM
cluster comprising 10 Raspberry Pi 3 Model B boards
that have 1.20 GHz CPU speed, four physical cores, and 1
GB memory. Software details of the cluster are as follows:
Raspbian 9 OS, Linux 4.14.91 kernel, and GCC 4.7.3.
The cluster bandwidth of 95 Mbps was inferred using
Linux iperf3. Interference was minimized by pinning
publishers and subscribers to separate cores. To avoid
latency measurement error introduced by system clock
jitters, we synchronized the system clock on each node
using the Precision Time Protocol (PTP) [4]. Our test
results indicate that PTP can guarantee the clock offset
within 200 microseconds between Raspberry Pi boards
even if the CPU is 80 percent utilized.

We leveraged RTI-Perftest [7] to monitor and bench-
mark throughput, latency and CPU utilization of the
testing DDS application. RTI-Perftest is a highly config-
urable command-line benchmarking tool developed by
RTI for evaluating performance of applications that use
RTI Connext DDS Professional 6.01 as middleware. RTI-
Perftest measures throughput by counting the amount
of bytes received by the subscriber per second. To avoid
measurement errors caused by system clock jitter, RTI-
Perftest calculates the one-way delay by sending latency
test data samples in a ping-pong manner. For MQTT
and ZeroMQ, we developed custom testing tools using
open source APIs. All tests were repeated five times and
each run lasted 90 seconds. We measured performance
metrics every 5 seconds.
3.1 High-frequency Data-flow Tests
This test was motivated by a fault diagnosis system
where vibrations and sound information gathered by
acoustic sensors are continuously propagated to ADC or
cloud servers for further ML-based analysis. Hence, in
this test, a publisher floods a continuous data-flow to
single/multiple subscribers with unlimited rate, which
were profiled with default QoS settings. Figure 1 plots
mean throughput versus payload size.

The 1-1 subplot indicates that application throughput
grows as the payload size increases. When the message
is smaller than 1 KB, ZeroMQ performs best, whose
throughput is 17.15x-30.69x higher than that of MQTT
and 18.8%-110.66% greater than DDS. The reason is
1 https://www.rti.com/products/connext-6

Figure 1. High-frequency Data-flow Tests: 1pub-1sub
& 1pub-7sub, PubRate: unlimited. Figure shows mean
throughput over five runs. QoS settings: Unicast, Reli-
able, No Batching.

there is no bandwidth or CPU pressure for either Ze-
roMQ or DDS at this time, and since ZeroMQ is built on
top of the socket layer (lower than DDS), it spends less
time than DDS in executing application-level data pro-
cessing. However, when the message is larger than 1KB,
ZeroMQ throughput is not smoothly converged, and its
throughput becomes lower than DDS. The shape of the
DDS curve is as expected: its throughput increases first
then converges to the maximum bandwidth (95mbps).
Compared with DDS and ZeroMQ, the throughput of
MQTT is poor due to its broker-centric architecture.
In the 1-7 test, the throughput of DDS and MQTT is
one-seventh of the physical bandwidth since messages
are forwarded to seven subscribers one by one. On the
other hand, ZeroMQ gains the highest throughput, which
reveals that the overhead of ZeroMQ packets in one-to-
many cases is significantly lower than DDS and MQTT.

3.2 Periodic Data-flow Tests

The Periodic use case maps to the continuous data-flow
in real-life, where the size and frequency of data change
less frequently, e.g., a wind farm monitoring system in
which windmills that rotate at a constant speed send
telemetry data at a fixed rate through which vendors can
continuously track the operational status of windmills.
In this kind of scenario, latency is more important than
throughput as the timeliness of monitoring data is more
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Figure 2. Periodic Data-flow Tests: 1pub-1sub. Figure shows 90th latency over five runs. QoS settings: Unicast,
Reliable, No Batching.

important. In the following test, we simulated this use
case and configured a publisher to send messages to a
subscriber at a specified rate. The publishing rate varies
from 200 to 1000 samples per second. Figure 2 shows the
results of the 90th percentile latency versus publishing
rate for small, medium, and large messages.

For small (64B) and medium (2KB) messages, MQTT
latency slightly improves first then remains flat, the
reason being that MQTT broker needs more time to pro-
cess ingress/egress traffic as the sending rate increases.
However, when the broker can not keep up with the
publisher and the writing buffer on the publisher node
is exhausted, the writing process of publisher will be
blocked, thereby keeping the actual message dissemina-
tion rate and latency unchanged. In addition, the change
of latency is not very obvious for DDS and ZeroMQ
because (1) their participants connect in an end-to-end
manner, (2) subscriber can keep up with the publisher
since bandwidth is not stressed.

For large samples (32KB), MQTT latency remains flat
as the publishing rate varies, and is consistently at the
lowest level compared to others when the dissemination
rate is faster than 400 samples per second for similar
reasons as before. DDS and ZeroMQ share the same
trend with DDS latency a bit larger than that of ZeroMQ
when the publishing rate is 200 samples/sec. ZeroMQ and
DDS latency suddenly increase as the message diffusion
rate pass 400 and 600 samples per second, respectively,
and then fluctuates marginally. We believe the reasons
are twofold: (1) the bandwidth is exhausted when the
publishing rate surpasses 400 samples per second (400
samples/s * 32KB > 95Mbps); (2) the publishing process
is blocked as the local buffer is exhausted, which is the
same reason as in MQTT.

3.3 Sporadic Data-flow Tests

Multiple independent pub/sub applications may co-locate
in the same LAN environment. Consider the same wind
farm monitoring system example, if anomalous status
is identified on some windmills (i.e., stops spinning due

to slow wind speeds or mechanical stoppage ), it is nec-
essary to send a large volume of failure detection data
to the central control system. As a result, co-located
applications may experience latency deterioration due
to bandwidth contention caused by the bursty traffic.

Figure 3. Sporadic Data-flow Test: 1pub-1sub. Figure
shows the 90th latency of the PDF application, standard
deviation on each bar indicates the interference caused
by the co-located SDF application. Payload(SDF):2MB,
PubRate(SDF):unlimited, PubRate(PDF):25Mbps

To that end, we generated a periodic data-flow (PDF)
and a sporadic data-flow (SDF) using two one-to-one
pub/sub applications with separate topics. The packets
size of SDF application was set to 2MB and the message
frequency of PDF set to 25Mbps of the physical band-
width. Also, the SDF application began 30 seconds later
than the PDF application and executed for 10 seconds.

Figure 3 depicts the latency of the application under
the interference of the SDF application. MQTT latency
has higher standard deviation than DDS and MQTT,
which implies MQTT is more sensitive to the bursty
data stream due to the presence of the broker. Moreover,
DDS tolerates the situation better than ZeroMQ.

4 DDS-focused Evaluations
Since DDS provides more modularized and pluggable
QoS properties, this section probes it further. Prior
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Figure 4. DDS QoS Test: 1pub-1sub, PubRate: unlimited. Figure shows mean throughput, latency and CPU utilization.
QoS(Base): Unicast, Reliable, No Batching; QoS(Multicast): Multicast, Reliable, No Batching; QoS(TurboMode):
Unicast, Reliable, TurboMode; QoS(AutoThrottle): Unicast, Reliable, No Batching, AutoThrottle.

Figure 5. DDS QoS Test: 1pub-7sub, PubRate: unlimited. Figure shows mean throughput, latency and CPU utilization.
QoS(Base): Unicast, Reliable, No Batching; QoS(Multicast): Multicast, Reliable, No Batching; QoS(TurboMode):
Unicast, Reliable, TurboMode; QoS(AutoThrottle): Unicast, Reliable, No Batching, AutoThrottle.

works [2][6] reveal that transport protocol, message
batching, and flow control are non-trivial aspects of
performance tuning in networked applications, we evalu-
ate DDS along these dimensions that corresponds to the
Multicast, TurboMode, and AutoThrottle QoS policies
in DDS. The setup was similar as in the High-frequency
Data-flow Test.

Figures 4 and 5 reveal that the publisher’s CPU usage
remains flat in the beginning then gradually decreases as
the message size increases, which indicates that messages
are produced less often as message size increases since
data samples need more time to be delivered. Yet, the
writing process is blocked during this period until more
packets can be put into the pipe.

The TurboMode improves throughput 23.6%-848.3%
and 7.5%-1166.7% for messages that are smaller than
1KB in 1-1 and 1-7 tests, respectively, as the network
stack is traversed less frequently. Moreover, it does not
always lead to higher latency in the 1-n test because
the time consumed on sending individual messages to
multiple receivers in a unicast manner may be longer
than sending multiple messages in batch. Multicast effec-
tively improves application performance in the 1-7 test
(272.3%-842.2%) but the throughput cannot converge to

the physical bandwidth as payload increases, which we
believe is due to the limitation of the network switch.

When the AutoThrottle mode is enabled, our results
show that the application throughput reduced an average
of 18.0% and 18.7% in the 1-1 and 1-7 tests, respectively.
Likewise, the latency reduced 3.6% and 8.8%, respec-
tively. Since the AutoThrottle feature needs to keep
tracking the system states (send window occupancy and
NACK messages amount) to make throttling decisions,
it results in higher CPU utilization than the normal
configuration.

5 Related Work
Performance assessment of pub/sub middleware have
been conducted by many prior works under different
experimental settings. Pereira et al. [9] propose a set
of qualitative and quantitative dimensions for bench-
marking IoT middleware. They used a large dataset to
simulate a smart city use case, and evaluated the per-
formance of two middleware platforms (FIWARE2 and
oneM2M3) from their proposed benchmarking dimen-
sions. Similarly, the quantitative analysis in [1] presents
performance (throughput and latency) variation between
2https://www.fiware.org.
3http://www.onem2m.org.
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Open MQ, Active MQ, and Mantaray MQ for different
message sizes. However, since the middleware they inves-
tigated are all broker-based, they learned publishing and
subscribing processes separately, rather than performing
end-to-end tests.

In [10], authors provided an overview of round trip
time (RTT) difference of OPC UA, ROS, DDS, and
MQTT under different CPU and network load condi-
tions. Dobbelaere et al.[3] established a generic compari-
son framework based on the core functionality of pub/sub
systems. Using this framework, they delved into qualita-
tive and quantitative comparison of two commercially-
supported middleware: Kafka and RabbitMQ. To avoid
interference from the network layer, they executed their
experiments on a single host with empirical application
configurations. Luzuriaga et al.[8] present an experi-
mental evaluation of AMQP and MQTT in the context
of unstable network conditions. Their assessments are
based on a simple one-to-one publish/subscribe scenario.
Compared to these works, we designed test cases based
on real-life scenarios and provided users with more in-
sightful guidelines on selecting QoS policies to improve
middleware performance.

6 Concluding Remarks
This paper empirically evaluates the performance of
three pub/sub technologies: OMG DDS, MQTT and Ze-
roMQ for representative IoT scenarios (high-frequency,
periodic, and sporadic). DDS provides more compre-
hensive and modularized QoS support than others, and
also demonstrates better overall latency and throughput
in most evaluated scenarios. Specifically, DDS gained
higher throughput than ZeroMQ and MQTT in the
high-frequency data-flow use case. In periodic data-flow,
ZeroMQ has lower latency than DDS for small (64B)
and medium (2KB) messages. DDS latency outperforms
ZeroMQ when sending large messages (32KB). MQTT
is more sensitive to the in-parallel sporadic data-flow,
and DDS can successfully shield the interference. Our
results also reveal that DDS’ Multicast QoS can effec-
tively improve throughput in multi-subscriber scenarios.
The TurboMode property can intelligently decide the
appropriate batch size with regard to different payload
and significantly improve throughput for small messages.
Moreover, the AutoThrottle property results in lower
throughput and latency and higher CPU utilization.

Our future work will include: (1) examining more
QoS settings (not only for DDS, but also MQTT and
ZeroMQ) experimentally; (2) evaluating more middle-
ware using real-world workloads instead of synthetic
data-flows; and (3) designing intelligent decision-making
algorithms to automatically configure and adaptively
adjust middleware QoS parameters under various (dy-
namic) load conditions.
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